An example of a prior gun-shaped game controller is disclosed in U.S. Pat. No. 6,672,962. The controller is thus formed to include a barrel, a trigger unit, and a grip unit. Installed on the tip of the barrel is an artificial retina unit which takes in game images from a monitor screen. Attached to the trigger unit is a trigger lever that can be operated with a player's finger. A start switch, a cross-direction key, and a reload switch are installed in a position on the top of the grip unit of the controller main body, and corresponds to the hammer section of an actual gun. In the operation of a shooting game, and when the trigger lever is pulled, the screen of a monitor is brightened for a moment. The light is detected with a light detection means in the gun-type controller, and the point of impact is determined based on the light detection signal.
In the gun-type controller as described in the '962 patent, the trigger unit is located below the barrel. However, if the trigger level is operated with an index finger, and the cross-direction key operated with a thumb, the controller is difficult to operate while maintaining a stable holding state because the controller itself needs to be supported by holding the grip unit with only the remaining three fingers.
Furthermore, in the gun-type controller according to the '962 patent, because the cross-direction key is installed in a position corresponding to the hammer section, there is a distance between the section operated with the index finger and the section operated with the thumb, requiring extension of the fingers for holding it, which in turn limits the movable range of the fingers, making it difficult to move them simultaneously.
In one exemplary and non-limiting embodiment disclosed herein, a gun-type game controller is provided which can be held stably during operation and which is easy to operate. Various other exemplary embodiments incorporate a core controller unit in other simulated or real articles that may or may not have some relationship to the subject matter of the game itself.
In the example where the controller imitates a gun, the controller is equipped with a housing having a barrel portion and a gripper portion formed on one side of the barrel, a penetrating hole or aperture which penetrates a side of the barrel portion in a position toward the gripper portion, such that an index finger can be inserted into the hole when the gripper is held with the user's palm, middle finger, third finger, and little finger. A first control switch member installed inside the penetrating hole can be pushed inward, in a direction toward the gripper portion.
Because it becomes possible to operate the first control switch member with an index finger, and support the barrel portion with a middle finger while holding the gripper portion, the controller can be held stably even while playing the game.
A second embodiment relates to a game controller similar to the first embodiment, but wherein a second control switch member is installed in a position on the top of the housing where it can be operated with a thumb when the gripper portion is held by the player.
A third embodiment relates to a game controller similar to the second embodiment, but wherein the second control switch member is a universal stick which can be inclined 360-degrees. While holding the controller stably, in accordance with the second and third embodiments, operation/input with a thumb can be performed in addition to operation/input with an index finger.
A fourth embodiment relates to a game controller similar to the first embodiment, but equipped with an imaging device in the tip of the barrel portion of the housing for imaging a marker placed in a display side in order to compute the pointed position on the display.
Even when the center of gravity of the gun shifts forward by installing an imaging device in the tip of the barrel portion, the controller can be stably held.
A fifth embodiment relates to a game controller similar to the first embodiment, but wherein a mounting mechanism is installed on the tip of the barrel portion of the housing for mounting another game controller unit in a detachable manner.
A sixth embodiment relates to a game controller comprising a first control unit and a second control unit to which said first control unit can be mounted in a freely detachable manner. The game controller first control unit is equipped with an elongated first housing and comprises an imaging device on one end of the first housing for imaging a marker placed in a display side in order to compute the pointed position on the display. The game controller second control unit (or sub-unit) is equipped with a second housing imitating a gun having an elongated barrel portion and a gripper portion formed rearwardly of the barrel portion, wherein a mounting mechanism is installed on the tip of said barrel portion for mounting the first control unit in a freely detachable manner. A penetrating hole penetrates a side of said barrel portion and is formed toward the gripper portion of the barrel, and a first control switch which can be pushed inwardly toward the gripper portion is installed inside the penetrating hole.
A seventh embodiment relates to a game controller similar to the sixth embodiment, wherein the mounting mechanism comprises a storage unit for storing at least a part of the first control unit and a connector installed inside the storage unit for electrically connecting the first control unit and the second control unit.
By combining or separating two control units, the controllers can be selectively used according to the game requirements, enabling a wide range of operations.
Various additional embodiments are disclosed herein, wherein the control units are detachably secured to other simulated or real objects or articles that may or may not be related to the subject matter of the game being controlled.
Accordingly, in one exemplary but nonlimiting embodiment, there is provided a video game controller and receptor assembly comprising an elongated, substantially rectangular electronic video game controller core unit for operating an electronic game comprising a housing having a top, bottom, opposite sides, a forward end and a rearward end, the top having a plurality of control buttons including a crosskey thereon and the bottom having a trigger switch supported therein; and a receptor unit shaped to simulate a device held or worn by a character in the electronic game, the receptor formed with an open-topped recess with sides and a bottom defining a shape substantially similar to at least a portion of the bottom and opposite sides of the video game controller core unit received in the recess.
In another exemplary but nonlimiting embodiment, there is provided a receptor for an electronic video game controller comprising: a receptor housing including an elongated portion and a gripper portion; a trigger switch located in the elongated portion adjacent the gripper portion, the elongated portion formed with a substantially U-shaped slot open at a forward end of the receptor housing and adapted to receive an electronic video game controller; the substantially U-shaped slot having a length sufficient to support a portion of the electronic video game controller substantially co-axially with the elongated portion of the receptor; and wherein a rearward end of the substantially U-shaped slot is provided with a first connector adapted to align with and engage a mating second connector on the rearward end of the electronic video game controller to thereby enable electrical connection between the receptor and the electronic video game controller.
These and other features and advantages of exemplary illustrative non-limiting implementations will be better and more completely understood by referring to the following detailed description in conjunction with the drawings of which:
a is a perspective view showing upper enclosure of the core unit removed;
b is an inverted perspective view of the core unit with both the upper and lower enclosure portions removed;
a is a top plan view of the sub-unit shown in
b is a bottom plan view of the sub-unit shown in
c is a left side elevation of the sub-unit shown in
a and 23b are examples of core units detachably inserted within or incorporated within simulated bat devices;
a and 31b are an example of a core unit detachably secured within the handle portion of a racket type device;
Also, removably installed freely in the game machine 3 upon necessity is an external memory card 5 with built-in backup memory etc. which is a fixed storage for saved data etc. The game machine 3 executes a game program etc. stored on the optical disk 4 and displays the results on the monitor 2 as game images. The game machine 3 can also recreate a game state executed in the past using the saved data stored in the external memory card 5 and display the game images on the monitor 2. Then, a player can enjoy the game progress by operating the controller 7 while watching the game images displayed on the monitor 2.
The controller 7 wirelessly transmits data from a built-in communication unit 75 (described hereafter in reference to
The structure of the game machine 3 is explained hereafter, with reference to the functional block diagram of
In
The CPU 12 performs image processing based on instructions of the CPU 10, and comprises a semiconductor chip which performs necessary computation processes for displaying 3D graphics, for example. The CPU 12 performs image processing utilizing a memory exclusively for image processing (not shown) and a partial storage area of the main memory 13. The GPU 12 uses these to create game image data and movie pictures to be displayed on the monitor 2, and outputs them to the monitor via the memory controller 11 and the video I/F 17 as appropriate.
The main memory 13 is a storage area used by the CPU 10, and stores game programs etc. necessary for processing by the CPU 10. For example, the main memory 13 stores game programs and various kinds of data which are read out from the optical disk 4 by the CPU 10. The game programs and various kinds of data stored by this main memory 13 are executed by the CPU 10.
The DSP 14 processes sound data generated in the CPU 10 when a game program is executed, and connected to it is the ARAM 15 for storing its sound data etc. The ARAM 15 is used when the DSP 14 performs a specified processing step, (for example, storing game programs and sound data which were read ahead). The DSP 14 reads out sound data stored in the ARAM 15 and has them output to the speakers built into the monitor 2 via the memory controller 11 and the audio I/F 19.
The memory controller 11 controls overall data transfer, to which the various kinds of I/Fs are connected. The controller I/F 16 consists of four controller I/Fs 16a-16d for example (not separately shown), and via their connectors it connects external equipment that can fit to the game machine 3 in a communicable manner. For example, the reception unit 6 fits with a connector and is connected with the game machine 3 via the controller I/F 16. As stated above, the reception unit 6 receives transmission data from the controller 7, and outputs said transmission data to the CPU 10 via the controller I/F 16. Connected to the video I/F 17 is the monitor 2. Connected to the external memory I/F 18 is the external memory card 5, allowing access with backup memory etc., installed in the external memory card 5. Connected to the audio I/F 19 are the speakers 2a built into the monitor 2, allowing the sound data read out from the ARAM 15 by the DSP 14 and sound data directly output from the disk drive 20 to be output through the speakers 2a, Connected to the disk I/F 21 is the disk drive 20 which reads out data stored on the optical disk 4 placed in a specified read-out position, and outputs it to a bus of the game machine 3 and the audio I/F 19.
One non-limiting example of a controller 7 is explained hereafter, with reference to
In
In
Core unit 70 is now explained hereafter with reference to
The core unit 70 has a housing 71 formed by plastic molding for example. The housing 71 has a near-rectangular shape, elongated in the front-to-rear direction, and is sized so that it can be held with one hand of an adult or a child. The core unit 70 is a control unit which can also be used as a stand-alone controller or as the gun-type controller 7, when attached to the sub-unit 76.
A cross key 72a is installed on the front center of the top face of the housing 71. This cross key 72a is a cross-type, four-direction, push switch, wherein control sections corresponding to four directions (front, rear, left, and right) are arranged on the projecting pieces of a cross at a 90-degree interval. By pressing one of the control sections of the cross key 72a, one of the front, rear, left, and right directions is selected. For example, by the player controlling the cross key 72a, he can instruct 4-8 moving directions of player characters appearing in a virtual game world and instruct the cursor moving direction.
While the cross key 72a is a control unit which outputs a control signal according to the player's direction input operation, it may be a control unit of other shapes. For example, instead of a cross key 72a, a compound switch may be installed which combines a push switch with four-direction control sections in a ring shape and a center switch installed in the center of the ring. Also, instead of the cross-key 72a, a control unit may be installed which outputs a control signal according to the direction in which a universal stick projecting from the top face of the housing 71 is inclined. Furthermore, instead of the cross key 72a, a control unit may be installed which outputs a control signal corresponding to the sliding direction of a disk-shape member which can move horizontally. Other alternatives to the switch key include a touch pad or plural switches, each of which indicates one of at least four directions (front, rear, left, and right) and outputs a control signal according to the switch pressed by the player.
Multiple control buttons 72b-72g are installed rearwardly of the cross key 72a on the top face of the housing 71. The control buttons 72b-72g constitute a control unit which outputs a control signal assigned to each of the control buttons 72b-72g by the player pressing the head of each button. For example, the control buttons 72b-72d are assigned functions designated for “button No. 1,” “button No. 2,” and the “A button,” respectively. Also, the control buttons 72e-72g are assigned functions designated for the “− button”, the “Home button,” and the “+ button”, respectively. Control buttons 72b-72g are assigned their respective functions according to the game program executed by the game machine 3. Because they have no direct relationship with the explanation of the present invention, a detailed explanation of the various button functions is not necessary.
In the arrangement example shown in
Multiple LEDs 702 are installed to the rear of the control button 72c on the top face of the housing 71. Each controller 7 is assigned a controller classification (number) to distinguish it from other controllers 7. For example, the LED 702 is used for notifying the player of the controller classification currently set to the controller 7. Specifically, when transmission data is sent from the core unit 70 to the reception unit 6, among the multiple LEDs 702, the LED in the position corresponding to the controller classification lights up.
Also, sound release holes 72j for releasing sound form a speaker described hereafter (see speaker 706 in
A concave or recessed section 72k is formed in the forward end of the housing bottom. As will become clear in the later description, this concave section is formed in a position permitting the player's index finger or middle finger to be located when the player holds the core unit 70 alone. A control button 72i is installed on an inclined face behind said concave section. The control button 72i is a control unit which functions as the “B button” for example, used as the trigger switch in shooting games or for operations to let the player object pay attention to a specified object. Attached behind the control button 72i is the cover 72m of a battery storage area in which to store batteries, for example.
Also, installed on the front end of the housing 71 is an imaging chip which constitutes a part of an imaging information operating unit 74. The imaging information operating unit 74 is a system for analyzing image data taken by the core unit 70 to determine the location of a specified brightness and detect its position, size, etc. in the image, which has a sampling cycle up to about 200 frame/sec to allow tracing and analyzing even relatively high-speed motions of the core unit 70. The detailed structure of this imaging information operating unit 74 is described further herein.
The internal structure of the core unit 70 is explained hereafter, with reference to
In
The imaging information operating unit 74 is installed on the front end of the bottom of the circuit board 700. The imaging information operating unit 74 comprises an infrared filter 741, a lens 742, an imaging chip 743, and an image processing circuit 744 sequentially from the front of the core unit 70, each of which is also attached to the bottom of the circuit board 700. Also attached to the bottom of the circuit board 700 are the connector 73, a sound IC 707 and the microcomputer 751. The sound IC 707 is connected with the microcomputer 751 and an amplifier 708 via wiring formed on the circuit board 700 etc. and outputs sound signals to the speaker 706 via the amplifier 708 according to the sound data sent from the game machine 3. A vibrator 704 is also attached to the bottom face of the circuit board 700. This vibrator 704 is a vibrating motor or a solenoid, for example, Because vibration is generated in the core unit 70 by the vibrator 704, the vibration is transmitted to the player's hand, realizing a so-called vibration-enabled game. Because the vibrator 704 is placed relatively toward the front of the housing 71, and with the housing 71 vibrating while the player is holding it, the vibration is easily felt by the player.
The sub-unit 76 is explained in detail hereafter with reference to
The sub-unit 76 has a housing 77 formed by plastic molding for example. The housing 77 approximately has a gun-type shape, wherein its left-to-right direction as the whole corresponds to the barrel direction when seen from the side (see
Formed on the barrel portion 76a is the concave or U-shaped section which supports the core unit 70 when the core unit 70 is inserted therein. Inside this concave section, the connector 79 is installed on the rear end, to which the connector 73 installed on the rear end of the core unit 70 can be connected. Also, the penetrating hole or aperture 780 which penetrates the side of the barrel portion 76a is formed rearward of concave section but still within the barrel portion. Installed on the gripper-side face inside this penetrating hole 780 is the control switch 78b which is a key top, an example of a first control switch member that can be pushed in a direction toward the gripper portion. While the control switch 78b is constituted as described above, it may be any switch that can be operated with an index finger, such as a switch having a control member of a key or trigger shape that can be pushed in.
On the top face of the housing 77, the stick 78a, which is an example of the second control switch, is installed on a part connecting the barrel portion 76a to the gripper portion 76b. The stick 78a is a universal stick member projecting from the top face of the housing 77 which can be inclined in any direction, and is a control unit which outputs a control signal according to the inclination direction and the inclination angle thereof. For example, an arbitrary direction or position can be specified by a player inclining the stick tip in an arbitrary direction of 360°, which can be utilized for instructing the moving direction of a player character appearing in a virtual game world or the moving direction a cursor. Also, the moving speed of a player character or a cursor can be specified according to the inclination angle. While the stick 78a is a control unit which outputs a control signal according to said player's direction input operation, it may be a control unit of other shapes. For example, it may be a cross key similar to the cross key 72a.
Next, the internal structure of the controller 7 is explained referring to the block diagram in
In
The imaging information operating unit 74 contains an infrared filter 741, a lens 742, an imaging chip 743, and an image processing circuit 744. The infrared filter 741 transmits only infrared ray out of incident light from the front of the core unit 70. The lens 742 condenses infrared light transmitted by the infrared filter 741 and beams it to the imaging chip 743. The imaging chip 743 is a solid-state imaging chip such as a CMOS sensor or a CCD for example, and images the infrared light condensed by the lens 742. Therefore, the imaging chip 743 images only the infrared light transmitted by the infrared filter 741 to generate image data. The image data generated by the imaging chip 743 are processed in the image processing circuit 744. Specifically, the image processing circuit 744 processes the image data obtained from the imaging chip 743 to detect high-brightness portions, and outputs processing result data showing the result of detecting their position coordinates and areas to the communication unit 75. The imaging information operating unit 74 is fixed on the housing 71 of the core unit 70, wherein its imaging direction can be changed by changing the direction of the housing 71 itself. As will become clear in the later description, based on the processing result data output from this imaging information operating unit 74, signals according to the position or movement of the core unit 70 can be obtained.
It is preferred that the acceleration sensor 701 be a three-axis acceleration sensor. The three-axis acceleration sensor 701 detects linear accelerations in three directions, namely the up-down direction, the left-right direction, and the front-rear direction. Also, in other embodiments, a two-axis acceleration detection means may be used which detects linear accelerations only along the up-down and the left-right directions (or another pair of directions). For example, the three-axis or two-axis acceleration sensor 701 may be a type obtainable from Analog Devices, Inc. or ST Microelectronics N. V. It is preferred that the acceleration sensor 701 be a capacitance type (capacitance compound form) based on the MEM (Micro Electro Mechanical systems) technology with silicon fine processing. However, the three-axis or two-axis acceleration sensor 701 may be provided using an existing technology of acceleration detection means (piezoelectric type or piezoelectric resister type) or another appropriate technology developed in the future.
As is publicly known to one skilled in the art, the type of acceleration detection means used in the acceleration sensor 701 can detect only the acceleration along a line (linear acceleration) corresponding to each axis of the acceleration sensor.
Namely, the direct output from the acceleration sensor 701 is a signal indicating a linear acceleration (static or dynamic) along each of the two axes or three axes. Therefore, the acceleration sensor 701 cannot directly detect physical characteristics such as a motion along a non-linear path (circular for example), a rotation, a spin motion, an angular position, an inclination, a position, and an attitude.
However, it would be easily understood by one skilled in the art that further information on the core unit 70 can be estimated or computed by performing additional processing on acceleration signals output from the acceleration sensor 701. For example, static acceleration (gravitational acceleration) is detected when the core unit 70 is still. The degree of gravitational acceleration acting on each axis component can be known from acceleration data output from the acceleration sensor 701 at this time. Because it is already known how the acceleration sensor 701 is attached to the core unit 70, the relative inclination relationship between the gravity direction and the acceleration sensor 701 becomes known. Namely, if the acceleration sensor 701 is attached horizontally to the core unit 70, the inclination of the object (core unit 70) relative to the gravity vector can be estimated using the output from the acceleration sensor 701. In this manner, the inclination, attitude, or position of the core unit 70 can be determined by combining the acceleration sensor 701 with the microcomputer 751 (or another processor). In the same way, when the core unit 70 equipped with the acceleration sensor 701 is moved with a user's hand by being dynamically accelerated as explained herein, by processing generated acceleration signals detected by the acceleration sensor 701, various motions and/or positions of the core unit 70 can be computed or estimated. In another embodiment, the acceleration sensor 701 may be equipped with a built-in signal processing device or another kind of dedicated processing device for performing a desired processing on acceleration signals output from a built-in acceleration detection means before outputting a signal to the microcomputer 751. For example, if the acceleration sensor detects static acceleration (gravitational acceleration for example), the built-in or dedicated processing device may convert the detected acceleration signal into the corresponding inclination angle. Data showing the acceleration detected by the acceleration sensor 701 are output to the communication unit 75.
In another embodiment, instead of the acceleration sensor 701 a gyro sensor containing a rotor or an oscillator may be used. As an example of MEMO gyro sensor used in this embodiment, there is one obtainable from Analog Devices, Inc. Unlike the acceleration sensor 701, the gyro sensor can directly detect rotation (or angular velocity) centering on at least one gyro element it contains. In this way, because a gyro sensor and an acceleration sensor are basically different, depending on which device is selected for each purpose, the processing performed on the output signals from these devices needs to be changed appropriately.
Specifically, if inclination and attitude are computed using a gyro sensor instead of an acceleration sensor, a large change is made. Namely, when using a gyro sensor, the inclination value is initialized in starting the detection. Then, the angular velocity data output from the gyro sensor are integrated. Next, the amount of change in inclination is computed from the initialized inclination value. In this case, the computed inclination corresponds to the angle. On the other hand, when computing inclination using an acceleration sensor, because inclination is computed by comparing the value of each axis component of gravitational acceleration with a specified reference, the computed inclination can be expressed in a vector, thus an absolute direction can be detected using the acceleration detection means without initialization. Also, while the nature of values computed as inclination is an angle if a gyro sensor is used, it is vector if an acceleration sensor is used. Therefore, if a gyro sensor is used instead of an acceleration sensor, a specified conversion needs to be performed on the inclination data considering the difference between the two devices. Because the properties of a gyroscope are publicly known to one skilled in the art as well as the basic difference between an acceleration detection means and a gyroscope, further details are omitted in this specification. While a gyro sensor has an advantage that it can directly detect rotation, in general an acceleration sensor has an advantage of having a better cost efficiency if applied to a controller such as the one used in this embodiment.
The communication unit 75 contains the microcomputer (micom) 751, a memory 752, a wireless module 753, and the antenna 754. The micom 751 controls the wireless module 753 which wirelessly transmits transmission data while utilizing the memory 752 as a storage area during processing.
Control signals (control data) from the control unit 72, acceleration signals (acceleration data) from the acceleration sensor 701, and processing result data from the imaging information operating unit 74 installed in the core unit 70 are output to the micom 751. Also, control signals (control data) from the control unit 78 installed in the sub-unit 76 are output via the connectors 73 and 79 to the micom 751. The micom 751 temporarily stores the input data (control data, acceleration data, and processing result data) as transmission data to be sent to the reception unit 6. Here, while wireless transmission from the communication unit 75 to the reception unit 6 is performed at every specified cycle, because it is a general practice to perform game processing with 1/60 second as the unit, data need to be collected and sent with a shorter cycle. Specifically, the game processing unit is about 16.7 ms ( 1/60 second), and the transmission interval of the Bluetooth™ communication unit 75 is 5 ms. When transmission timing to the reception unit 6 is received, the micom 751 outputs the transmission data stored in the memory 752 as a series of control data, and outputs them to the wireless module 753. Then the wireless module 753 modulates carrier wave of a specified frequency with these series of control data using the Bluetooth™ technology for example, and radiates the extremely low power radio signal from the antenna 754. Namely, control data from the control unit 72 installed in the core unit 70, control data from the control unit 78 installed in the sub-unit 76, acceleration data from the acceleration sensor 701, and processing result data from the imaging information operating unit 74 are modulated into extremely low power radio signals in the wireless module 753 and radiated from the core unit 70. Then, extremely low power radio signals are received by the reception unit 6 of the game machine 3, and through demodulating and decoding the extremely low power radio signals in the game machine 3, a series of control data (control data, acceleration data, and processing result data) can be obtained. Then, the CPU 10 of the game machine 3 performs game processing based on the obtained control data and a game program. In structuring the communication unit using the Bluetooth™ technology, the communication unit 75 can be equipped with a function to receive transmission data wirelessly sent from other devices.
As shown in
Also, the index finger is placed inside the barrel portion, even if the thumb is placed on the stick 78a installed on the top face of the housing 77 for an operation, and because the distance between those fingers becomes smaller compared with that for a normal gun shape, the movable range for the fingers becomes wider, making the operation easier.
Furthermore, as shown with an alternate long and short dash line in
The player holds the controller 7 so that the front (incident side of light imaged by the imaging information operating unit 74) of the core unit 70 points to the monitor 2. At the same time, the two LED modules 8L, and 8R installed near the display screen of the monitor 2, each output infrared light toward the front of the monitor 2.
By a player holding the controller 7 so that it points to the monitor 2, infrared light beams output by the two LED modules 81 and 8R enter the imaging information operating unit 74. Then, images of the incident infrared light beams are taken by the imaging chip 743 via the infrared filter 741 and the lens 742, and the taken images are processed by the image processing circuit 744. Here, in the imaging information operating unit 74, position and area information of the LED modules 81 and 8R is obtained by detecting infrared component output from the LED modules 81 and 8R. Specifically, the imaging information operating unit 74 analyzes image data taken by the imaging chip 743, excludes images that cannot be from infrared light from the LED modules 81 and 8R based on the area information, and determines positions with high brightness and the positions of the LED modules 8L and 8R. Then, the imaging information operating unit 74 obtains their determined position coordinates and center of gravity coordinates and output them as the processing result data.
Shown in
In this way, by imaging markers (infrared light beams from two LED modules 8L and 8R in the embodiment) installed in a fixed manner by the imaging information operating unit 74 of the core unit 70, control data related to the motion, attitude, and position of the core unit 70 become available for game processing in the game machine 3, and control input becomes more intuitive than using control buttons and control keys pushing buttons. Also, as stated above, because the markers are installed near the display screen of the monitor 2, positions relative to the markers can also be easily converted into the motion, attitude, and position of the core unit 70 relative to the display screen of the monitor. Namely, control data by the motion, attitude, and position of the core unit 70 can be used as a control input directly acting on the display screen of the monitor 2.
As stated above, while explanation was given on using the gun-type controller 7 combining the core unit 70 and the sub-unit 76, the core unit 70 can be also used as a controller 7 alone without mounting the sub-unit 76. In that case, although the controller 7 would not imitate a gun, the same kind of controls as in the case of combining them can be performed with a simple controller.
As shown in
In this way, the player can easily operate the control unit 72 including the cross key 72a and the control button 72i while holding it with one hand. Furthermore, when the player holds the core unit 70 with one hand, because the light incident port of the imaging information operating unit 74 installed on the front of the core unit 70 becomes exposed, infrared light beams from said two LED modules 8L and 8R can be easily taken in through the light incident port. In other words, the player can hold the core unit 70 with one hand without obstructing any function of the imaging information operating unit 74. Moreover, the core unit 70 can be further equipped with a control input wherein the player's hand movement directly acts on the display screen by the player moving the hand holding the core unit 70 relative to the display screen.
As stated above, even with the core unit 70 alone, a pointing operation can be performed using the imaging information operating unit 74, wherein it becomes possible to perform the same operations as in the case of the gun-type controller 7 combining the core unit 70 and sub-unit 76 by using the control button 72i in place of the control switch 78b, and the cross key 72a in place of the stick 78a for example. Therefore, the player can select whether the sub-unit 76 should be mounted to the core unit 70 according to the necessity.
Explained now is an example of operating a game using the gun-type controller in a shooting game.
In
In such a shooting game where the game image is displayed on the monitor 2, the player proceeds in the game by operating the controller 7 with one hand. For example, by the player inclining the stick 78a (see
Because the player can use the whole controller 7 as if it were a gun in a shooting game as he uses the stick 78a installed on the sub-unit 76 for instructing the movement of the player character P, excitement of the shooting game further increases.
In the second example, similar to said first example, by a player inclining the stick 78a installed on the sub-unit 76, a player character P moves in a virtual game space S according to that inclination direction. Then, by the player moving the hand holding the core unit 70 relative to the display screen, the gazing point of a virtual camera moves according to the position of the core unit 70 relative to the monitor 2 (LED modules 8L and 8R). By such operations, the player can gaze a position in the virtual game space S to which the core unit 70 is pointed, using the stick 78a for instructing the movement of the player character P.
While the controller 7 and the game machine 3 have been described as connected through wireless communication, the controller 7 and the game machine 3 may also be electrically connected via a cable. In this case, the cable connected to the core unit 70 is connected to a connection terminal of the game machine 3.
Also, while the communication unit 75 was installed only in the core unit 70 among the core unit 70 and the sub-unit 76 structuring the controller 7, a communication unit which wirelessly transmits transmission data to the reception unit 6 may be installed in the sub-unit 76. Also, the communication unit may be installed in each of the core unit 70 and the sub-unit 76. For example, communication units installed in the core unit 70 and the sub-unit 76 may each wirelessly transmit transmission data to the reception unit 6, or transmission data may be wirelessly sent from the communication unit of the sub-unit 76 to the core unit 70 and be received by the communication unit 75 of the core unit 70, and then the communication unit 75 of the core unit 70 may wirelessly transmit the transmission data of the core unit 70 to the reception unit 6 together with the transmission data of the sub-unit 76.
Also, while the explanation was given using the reception unit 6 connected to a connection terminal of the game machine 3 as a reception means to receive transmission data wirelessly sent from the controller 7, the reception means may be comprised of a reception module installed inside the game machine 3 main body. In this case, the transmission data received by the reception module are output to the CPU 10 via a specified bus.
Also, while an explanation was given by having the core unit 70 contain the imaging information operating unit 74 as an example of a detection unit which outputs signals (processing result data) that change according to the movement of the core unit 70 main body, it may be another mechanism. For example, while the core unit 70 contains the acceleration sensor 701 as stated above, a gyro sensor may be used in place of the acceleration sensor 701, and using these detection signals, they can be used as a detection unit which outputs signals that change according to the movement of the core unit 70 main body. In this case, the imaging information operating unit 74 built in the core unit 70 may be removed, or both the sensor and the imaging information operating unit may be combined in the structure.
Also, while explained was a form wherein image data taken by the imaging chip 743 are analyzed to obtain the position coordinates of infrared light images from the LED modules 8L and 8R, and they are generated as processing result data in the core unit 70 and sent to the game machine 3, data in another processing stage may be sent from the core unit 70 to the game machine 3. For example, image data taken by the imaging chip 743 may be sent from the core unit 70 to the game machine 3, and the analysis process may be performed in the CPU 10 to obtain the processing result data. In this case, the image processing circuit 744 installed in the core unit 70 becomes unnecessary. Also, data in the middle of analysis in the image data may be sent from the core unit 70 to the game machine 3. For example, data indicating brightness, position, area, etc. obtained from the image data may be sent from the core unit 70 to the game machine 3, and the remaining analysis process may be performed in the CPU 10 to obtain the processing result data.
Also, while in the above explanation, infrared light beams from two LED modules 8L and 8R were made imaging targets of the imaging information operating unit 74 of the core unit 70, other objects may be made the imaging targets. For example, one or three or more LED modules may be placed near the monitor 2, and infrared light beams from those LED modules may be made the imaging targets of the imaging information operating unit 74. Also, the display screen itself of the monitor 2 or other luminous bodies (such as room lights) may be made the imaging targets of the imaging information operating unit 74. If the position of the core unit 70 relative to the display screen is computed based on the position relationship between the imaging targets and the display screen of the monitor 2, various luminous bodies can be used as the imaging targets of the imaging information operating unit 74.
Also, shapes of said core unit 70 and the sub-unit 76, and shapes, numbers, installation position, etc. of the control units 72 and 78 installed there are merely an example, and needless to say, the present invention can be realized with other shapes, numbers, and installation positions. Also, the game controller of the present invention was explained listing as an example the controller 7 with the sub-unit 76 and the core unit 70 connected. However, the existence of the core unit 70 is not always necessary, and said sub-unit 76 itself was also shown. Also, if the hardware shown in
In this manner, the controller of the present invention made it possible by installing the control switch 78b in a penetrating hole or aperture installed inside the barrel to keep holding the controller stably even during a game wherein the gun-type controller 7 is operated as if it were a gun. Also, by installing the control switch 78b in the penetrating hole installed inside the barrel, even when the stick 78a installed on the top face of the housing 77 is operated simultaneously with the control switch 78b, there is no need to extend one's fingers to operate them, having an advantage of easy operation. Furthermore, because an index finger is placed on a line passing inside the barrel, the direction pointed by the controller 7 can be easily recognized through feeling of the hand without aligning the line of sight to the barrel position as in an actual gun.
Moreover, in some instances, the imaging information unit 74 may not be required (no pointing operations necessary), but the two or three axis acceleration sensor 701 will nevertheless detect movements of the core unit (and hence the sub-unit or receptor) that can be transferred to a game character on a monitor.
More specifically,
a discloses a core unit 70 received within a recess formed in a simulated baseball bat 769. To facilitate insertion of the core unit 70, the simulated baseball bat is divided into two components, including a handle portion 770 that may be threadably secured to the barrel portion 771.
b illustrates an alternative arrangement wherein the handle portion 772 of a bat incorporates the electronics and control buttons of a core unit 70, with the control buttons accessible on the surface of the handle.
a and 31b illustrate a core unit 70 received within a hollow handle portion of a tennis or badminton racquet 784. More specifically, an open slot 785 is formed in the handle portion of the racket, with opposed flanges 786 adapted to be received within aligned slots 70a formed along opposite sides of the core unit 70.
From the above, it will be appreciated that the core unit 70 may be detachably secured in any number of ways to any number of receptor devices or sub-units that may or may not have additional control units or buttons incorporated therein, and where some or all of the functionality of the core unit 70 are utilized. The above examples of the various receptors are intended to be illustrative only, and the invention is no way limited to any specifically shaped or configured receptor. It will be appreciated that the receptor device may or may not be at least peripherally related to the subject matter of the video game being played.
While the technology herein has been described in connection with exemplary illustrative non-limiting implementations, the invention is not to be limited by the disclosure. The invention is intended to be defined by the claims and to cover all corresponding and equivalent arrangements whether or not specifically disclosed herein.
Number | Date | Country | Kind |
---|---|---|---|
2006-129732 | May 2006 | JP | national |
The application is a continuation of U.S. patent application Ser. No. 11/790,780 filed Apr. 27, 2007, which claims priority from Japanese Application No. 2006/129732 filed May 9, 2006. The entire subject matter of all of the above is incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
D220268 | Kliewer | Mar 1971 | S |
4739128 | Grisham | Apr 1988 | A |
4969647 | Mical et al. | Nov 1990 | A |
4994795 | MacKenzie | Feb 1991 | A |
D320624 | Taylor | Oct 1991 | S |
D322242 | Cordell | Dec 1991 | S |
D325225 | Ashida | Apr 1992 | S |
D328463 | King et al. | Aug 1992 | S |
D331058 | Morales | Nov 1992 | S |
5178477 | Gambaro | Jan 1993 | A |
5192082 | Inoue et al. | Mar 1993 | A |
5207426 | Inoue et al. | May 1993 | A |
D338242 | Cordell | Aug 1993 | S |
5259626 | Ho | Nov 1993 | A |
D345164 | Grae | Mar 1994 | S |
5296871 | Paley | Mar 1994 | A |
5332322 | Gambaro | Jul 1994 | A |
D350782 | Barr | Sep 1994 | S |
D351430 | Barr | Oct 1994 | S |
D360903 | Barr et al. | Aug 1995 | S |
D362870 | Oikawa | Oct 1995 | S |
5459489 | Redford | Oct 1995 | A |
5506605 | Paley | Apr 1996 | A |
5512892 | Corballis et al. | Apr 1996 | A |
5523800 | Dudek | Jun 1996 | A |
5528265 | Harrison | Jun 1996 | A |
5561543 | Ogawa | Oct 1996 | A |
5563628 | Stroop | Oct 1996 | A |
D375326 | Yokoi et al. | Nov 1996 | S |
D376826 | Ashida | Dec 1996 | S |
D379832 | Ashida | Jun 1997 | S |
5643087 | Marcus et al. | Jul 1997 | A |
5670988 | Tickle | Sep 1997 | A |
5724106 | Autry et al. | Mar 1998 | A |
D393884 | Hayami | Apr 1998 | S |
D395464 | Shiibashi et al. | Jun 1998 | S |
5769719 | Hsu | Jun 1998 | A |
5785317 | Sasaki | Jul 1998 | A |
D397162 | Yokoi et al. | Aug 1998 | S |
D402328 | Ashida | Dec 1998 | S |
D405071 | Gambaro | Feb 1999 | S |
D407761 | Barr | Apr 1999 | S |
5900867 | Schindler et al. | May 1999 | A |
D412940 | Kato et al. | Aug 1999 | S |
5967898 | Takasaka et al. | Oct 1999 | A |
D419199 | Cordell et al. | Jan 2000 | S |
D419200 | Ashida | Jan 2000 | S |
D433381 | Talesfore | Nov 2000 | S |
D442998 | Ashida | May 2001 | S |
6238291 | Fujimoto et al. | May 2001 | B1 |
6296570 | Miyamoto et al. | Oct 2001 | B1 |
D456410 | Ashida | Apr 2002 | S |
D456854 | Ashida | May 2002 | S |
6383079 | Takeda et al. | May 2002 | B1 |
6392613 | Goto | May 2002 | B1 |
D458972 | Ashida | Jun 2002 | S |
D459727 | Ashida | Jul 2002 | S |
D460787 | Nishikawa | Jul 2002 | S |
D462683 | Ashida | Sep 2002 | S |
6518952 | Leiper | Feb 2003 | B1 |
D473942 | Motoki et al. | Apr 2003 | S |
6540611 | Nagata | Apr 2003 | B1 |
6544124 | Ireland et al. | Apr 2003 | B2 |
6565444 | Nagata et al. | May 2003 | B2 |
6597342 | Haruta | Jul 2003 | B1 |
6672962 | Ozaki et al. | Jan 2004 | B1 |
6743104 | Ota et al. | Jun 2004 | B1 |
6752719 | Himoto et al. | Jun 2004 | B2 |
D495336 | Andre et al. | Aug 2004 | S |
6811491 | Levenberg et al. | Nov 2004 | B1 |
6816151 | Dellinger | Nov 2004 | B2 |
6821204 | Aonuma et al. | Nov 2004 | B2 |
6850221 | Tickle | Feb 2005 | B1 |
D502468 | Knight et al. | Mar 2005 | S |
D503750 | Kit et al. | Apr 2005 | S |
D505424 | Ashida et al. | May 2005 | S |
6933861 | Wang | Aug 2005 | B2 |
7081051 | Himoto et al. | Jul 2006 | B2 |
D531228 | Ashida et al. | Oct 2006 | S |
D531585 | Weitgasser et al. | Nov 2006 | S |
7136674 | Yoshie et al. | Nov 2006 | B2 |
D543246 | Ashida et al. | May 2007 | S |
7400496 | Sauer et al. | Jul 2008 | B2 |
7653771 | Liberty | Jan 2010 | B2 |
7774155 | Sato et al. | Aug 2010 | B2 |
8057309 | Mead et al. | Nov 2011 | B1 |
8469815 | Hovseth | Jun 2013 | B2 |
20010031662 | Larian | Oct 2001 | A1 |
20020098887 | Himoto et al. | Jul 2002 | A1 |
20020107069 | Ishino | Aug 2002 | A1 |
20040254020 | Dragusin | Dec 2004 | A1 |
20050017454 | Endo et al. | Jan 2005 | A1 |
20050176485 | Ueshima | Aug 2005 | A1 |
20050215322 | Himoto et al. | Sep 2005 | A1 |
20050233808 | Himoto et al. | Oct 2005 | A1 |
20050239548 | Ueshima et al. | Oct 2005 | A1 |
20060258452 | Hsu | Nov 2006 | A1 |
20070021208 | Mao et al. | Jan 2007 | A1 |
20070049374 | Ikeda et al. | Mar 2007 | A1 |
20070050597 | Ikeda | Mar 2007 | A1 |
20070052177 | Ikeda et al. | Mar 2007 | A1 |
20070060391 | Ikeda et al. | Mar 2007 | A1 |
20070066394 | Ikeda et al. | Mar 2007 | A1 |
20070072680 | Ikeda | Mar 2007 | A1 |
20070091084 | Ueshima et al. | Apr 2007 | A1 |
20070265075 | Zalewski | Nov 2007 | A1 |
20080015017 | Ashida et al. | Jan 2008 | A1 |
20080039202 | Sawano et al. | Feb 2008 | A1 |
20090005166 | Sato | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
2 244 546 | May 1990 | GB |
3-74434 | Jul 1991 | JP |
6-50758 | Feb 1994 | JP |
6-154422 | Jun 1994 | JP |
06-308879 | Nov 1994 | JP |
07-107573 | Apr 1995 | JP |
07-115690 | May 1995 | JP |
10-99542 | Apr 1998 | JP |
10-295935 | Oct 1998 | JP |
11-506857 | Jun 1999 | JP |
2001-128838 | May 2001 | JP |
2002-233665 | Aug 2002 | JP |
2004-313492 | Nov 2004 | JP |
2005-040493 | Feb 2005 | JP |
2005-063230 | Mar 2005 | JP |
0217054 | Feb 2002 | WO |
WO03056505 | Jul 2003 | WO |
Entry |
---|
“Controllers-Atari Space Age Joystick,” AtariAge: Have You Played Atari Today? www.atariage.com/controller—page.html?SystemID=2600&ControllerID=12. |
“Controllers-Booster Grip,” AtariAge: Have You Played Atari Today? www.atariage.com/controller—page.html?SystemID=2600&ControllerID=18. |
“Coleco Vision: Super Action™ Controller Set,” www.vintagecomputing.com/wp-content/images/retroscan/coleco—sac—1—large.jpg. |
Electro-Plankton Weblog, http://www.tranism.com/weblog/2005/09/, This is the Revelotion Nintendo Style, Sep. 15, 2005, 2 pgs. |
CNET News.com, http://news.com.com/2300-1043—3-6070295-2.html?tag=ne.gall.pg, “Nintendo Wii Swings Into Action,” May 25 2006, 1pg. |
Gyration Ultra Cordless Optical Mouse, User Manual, 1-15, Gyration, Inc., Saratoga, CA (2003). |
Hinckley, Ken et al., The VideoMouse: A Camera—based Multi-Degree—f—freedom input Device, CHI Letters vol. 1, 1, UIST ″99, Ashville, NC pp. 103-112 (1999). |
European Search Report for Application No. EP 07 11 2880 on Oct. 18, 2007, in Munich. |
Ikeda et al., entitled, “Video Game System With Wireless Modular Handheld Controller,” U.S. Appl. No. 11/532,328, filed Sep. 15, 2006, pending. |
Ikeda et al., entitled, “Game Operating Device,” U.S. Appl. No. 11/446,187, filed Jun. 5, 2006, pending. |
Ikeda et al., entitled, “Game Operating Device,” U.S. Appl. No. 11/446,188, filed Jun. 5, 2006, pending. |
English Abstract for Japanese Patent No. JP10021000, published Jan. 23, 1998. |
English Abstract for Japanese Patent No. JP11053994, published Feb. 26, 1999. |
English Abstract for Japanese Patent No. JP11099284, published Apr. 13, 1999. |
English Abstract for Japanese Patent No. JP2006136694, published Jun. 1, 2006. |
English Abstract for Japanese Patent No. JP2001038052, published Feb. 13, 2001. |
English Abstract for Japanese Patent No. JP2002224444, published Aug. 13, 2002. |
English Abstract for Japanese Patent No. WO9732641, published Sep. 12, 1997. |
Kennedy, P.J., “Hand-Held Data Input Device,” IBM Technical Disclosure Bulletin, vol. 26, No, 11, Apr. 1984, pp. 5826-5827. |
“Controllers-Booster Grip,” AtariAge: Have You Played Atari Today! www.atariage.com/controller—page.html?SystemID=2600&ControllerID=18. |
CNET News.com, http://news.com.com/2300-1043—3-6070295-2.html?tag=ne.gall.pg, “Nintendo Wii Swings Into Action,” May 25, 2006, 1pg. |
U.S. Appl. No. 11/542,842, May 2007, Ashida et al. |
WO 99/58214 (corresponds to U.S. 6,672,962 of record in parent application). |
Note: U.S. Patent No. 6,296,570 is a corresponding English publication to JP10-295935. |
Number | Date | Country | |
---|---|---|---|
20110195785 A1 | Aug 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11790780 | Apr 2007 | US |
Child | 13028648 | US |