This application is directed to a system and related galvanostatic method that eradicates microbes from the surfaces of metal orthopedic devices/appliances.
Orthopedic devices, such as metal implants, are used in patients with many different injuries or medical problems. In particular, metal implants may be used for any individual that needs to replace joints. For example, a metal implant may be used to replace a patient's hips or knees. One potential problem with metal implants is that they tend to allow for the growth of bacteria on the surface. This may increase the patient's risk for an infection, which may result in removal of the implant or a life-threatening situation if the infection cannot be treated. To decrease the risk of infection, electrodes can provide electrical stimulation to disrupt the growth of bacteria.
It has been shown in scientific literature that application of cathodic current to metal samples create chemical reactions at that surface that can disrupt and kill bacterial biofilms that exist on the metal. For electrochemical processes to occur, there must be an anode and a cathode within an electrolyte solution. The anode is a metallic surface where oxidative reactions occur, and the cathode is another metallic surface where reduction reactions occur. A reduction reaction is essentially when the material of interest gains electrons and thereby decreases the oxidation state of the molecules. The electrolyte that the anode and cathode each reside in provides the electrical connection by facilitating the flow of electrons shuttled by ion carriers such as sodium or potassium ions. Electrons are driven from the anode to the cathode through the electrical path via an external power source such as a galvanostat. A galvanostat is an instrument used to drive constant current from a counter electrode to a working electrode by varying voltages between them. In the case of cathodic current stimulation, the anode represents the counter electrode and the cathode represents the working electrode.
The two-electrode system described has been used in industry for many decades to produce different chemical byproducts from the electrolyte media. In many two electrode, direct current applications there are common problems with controlling or knowing what thermodynamic state the surface of the working electrode exists as. Depending on the voltage and pH of the system, the metal may be in a corrosive, passive, or immune state. Not knowing which state the surface exists in may cause undesired metal substituents to be released, which can cause adverse effects on the patient's health if a galvanostatic operation is applied in the body of a patient with a metal implant. This can occur in both voltage and current controlled two-electrode systems.
The invention is directed to curing the above noted problems in order to realize a galvanostatic technique that can safely remove microbes from the surface of an orthopedic appliance such as a replacement knee, shoulder or hip. By implementing a third electrode with a stabilized voltage as part of a feedback mechanism, the inventive system and method is able to sense what voltage the working electrode exists at under a galvanostatic system, and based on the sensed voltage levels, voltage limiters can be applied in order to prevent drift into thermodynamically unfavorable potentials. The inventive method and system is therefore comprised of three (3) electrodes including a counter electrode and working electrode used for applying treatment, as well as a reference electrode used for monitoring safety parameters. According to a preferred version of the inventive method and system, The working electrode is the surgically embedded implant. A flow of electrical current is applied between the counter electrode and the working electrode in order to create electrochemical current through the system. The applied electrical current is a direct current so to create electrochemical reactions on the surface of the working and counter electrode. The chemical species which are created at the working electrode provide a mechanism to disrupt and kill microbes on that surface including bacterial biofilms commonly found on infected orthopedic implants. The circuitry connected to the electrodes keeps the applied current constant and allows the voltage between the working and counter electrode to vary. The reference electrode is configured to monitor the voltage at the working electrode in order to provide feedback to a processor, forming a feedback mechanism. The processor is programmed with software logic in order to prevent the applied voltage from drifting to ranges that correlate with metal immunity or corrosion regions by limiting or altering the current and therefore keep the measured voltage within a predetermined range.
By implementing a third electrode with a stabilized voltage, the inventive system is able to sense what voltage the working electrode exists at under a galvanostatic system, and the processor can then apply voltage limiters to prevent drift into thermodynamically unfavorable potentials.
The inventive system and method is unique because it combines a simplistic electronic application of galvanostatic stimulation with a smart feedback mechanism in order to provide a controlled and effective means to eliminate microbes, including biofilms, from orthopedic hardware.
The invention provides greater patient safety following surgically implanted hardware and reduces the need to remove implants due to infection and minimizes prevention of life-threatening incidents.
These and other features and advantages will be readily apparent from the following Detailed Description which should be read in conjunction with the accompanying drawings.
The following describes a novel system and method that removes microbes from a surgically implantable orthopedic device, such as a knee or hip replacement in accordance with an exemplary embodiment. It will be understood, however that other embodiments or versions will be apparent based on the inventive aspects described.
With reference to
The galvanostatic device 120 according to this embodiment is configured with a processor that is programmed with logic (shown as 190) that compares the sensed voltage of the working electrode received from the coupled reference electrode 180 with a stored and predetermined range of voltages or a voltage maximum. It should be noted that the processor can be a separate device or can be integrated directly into the galvanostatic device 120, which defines a feedback mechanism for the herein described system. In use and if the monitored voltage exceeds the voltage maximum as detected by the reference electrode 180, then the galvanostatic device 120 is programmed to automatically vary the constant current to the coupled electrodes 140, 160 in order to limit the voltage of the system 100 and address thermodynamic safety concerns relating to the implanted orthopedic appliance.
With reference to
An exemplary method 400 in accordance with the invention is detailed with reference to
Experimentation with clinical strength biofilms has shown that optimal current density upon a metal implant to remove at least three logs of bacteria over a period of time is 1-3 mA/cm2; however, the present system can be effective from 0.1 mA/cm2 to infinite current density. Current density can become dangerous to the patient if dosed too aggressively. Duration of treatment in combination with current density can be optimized to provide the most effective kill of bacteria without harming the patient's own biological tissue. For example, a current density of 100 mA/cm2 may cause high amounts of bone necrosis if applied for only a minute. Although current density is a simplistic way to baseline treatment parameters, total current is what simple galvanostats supply. As implant sizes vary due to the type of implant and size of the patient, a surface area calculation should be performed, as discussed above, in order to apply the optimal current density. For example, if invention needs to apply 2 mA/cm2, to an implant that is 100 cm2, the user must apply 200 mA through the invention for the desired treatment.
Typically, most metallic implants within the body are made from alloys that have the ability to passivate and create biocompatible oxide films at their surface under internal body environments and pH. Some examples of these metals include titanium, cobalt chrome, and stainless steel, among others. These biocompatible oxide films provide a kinetic barrier to prevent the metal from corroding into the external environment and thus provide the body, and in some cases biofilms, an inert surface to attach to. It is known that the thermodynamic equilibrium states of all metals can be modulated by changing their potential compared to a stable reference electrode, and the surrounding pH. Depending on the applied potential and the surrounding pH, metals may exist in passive, corrosive, or immune states. Passive states are largely considered safe. The previously mentioned oxide film that exist on titanium, cobalt chrome, and stainless steel is simply the metal thermodynamically existing in a “passive” state. As external potentials are applied in anodic or cathodic directions and electrolyte constituents change pH through chemical reactions, the passive layers may either grow or thin, respectively referred to as anodization or reductive dissolution. Depending on the metal, certain combinations of potential and pH can cause metals to enter thermodynamic states of corrosion or immunity. Corrosion states release metal ions into the surrounding environment whereas immunity states demonstrate non-corroding bare metal (with no oxide layer). Metal ions are known to cause unwanted side effects inside the body such as tissue necrosis or formation of pseudo tumors. The effect of immune metals on the body are not widely known, but are thought to cause biocompatibility and allergic reactions in surrounding tissue.
As discussed, concern has arisen regarding known two electrode systems and their lack of ability to control the thermodynamic state of the metal of interest. Without any feedback mechanism of what voltage the working electrode is at in comparison to a stable reference electrode, its potential may drift in anodic or cathodic directions, thus potentially entering corrosion or immune thermodynamic states. As discussed, the present system and related method adds a third (reference) electrode to its galvanostatic system that provides a feedback mechanism to a processor that is programmed with suitable logic that will alter the current of the galvanostatic device in order to prevent voltage drifts into corrosive or immune regions. Corrosive, passive, and immune regions naturally vary among all types of metal, therefore prior knowledge of the implants' metal composition is required, see step 408,
Other variations and modifications to the inventive system and method will be readily apparent to a person of sufficient skill.
This application is a national stage application under 35 U.S.C. § 371 of International Application No. PCT/US2021/013178, filed Jan. 13, 2021, which claims priority under applicable portions of 35 U.S.C. § 119 to U.S. Patent Application Ser. No. 62/962,564, filed Jan. 17, 2020, the entire contents of each application being herein incorporated by reference herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/013178 | 1/13/2021 | WO |
Number | Date | Country | |
---|---|---|---|
62962524 | Jan 2020 | US |