1. Field of the Invention
The present invention relates to the gallium-nitride (GaN) based light emitting diode (LED), and in particular to the structure of the light-emitting layer of the GaN-based LED.
2. The Prior Arts
LEDs have long been widely used as indicators or light sources in various electronic consumer devices due to their features including low power consumption, low heat dissipation, and long operation life. In recent years, researches have been focused on the development of LEDs with various colors and LEDs with high luminance. Among these researches, highly efficient and illuminant blue-light LEDs that can be put to practical use receive the most attention. In October 1995, Nichia Corporation, Japan, announced the successful production of highly illuminant blue-light LEDs based on the indium-gallium-nitride (InGaN) material. This breakthrough has led the world's optoelectronic industry to invest tremendous capitals and resources in the gallium-nitride (GaN) based, such as GaN, aluminum-gallium-nitride (AlGaN), indium-gallium-nitride (InGaN), etc., LEDs.
To overcome the foregoing disadvantages, the present invention provides a number of light-emitting layer structures for the GaN-based LEDs that can increase the lighting efficiency of the GaN-based LEDs on one hand and facilitate the growth of epitaxial layer with better quality on the other hand.
The light-emitting layer structure provided by the present invention is located between the n-type GaN contact layer and the p-type GaN contact layer. Sequentially stacked on top of the n-type GaN contact layer in the following order, the light-emitting layer contains a lower barrier layer, at least one intermediate layer, and an upper barrier layer. That is, the light-emitting layer contains at least one intermediate layer interposed between the upper and lower barrier layers. When there are multiple intermediate layers inside the light-emitting layer, there is an intermediate barrier layer interposed between every two immediately adjacent intermediate layers.
The upper and lower barrier layers have higher band gaps than that of the intermediate layer so that the electrons and the holes have a higher possibility joining with each other within the intermediate layer, which in turn increase the lighting efficiency of the GaN-based LED. The barrier layers have a thickness between 5 Å and 300 Å, and a growing temperature between 400° C. and 1000° C.
The foregoing and other objects, features, aspects and advantages of the present invention will become better understood from a careful reading of a detailed description provided herein below with appropriate reference to the accompanying drawings.
FIGS. 2(a), 2(b), and 2(c) are schematic diagrams showing the GaN-based LED structures according to a first embodiment of the present invention.
FIGS. 3(a), 3(b), and 3(c) are schematic diagrams showing the GaN-based LED structures according to a second embodiment of the present invention.
FIGS. 4(a) and 4(b) are schematic diagrams showing the GaN-based LED structures according to a third embodiment of the present invention.
FIGS. 5(a) and 5(b) are schematic diagrams showing the GaN-based LED structures according to a fourth embodiment of the present invention.
FIGS. 2(a), 2(b), and 2(c) are schematic diagrams showing the GaN-based LED structures according to a first embodiment of the present invention. As shown in FIGS. 2(a), 2(b), and 2(c), the GaN-based LED structures use sapphire as the substrate 20. Then, sequentially from bottom to top on the sapphire substrate 20, the GaN-based LED structures contain a n-type GaN contact layer 21, a lower barrier layer 22 made of un-doped aluminum-gallium-indium-nitride (Al1-x-yGaxInyN, 0≦x,y≦1, x+y≦1), at least an intermediate layer 23, an upper barrier layer 24 made of un-doped Al1-p-qGapInqN (0≦p,q≦1, p+q≦1), and a p-type GaN contact layer 25. The GaN-based LED structures further contain a positive electrode 26 and a negative electrode 27 on top of the p-type GaN contact layer 25 and the n-type GaN contact layer 21 respectively.
As shown in
As shown in
As shown in
The upper, intermediate, and lower barrier layers 24, 28, and 22 all have a thickness between 5 Å and 300 Å, and a growing temperature between 400° C. and 1000° C. The ultra-thin quantum-dot layers 231 and 231′ have a thickness between 2 Å and 30 Å, and a growing temperature between 400° C. and 1000° C. The quantum-well layer 232 has a thickness between 5 Å and 100 Å. Even though the quantum-well layer and the barrier layers are all made of aluminum-gallium-indium-nitrides, their compositions are not required to be identical. That is, the (x, y), (p, q), (m, n), (i, j) parameters in the foregoing molecular formulas are not necessarily the same.
FIGS. 3(a), 3(b), and 3(c) are schematic diagrams showing the GaN-based LED structures according to a second embodiment of the present invention. The second embodiment and the foregoing first embodiment of the present invention actually have identical structures. The difference lies in the materials used for the respective intermediate layers. As shown in
As shown in
As shown in
The upper, intermediate, and lower barrier layers 34, 38, and 32 all have a thickness between 5 Å and 300 Å, and a growing temperature between 400° C. and 1000° C. The ultra-thin layers 331 and 331′ have a thickness between 2 Å and 10 Å, and a growing temperature between 400° C. and 1000° C. The quantum-well layer 332 has a thickness between 5 Å and 100 Å. Even though the quantum-well layer and the barrier layers are all made of aluminum-gallium-indium-nitrides, their compositions are not required to be identical. That is, the (x, y), (p, q), (m, n), (i, j) parameters in the foregoing molecular formulas are not necessarily the same.
FIGS. 4(a) and 4(b) are schematic diagrams showing the GaN-based LED structures according to a third embodiment of the present invention. The third embodiment and the previous two embodiments of the present invention actually have identical structures. The difference lies in the materials used for the respective intermediate layers. As shown in
As shown in
The upper, intermediate, and lower barrier layers 44, 48, and 42 all have a thickness between 5 Å and 300 Å, and a growing temperature between 400° C. and 1000° C. Even though the barrier layers are all made of aluminum-gallium-indium-nitrides, their compositions are not required to be identical. That is, the (x, y), (p, q), (i, j) parameters in the foregoing molecular formulas are not necessarily the same.
FIGS. 5(a) and 5(b) are schematic diagrams showing the GaN-based LED structures according to the fourth embodiment of the present invention. The fourth embodiment and the third embodiment of the present invention actually have identical structures. The difference lies in the materials used for the upper, intermediate, and lower barrier layers. As shown in FIGS. 5(a) and 5(b), each barrier layer has a structure identical to that of the intermediate layer 43. Specifically, each barrier layer is a supper lattice barrier layer further containing at least an In-doped, AlN ultra-thin monolayer 531 and an In-doped, GaN ultra-thin monolayer 532. Within each the barrier layer, the monolayers are sequentially stacked and interleaved with each other, similar to the intermediate layer 43. The monolayers all have a thickness between 2 Å and 20 Å, and a growing temperature between 400° C. and 1000° C. Within each barrier layer, there are at least one AlN ultra-thin monolayer 531 and one GaN ultra-thin monolayer 532, making the total number of monolayers at least two. On the other hand, within each barrier layer, there are at most five AlN ultra-thin monolayer 531 and five GaN ultra-thin monolayer 532, making the total number of monolayers at most ten. The upper, intermediate, and lower barrier layers 54, 58, and 52 may contain different numbers of monolayers respectively. However, the barrier layers all have a thickness between 5 Å and 300 Å, and a growing temperature between 400° C. and 1000C.
Although the present invention has been described with reference to the preferred embodiments, it will be understood that the invention is not limited to the details described thereof. Various substitutions and modifications have been suggested in the foregoing description, and others will occur to those of ordinary skill in the art. Therefore, all such substitutions and modifications are intended to be embraced within the scope of the invention as defined in the appended claims.