Pachisuro gaming machines are well known. Certain known Pachisuro gaming machines include a housing which supports three mechanical reels and three input buttons. Each input button is associated with a different one of the reels. The housing also supports a protective see-through glass panel in front of the reels. The player can see the spinning reels through the glass and when the reels are stopped, the player can see one or more symbols of each of the reels through the glass.
More specifically, in one such known Pachisuro gaming machine, after placing a wager, a player activates an input device which causes the Pachisuro gaming machine to spin each of the mechanical reels. For each different reel, the Pachisuro gaming machine enables the player to see the reels spinning through the glass and to stop each respective reel by activating the input button associated with the reel. When a respective input button is activated, the mechanical reel associated with the activated input button will not stop instantaneously. Rather, the reel associated with the activated input button moves a designated number of symbol positions (e.g., two, three or four) past the stop position of the reel when the input button is activated trying to stop on a pre-selected symbol combination. If one or more predetermined winning combinations of symbols are displayed on one or more paylines when the reels stop spinning, the Pachisuro gaming machine provides the player one or more awards.
When playing such a known Pachisuro gaming machine, if a player can readily see the symbols on the reels through the glass as the reels are spinning, it is easier for the player to activate the input buttons to cause all three mechanical reels to stop spinning such that they display one or more predetermined winning symbol combinations. Depending on the speed of the reels, highly skilled players are able to identify opportune times to activate each respective input button to improve their chance of receiving an award.
To compensate for this variation in player skill, many known Pachisuro gaming machines are reflexive. Reflexive gaming machines typically increase or decrease the payout associated with a play of the game based on the payout history of the gaming machine. In a simple example for a reflexive gaming machine, the desired payback percentage is 90% and the gaming machine tracks its payback percentage for a defined period such as 100 games or in between bonus events. The game has at least two different payback percentage models in the software. One is below the target percentage (e.g., 90%) and the other is above it. For example, Paytable A may have a return of 70% and Paytable B may have a return of 125%. If the actual payback percentage after the first ten tracked games is 150%, the game will use Paytable A until the actual payback percentage is less than the target 90%. Once the actual payback percentage goes below 90%, the game will ‘reflex’ and switch to Paytable B to move the actual payback percentage back towards 90%. In such case, for a determined number of spins, the gaming machine causes the reels to stop spinning such that it is more or less likely (depending on which paytable is active) that predetermined winning symbol combinations are displayed when the reels stop spinning, regardless of when the player presses the input buttons of each of the reels. In this type of reflexive gaming machine, the gaming machine determines whether or not to provide an award for one or more plays of the game based in part on the actual awards provided for previous plays of the game.
Such known reflexive Pachisuro gaming machines create multiple issues in the field. First, reflexive gaming machines are not allowed in many gaming jurisdictions, including most United States gaming jurisdictions. In these jurisdictions, regulations mandate that the probability of generating game outcomes for certain types of games be the same for each play of the game. For example, for a slot type gaming machine, the probability of receiving a jackpot must be the same for all plays of the game, and must be completely independent of any prior outcome or award. Reflexive gaming machines take prior outcomes and their awards into account for subsequent plays of the game. Thus, the probability of a winning outcome being displayed is not the same for each play of the game. Accordingly, reflexive gaming machines do not comply with such regulations.
Second, when playing such known reflexive Pachisuro gaming machines, depending on when players play the game, they may not be rewarded for their skill. For example, a non-skilled player could receive a very high payback by simply playing immediately after a player who has been on a losing streak. Likewise, a highly skilled player could receive a very low payback, by playing after a player who was on a winning streak.
Third, traditionally Pachisuro style games do not offer a very large jackpot. Due to the player's influence in stopping the reels and the reflexive nature, the jackpots are typically 15 credits, or a bonus round may pay out up to 400 credits for a 3 credit bet. This is typically true with other payback skill games such as AWP machines from Europe and the United Kingdom. Players would find Pachisuro and skill slot machines more desirable if they had larger jackpots like most casino style slot machines.
Accordingly, a need exists for a non-reflexive Pachisuro-style gaming device which enables players of all skill levels to enjoy Pachisuro-style gaming, and offers a limited skill component which rewards highly skill players with the potential for higher awards.
Various embodiments of the disclosed gaming device include a housing which supports a plurality of mechanical reels and a plurality of stop input devices which are configured to provide a Pachisuro-style slot game. Each of the plurality of reels is associated with a different one of the plurality of stop input devices. Each stop input device enables a player to stop the respective reel when the reel is spinning by activating the stop input device. Each reel includes a plurality of stop positions and each stop position includes a symbol. The gaming device also includes a processor and a memory device. For each reel, the processor randomly determines the stop position at which the reel ultimately stops based on a virtual map stored in the memory device for an initiating stop position of that reel which is selected by the players activation of the stop input device for that reel. More specifically, the initiating stop position of the reel is used herein to describe the stop position of the respective reel that is at or the first to be at a predetermined area, position or reference point when the player activates the stop input device for that reel. In one embodiment, the predetermined area, position or reference point is in one of the symbol display areas. The symbol display areas are the positions at which the symbols are displayed to or visible to the player. Thus, each time a reel spins and the player activates the stop input device for that reel, one of the stop positions of the reel becomes the initiating stop position for that spin of the reel, and the virtual map for that stop position is used to determine where the reel will stop.
More specifically, in various embodiments, each reel has a plurality of stop positions. Each stop position of each reel has an associated virtual map for that stop position which is stored in the memory device. The virtual map for a stop position enables the processor to randomly determine which of the following stop positions the reel will stop at when the input device for that reel is activated when the reel is indicating that stop position. In one embodiment, the virtual maps for each stop position on each reel are different; however, as discussed below, one or more, of the virtual maps may be the same.
In various embodiments, each virtual map includes a range of stop positions and for each stop position in the range, an associated weight. The range of stop positions in each virtual map includes less than all of the stop positions of its respective reel (e.g., 5 out of 22 stop positions) in various embodiments, although it should be appreciated that that one or more of the virtual maps may include all of the stop positions of its respective reel. The processor uses the respective virtual map for the initiating stop position of the reel to randomly determine a stop position for the reel based on the weights associated with the stop positions in the range of the virtual map. It should be appreciated that each of the stop positions of the reel may be the initiating stop position for the reel.
In a very simple example, a virtual map includes a first stop position having a weight of 10, a second stop position having a weight of 20, and a third stop position having a weight of 30. The initiating stop position for the reel is associated with that virtual map, and the processor uses a randomly generated number between 1 and 60 (the sum of the weights 10, 20 and 30) to determine the stop position at which to stop the reel based on that virtual map. If the processor randomly generates a number between 1 and 10, the processor causes the reel to stop at the first stop position. If the processor randomly generates a number between 11 and 30, the processor causes the reel to stop at the second stop position. If the processor randomly generates a number between 31 and 60, the processor causes the reel to stop at the third stop position. In this example, although the processor randomly determines a number, it should be appreciated that by adjusting the weights assigned to each stop position, a gaming device designer can adjust the probability of the processor randomly selecting each respective stop position in the virtual map as further discussed below.
The Pachisuro-style gaming device includes an overall paytable including a plurality of predetermined winning symbol combinations and awards associated with the respective predetermined winning symbol combinations. The overall paytable has an average payback percentage (which is also sometimes called the average expected payback percentage). The average payback percentage of the overall paytable is the average expected percentage of each credit wagered on the Pachisuro-style game provided back to the player over a designated number of plays of the game.
In one embodiment, the gaming device designer ensures the overall paytable of the Pachisuro-style game has a designated average expected payback percentage by constructing a component paytable for each possible combination of virtual maps such that the average expected payback percentage of each of these respective component paytables is in a designated range of average expected payback percentages (e.g., 80% to 95%) which includes the designated payback percentage of the overall paytable. Thus, in various embodiments, the designated average expected payback percentage of the overall paytable is the average of the payback percentages of each of the respective component paytables, which would be the result if the player randomly stopped all of the reels for each of the games.
More specifically, each possible combination of virtual maps (based on each one of the possible initiating stop positions of each respective reel) has its own component paytable. In an example embodiment of the Pachisuro gaming device including three reels each having 22 stop positions, the memory devices stores 66 virtual maps (i.e., one for each of the 22 stop positions on each of the three reels), and the game designer uses 10,648 (i.e., 22×22×22) component paytables to create these 66 virtual maps. The 10,648 component paytables are configured so each one of them results in an average expected payback percentage within the desired range and to achieve a designated average expected payback percentage for the overall paytable of the game.
In various embodiments, each component paytable includes: (a) the plurality of predetermined winning symbol combinations of the overall paytable; (b) the respective awards associated with each predetermined winning symbol combination; (c) a probability of each respective predetermined winning symbol combination being displayed when all of the reels stop spinning (based on the combination of virtual maps associated with the component paytable); and (d) a payback percentage for the component paytable.
In the above embodiment, the gaming device designer modifies the overall payback percentage of the Pachisuro-style game by adjusting the weights assigned to respective stop positions in the virtual maps. Adjusting a weight associated with a stop position in a virtual map effects the probability of each of the plurality of predetermined winning symbol combinations being displayed for all of the combinations of virtual maps which include that virtual map. This effects the payback percentages of the component paytables for the combinations of virtual maps including that stop position's virtual map, which in turn effects the average payback percentage of the overall paytable for the Pachisuro-style game.
Configuring the virtual maps such that the payback percentages of the component paytables are within a designated range of payback percentages makes Pachisuro-style gaming entertaining and exciting for players of all levels. No matter how poorly a player plays, or when the player plays the gaming device relative to another player, the player is guaranteed at least the lowest payback percentage of the designated range of payback percentages for the component paytables.
The present disclosure contemplates that the (a) number of reels, (b) number of stop positions on each reel, (c) number of symbols, (d) number of different symbols, (e) number of paylines associated with the reels, (f) number of winning symbol combinations, (e) number of symbols required for each winning symbol combination, and (f) number of special or functional symbols (such as wild or bonus symbols), can make it mathematically very difficult to configure a component paytable for every combination of stop positions to provide an average expected payback percentage within the designated range of average expected payback percentages for the component paytables (e.g., 80% to 95%). In various embodiments, to solve this difficulty, the present disclosure provides one or more multipliers which are associated with one, a plurality of or all of the combinations of stop positions or component paytables.
Specifically, in one such embodiment, the memory device stores a multiplier look-up table including a plurality of multiplier tables, and for each multiplier table, one or more of the combinations of stop positions associated with the multiplier table. In this embodiment, each multiplier table includes a plurality of different multipliers which each have a different weight. The processor randomly selects a multiplier (based on the weights) to apply to any determined award for a play of the game. For each multiplier table, each multiplier has a contribution to an average multiplier value including the weight of the multiplier multiplied by the value of multiplier. The sum of the contributions of the multipliers equals the average multiplier value for the multiplier table.
In this embodiment, each multiplier table is configured such that the payback percentage of the component paytable associated with the multiplier table multiplied by the average multiplier value of the multiplier table results in an adjusted average expected payback percentage for the component paytable that is within the designated range of payback percentages (e.g., 80% to 95%).
For example, in one such embodiment, after the reels stop spinning (via player activation of the stop input devices), the processor determines if any predetermined winning symbol combinations are displayed and determines any awards associated with those respective predetermined winning symbol combinations. The processor also determines if the combination of stop positions displayed when the player activated the respective stop input devices is associated with a multiplier table using the multiplier look-up table stored in the memory device. If the combination of stop positions is associated with a multiplier table, the processor randomly selects a multiplier from the respective multiplier table taking into account the respective weights of the multipliers in the multiplier table. The processor applies the determined multiplier to any determined award and provides the award to the player.
Additional features and advantages are described herein, and will be apparent from, the following Detailed Description and the figures.
The present disclosure may be implemented in various configurations for gaming machines, gaming devices, or gaming systems, including but not limited to: (1) a dedicated gaming machine, gaming device, or gaming system wherein the computerized instructions for controlling any games (which are provided by the gaming machine or gaming device) are provided with the gaming machine or gaming device prior to delivery to a gaming establishment; and (2) a changeable gaming machine, gaming device, or gaming system wherein the computerized instructions for controlling any games (which are provided by the gaming machine or gaming device) are downloadable to the gaming machine or gaming device through a data network after the gaming machine or gaming device is in a gaming establishment. In one embodiment, the computerized instructions for controlling any games are executed by at least one central server, central controller, or remote host. In such a “thin client” embodiment, the central server remotely controls any games (or other suitable interfaces) and the gaming device is utilized to display such games (or suitable interfaces) and receive one or more inputs or commands from a player. In another embodiment, the computerized instructions for controlling any games are communicated from the central server, central controller, or remote host to a gaming device local processor and memory devices. In such a “thick client” embodiment, the gaming device local processor executes the communicated computerized instructions to control any games (or other suitable interfaces) provided to a player.
In one embodiment, one or more gaming devices in a gaming system may be thin client gaming devices and one or more gaming devices in the gaming system may be thick client gaming devices. In another embodiment, certain functions of the gaming device are implemented in a thin client environment and certain other functions of the gaming device are implemented in a thick client environment. In one such embodiment, computerized instructions for controlling any primary games are communicated from the central server to the gaming device in a thick client configuration and computerized instructions for controlling any secondary games or bonus functions are executed by a central server in a thin client configuration.
Referring now to the drawings, two example alternative embodiments of a gaming device disclosed herein are illustrated in
In the embodiments illustrated in
In one embodiment, as illustrated in
In one embodiment, part or all of the program code and/or operating data described above can be stored in a detachable or removable memory device, including, but not limited to, a suitable cartridge, disk, CD ROM, DVD, or USB memory device. In other embodiments, part or all of the program code and/or operating data described above can be downloaded to the memory device through a suitable network.
In one embodiment, an operator or a player can use such a removable memory device in a desktop computer, a laptop computer, a personal digital assistant (PDA), a portable computing device, or another computerized platform to implement the present disclosure. In one embodiment, the gaming device or gaming machine disclosed herein is operable over a wireless network, for example part of a wireless gaming system. In this embodiment, the gaming machine may be a hand-held device, a mobile device, or any other suitable wireless device that enables a player to play any suitable game at a variety of different locations. It should be appreciated that a gaming device or gaming machine as disclosed herein may be a device that has obtained approval from a regulatory gaming commission or a device that has not obtained approval from a regulatory gaming commission. It should be appreciated that the processor and memory device may be collectively referred to herein as a “computer” or “controller.”
In one embodiment, as discussed in more detail below, the gaming device randomly generates awards and/or other game outcomes based on probability data. In one such embodiment, this random determination is provided through utilization of a random number generator (RNG), such as a true random number generator, a pseudo random number generator, or other suitable randomization process. In one embodiment, each award or other game outcome is associated with a probability and the gaming device generates the award or other game outcome to be provided to the player based on the associated probabilities. In this embodiment, since the gaming device generates outcomes randomly or based upon one or more probability calculations, there is no certainty that the gaming device will ever provide the player with any specific award or other game outcome.
In one embodiment, as illustrated in
In another embodiment, at least one display device may be a mobile display device, such as a PDA or tablet PC, that enables play of at least a portion of the primary or secondary game at a location remote from the gaming device.
The display devices may include, without limitation, a monitor, a television display, a plasma display, a liquid crystal display (LCD) a display based on light emitting diodes (LEDs), a display based on a plurality of organic light-emitting diodes (OLEDs), a display based on polymer light-emitting diodes (PLEDs), a display based on a plurality of surface-conduction electron-emitters (SEDs), a display including a projected and/or reflected image, or any other suitable electronic device or display mechanism. In one embodiment, as described in more detail below, the display device includes a touch-screen with an associated touch-screen controller. The display devices may be of any suitable size and configuration, such as a square, a rectangle or an elongated rectangle.
The display devices of the gaming device are configured to display at least one and preferably a plurality of game or other suitable images, symbols and indicia such as any visual representation or exhibition of the movement of objects such as mechanical, virtual, or video reels and wheels, dynamic lighting, video images, images of people, characters, places, things, faces of cards, and the like.
In one alternative embodiment, the symbols, images and indicia displayed on or of the display device may be in mechanical form. That is, the display device may include any electromechanical device, such as one or more mechanical objects, such as one or more rotatable wheels, reels, or dice, configured to display at least one or a plurality of game or other suitable images, symbols or indicia.
In one embodiment, the display device includes a first reel 54a, a second reel 54b and a third reel 54c, wherein the reels are mechanical reels. In this embodiment, each of the reels 54a, 54b and 54c include a plurality of stop positions. In one such embodiment, each reel is associated with a step motor (not shown) controlled by the processor 12. The step motors are driven by short digital pulses of electricity controlled by the processor. The step motors are designed to rotate a constant angle per drive pulse. The processor is thus enabled to move a reel a designated number of positions because a game designer is enabled to program a designated number of drive pulses to correspond to a stop position. Thus, for example, the processor 12 may cause the first reel 54a to move two stop positions by sending a number of drive pulses corresponding to two stop positions to the step motor associated with the first reel 54a.
Step motors enable the processor to control how many stop positions a reel spins from a reference position. However, in various other embodiments in which the first reel 54a, second reel 54b and third reel 54c are mechanical reels, the processor tracks the exact stop position of each reel as it is spinning and is enabled to control what specific stop position a reel stops at, not just how many stop positions from a reference position the reel stops. In such embodiments, if the processor is to stop a reel at a specific position, the processor must have data indicating the current stop position of the reel to determine how many further stop positions to cause the step motor to move the reel.
In one embodiment, the processor 12 receives inputs from photoelectric diodes (not shown), which generate a current when exposed to light, to track the movement of the reel and its current stop position. In this embodiment, each of the first reel 54a, second reel 54b and third reel 54c define a series of holes around its side, each hole associated with a stop position of its respective reel. The photoelectric diode of each reel is positioned on the side of the reel such that as the reel turns it receives light from a light source configured to shine through the holes on the side of the reel each time the reel moves a stop position. In this embodiment, when the reel is installed, a designated stop position is calibrated as a first stop position. Since a mechanical reel has a fixed number of stop positions in a designated order, the processor is enabled to track exactly what stop positions are displayed at various display areas because each time the photodiode receives light, it sends an electric signal to the processor 12 indicating the reel has moved a stop position.
In another embodiment, the processor 12 keeps track of what stop positions are displayed at various display areas associated with a respective reel by counting drive pulses of the step motor. In this embodiment, drive pulses sent to a respective step motor (each drive pulse corresponding to a stop position) by the processor 12 are cumulatively counted by the processor 12. In this embodiment, the processor 12 resets the count to zero every one rotation of the respective reel. In this embodiment, the processor 12 resets the drive pulse count upon receipt of a signal indicating a complete rotation of the reel. In various embodiments, a complete rotation of the reel could be indicated by a photo diode arrangement as discussed above, or another suitable electromechanical device know in the art.
It should be appreciated that although the above example describes an embodiment in which the first reel 54a, second reel 54b and third reel 54c are mechanical reels, in various other embodiments, the reels are video reels displayed at display device 16. In one such embodiment, the memory device 14 stores a plurality of virtual reel strips and the gaming device simulates the spinning of a mechanical reel, enabling the player to see the symbols of the reel strip associated with the virtual reel as the reel spins.
In another embodiment, the gaming device includes a multi-layer display, or multiple display devices arranged in a common line of sight. The common line of sight passes through a portion of an exterior display device and to a portion of an interior display device. In some cases, an intermediate display device or light filter is also included between the exterior display device and the interior display device and the common line of sight passes through a portion of the intermediate display device as well. A touch screen may also be added outside the exterior display device to facilitate player input and gaming machine interaction. The common line of sight arrangement permits a player to view video output on all the display devices simultaneously or without substantially changing their position or line of sight.
In one embodiment, the interior display device includes a digital display device that includes a curved surface. The curved surface may be used to show virtual video reels that resemble mechanical reels. The digital display device, however, permits the number of reels and the symbols on each reel to be changed, as desired.
The multiple display devices may be used in many ways. In one embodiment, a single game is output using all the display devices, which cooperate to form a single coordinated visual presentation. Different depths provided by the multiple display devices improve presentation of three-dimensional graphics.
In another embodiment, the multiple display devices output video for different games or purposes. For example, the interior display device may output a game, while the intermediate display device outputs a bonus game or pay table associated with the interior display, while the exterior and foremost display device provides a progressive game or is reserved for player interaction and video output with the touch screen.
In one embodiment, the exterior display device has a screen that has the capacity to be completely or partially translucent or transparent at controlled times and/or at controlled portions and locations on the screen. An intermediate display device can have the same see-through capacity. When one of the proximate display screens is transparent or translucent, a player can see images displayed on one of the distal display devices.
As illustrated in
As seen in
In one embodiment, one input device is a bet one button. The player places a bet by pushing the bet one button. The player can increase the bet by one credit each time the player pushes the bet one button. When the player pushes the bet one button, the number of credits shown in the credit display preferably decreases by one, and the number of credits shown in the bet display preferably increases by one. In another embodiment, one input device is a bet max button (not shown) which enables the player to bet the maximum wager permitted for a game of the gaming device.
In one embodiment, one input device is a cash out button 34. The player may push the cash out button and cash out to receive a cash payment or other suitable form of payment corresponding to the number of remaining credits. In one embodiment, when the player cashes out, a payment device, such as a ticket, payment, or note generator 36 prints or otherwise generates a ticket or credit slip to provide to the player. The player receives the ticket or credit slip and may redeem the value associated with the ticket or credit slip via a cashier (or other suitable redemption system). In another embodiment, when the player cashes out, the player receives the coins or tokens in a coin payout tray. It should be appreciated that any suitable payout mechanisms, such as funding to the player's electronically recordable identification card or smart card, may be implemented in accordance with the gaming device disclosed herein.
In one embodiment, as mentioned above and as seen in
The gaming device may further include a plurality of communication ports for enabling communication of the processor with external peripherals, such as external video sources, expansion buses, game or other displays, a SCSI port, or a keypad.
In one embodiment, as seen in
In one embodiment, the gaming machine may include a sensor, such as a camera, in communication with the processor (and possibly controlled by the processor), that is selectively positioned to acquire an image of a player actively using the gaming device and/or the surrounding area of the gaming device. In one embodiment, the camera may be configured to selectively acquire still or moving (e.g., video) images and may be configured to acquire the images in an analog, digital, or other suitable format. The display devices may be configured to display the image acquired by the camera as well as to display the visible manifestation of the game in split screen or picture-in-picture fashion. For example, the camera may acquire an image of the player and the processor may incorporate that image into the primary and/or secondary game as a game image, symbol or indicia.
Gaming device 10 can incorporate any suitable wagering game as the primary or base game. The gaming machine or device may include some or all of the features of conventional gaming machines or devices. The primary or base game may comprise any suitable reel-type game, card game, cascading or falling symbol game, number game, or other game of chance susceptible to representation in an electronic or electromechanical form, which in one embodiment produces a random outcome based on probability data at the time of or after placement of a wager. That is, different primary wagering games, such as video poker games, video blackjack games, video keno, video bingo or any other suitable primary or base game may be implemented.
In one embodiment, as illustrated in
In both the Pachisuro-style game and other slot games, the game includes one or more paylines 52. The paylines may be horizontal, vertical, circular, diagonal, angled or any combination thereof. In one embodiment, an electromechanical slot machine includes a plurality of adjacent, rotatable reels which may be combined and operably coupled with an electronic display of any suitable type. In another embodiment, if the reels are in video form, one or more of the display devices, as described above, displays the plurality of simulated video reels. Each reel displays a plurality of indicia or symbols, such as bells, hearts, fruits, numbers, letters, bars, or other images which preferably correspond to a theme associated with the gaming device.
In an alternative embodiment, in the Pachisuro-style game or an additional slot game, rather than determining any outcome to provide to the player by analyzing the symbols generated on any wagered upon paylines as described above, the gaming device determines any outcome to provide to the player based on the number of associated symbols which are generated in active symbol positions on the requisite number of adjacent reels (i.e., not on paylines passing through any displayed winning symbol combinations). In this embodiment, if a winning symbol combination is generated on the reels, the gaming device provides the player one award for that occurrence of the generated winning symbol combination. For example, if one winning symbol combination is generated on the reels, the gaming device will provide a single award to the player for that winning symbol combination (i.e., not based on the number of paylines that would have passed through that winning symbol combination). It should be appreciated that because a gaming device that enables wagering on ways to win provides the player one award for a single occurrence of a winning symbol combination and a gaming device with paylines may provide the player more than one award for the same occurrence of a single winning symbol combination (i.e., if a plurality of paylines each pass through the same winning symbol combination), it is possible to provide a player at a ways to win gaming device with more ways to win for an equivalent bet or wager on a traditional slot gaming device with paylines.
In one embodiment, the total number of ways to win is determined by multiplying the number of symbols generated in active symbol positions on a first reel by the number of symbols generated in active symbol positions on a second reel by the number of symbols generated in active symbol positions on a third reel and so on for each reel of the gaming device with at least one symbol generated in an active symbol position. For example, a three reel gaming device with three symbols generated in active symbol positions on each reel includes 27 ways to win (i.e., 3 symbols on the first reel×3 symbols on the second reel×3 symbols on the third reel). A four reel gaming device with three symbols generated in active symbol positions on each reel includes 81 ways to win (i.e., 3 symbols on the first reel×3 symbols on the second reel×3 symbols on the third reel×3 symbols on the fourth reel). A five reel gaming device with three symbols generated in active symbol positions on each reel includes 243 ways to win (i.e., 3 symbols on the first reel×3 symbols on the second reel×3 symbols on the third reel×3 symbols on the fourth reel×3 symbols on the fifth reel). It should be appreciated that modifying the number of generated symbols by either modifying the number of reels or modifying the number of symbols generated in active symbol positions by one or more of the reels modifies the number of ways to win.
In another embodiment, for the Pachisuro-style game or an additional slot-type game, the gaming device enables a player to wager on and thus activate symbol positions. In one such embodiment, the symbol positions are on the reels. In this embodiment, if based on the player's wager, a reel is activated, then each of the symbol positions of that reel will be activated and each of the active symbol positions will be part of one or more of the ways to win. In one embodiment, if based on the player's wager, a reel is not activated, then a designated number of default symbol positions, such as a single symbol position of the middle row of the reel, will be activated and the default symbol position(s) will be part of one or more of the ways to win. This type of gaming machine enables a player to wager on one, more than one or all of the reels and the processor of the gaming device uses the number of wagered on reels to determine the active symbol positions and the number of possible ways to win. In alternative embodiments, (1) no symbols are displayed as generated at any of the inactive symbol positions, or (2) any symbols generated at any inactive symbol positions may be displayed to the player but suitably shaded or otherwise designated as inactive.
In one embodiment wherein a player wagers on one or more reels, a player's wager of one credit may activate each of the three symbol positions on a first reel, wherein one default symbol position is activated on each of the remaining four reels. In this example, as described above, the gaming device provides the player three ways to win (i.e., 3 symbols on the first reel×1 symbol on the second reel×1 symbol on the third reel×1 symbol on the fourth reel×1 symbol on the fifth reel). In another example, a players wager of nine credits may activate each of the three symbol positions on a first reel, each of the three symbol positions on a second reel and each of the three symbol positions on a third reel wherein one default symbol position is activated on each of the remaining two reels. In this example, as described above, the gaming device provides the player twenty-seven ways to win (i.e., 3 symbols on the first reel×3 symbols on the second reel×3 symbols on the third reel×1 symbol on the fourth reel×1 symbol on the fifth reel).
In one embodiment, to determine any award(s) to provide to the player based on the generated symbols, the gaming device individually determines if a symbol generated, in an active symbol position on a first reel forms part of a winning symbol combination with or is otherwise suitably related to a symbol generated in an active symbol position on a second reel. In this embodiment, the gaming device classifies each pair of symbols which form part of a winning symbol combination (i.e., each pair of related symbols) as a string of related symbols. For example, if active symbol positions include a first cherry symbol generated in the top row of a first reel and a second cherry symbol generated in the bottom row of a second reel, the gaming device classifies the two cherry symbols as a string of related symbols because the two cherry symbols form part of a winning symbol combination.
After determining if any strings of related symbols are formed between the symbols on the first reel and the symbols on the second reel, the gaming device determines if any of the symbols from the next adjacent reel should be added to any of the formed strings of related symbols. In this embodiment, for a first of the classified strings of related symbols, the gaming device determines if any of the symbols generated by the next adjacent reel form part of a winning symbol combination or are otherwise related to the symbols of the first string of related symbols. If the gaming device determines that a symbol generated on the next adjacent reel is related to the symbols of the first string of related symbols, that symbol is subsequently added to the first string of related symbols. For example, if the first string of related symbols is the string of related cherry symbols and a related cherry symbol is generated in the middle row of the third reel, the gaming device adds the related cherry symbol generated on the third reel to the previously classified string of cherry symbols.
On the other hand, if the gaming device determines that no symbols generated on the next adjacent reel are related to the symbols of the first string of related symbols, the gaming device marks or flags such string of related symbols as complete. For example, if the first string of related symbols is the string of related cherry symbols and none of the symbols of the third reel are related to the cherry symbols of the previously classified string of cherry symbols, the gaming device marks or flags the string of two cherry symbols as complete.
After either adding a related symbol to the first string of related symbols or marking the first string of related symbols as complete, the gaming device proceeds as described above for each of the remaining classified strings of related symbols which were previously classified or formed from related symbols on the first and second reels.
After analyzing each of the remaining strings of related symbols, the gaming device determines, for each remaining pending or incomplete string of related symbols, if any of the symbols from the next adjacent reel, if any, should be added to any of the previously classified strings of related symbols. This process continues until either each string of related symbols is complete or there are no more adjacent reels of symbols to analyze. In this embodiment, where there are no more adjacent reels of symbols to analyze, the gaming device marks each of the remaining pending strings of related symbols as complete.
When each of the strings of related symbols is marked complete, the gaming device compares each of the strings of related symbols to an appropriate paytable and provides the player any award associated with each of the completed strings of symbols. It should be appreciated that the player is provided one award, if any, for each string of related symbols generated in active symbol positions (i.e., as opposed to a quantity of awards being based on how many paylines that would have passed through each of the strings of related symbols in active symbol positions).
In one embodiment, in addition to winning credits or other awards in a base or primary game, the gaming device may also give players the opportunity to win credits in a bonus or secondary game or in a bonus or secondary round. The bonus or secondary game enables the player to obtain a prize or payout in addition to the prize or payout, if any, obtained from the base or primary game. In general, a bonus or secondary game produces a significantly higher level of player excitement than the base or primary game because it provides a greater expectation of winning than the base or primary game, and is accompanied with more attractive or unusual features than the base or primary game. In one embodiment, the bonus or secondary game may be any type of suitable game, either similar to or completely different from the base or primary game.
In one embodiment, the triggering event or qualifying condition may be a selected outcome in the primary game or a particular arrangement of one or more indicia on a display device in the primary game, such as the number seven appearing on three adjacent reels along a payline in the primary slot game embodiment seen in
In another embodiment, the gaming device processor 12 or central controller 56 randomly provides the player one or more plays of one or more secondary games. In one such embodiment, the gaming device does not provide any apparent reason to the player for qualifying to play a secondary or bonus game. In this embodiment, qualifying for a bonus game is not triggered by an event in or based specifically on any of the plays of any primary game. That is, the gaming device may simply qualify a player to play a secondary game without any explanation or alternatively with simple explanations. In another embodiment, the gaming device (or central server) qualifies a player for a secondary game at least partially based on a game triggered or symbol triggered event, such as at least partially based on the play of a primary game.
In one embodiment, the gaming device includes a program which will automatically begin a bonus round after the player has achieved a triggering event or qualifying condition in the base or primary game. In another embodiment, after a player has qualified for a bonus game, the player may subsequently enhance his/her bonus game participation through continued play on the base or primary game. Thus, for each bonus qualifying event, such as a bonus symbol, that the player obtains, a given number of bonus game wagering points or credits may be accumulated in a “bonus meter” programmed to accrue the bonus wagering credits or entries toward eventual participation in a bonus game. The occurrence of multiple such bonus qualifying events in the primary game may result in an arithmetic or exponential increase in the number of bonus wagering credits awarded. In one embodiment, the player may redeem extra bonus wagering credits during the bonus game to extend play of the bonus game.
In one embodiment, no separate entry fee or buy-in for a bonus game is needed. That is, a player may not purchase entry into a bonus game; rather they must win or earn entry through play of the primary game, thus encouraging play of the primary game. In another embodiment, qualification of the bonus or secondary game is accomplished through a simple “buy-in” by the player—for example, if the player has been unsuccessful at qualifying through other specified activities. In another embodiment, the player must make a separate side-wager on the bonus game or wager a designated amount in the primary game to qualify for the secondary game. In this embodiment, the secondary game triggering event must occur and the side-wager (or designated primary game wager amount) must have been placed to trigger the secondary game.
In one embodiment, as illustrated in
In one embodiment, the game outcome of one or more primary or secondary games is determined by a central server or controller and provided to the player at the gaming device. In this embodiment, each of a plurality of such gaming devices are in communication with the central server or controller. Upon a player initiating game play at one of the gaming devices, the initiated gaming device communicates a game outcome request to the central server or controller.
In one embodiment, the central server or controller receives the game outcome request and randomly generates a game outcome for the primary game based on probability data. In another embodiment, the central server or controller randomly generates a game outcome for the secondary game based on probability data. In another embodiment, the central server or controller randomly generates a game outcome for both the primary game and the secondary game based on probability data. In this embodiment, the central server or controller is capable of storing and utilizing program code or other data similar to the processor and memory device of the gaming device.
In another embodiment, one or more of the gaming devices are in communication with a central server or controller for monitoring purposes only. That is, each individual gaming device randomly generates the game outcomes to be provided to the player and the central server or controller monitors the activities and events occurring on the plurality of gaming devices. In one embodiment, the gaming network includes a real-time or on-line accounting and gaming information system operably coupled to the central server or controller. The accounting and gaming information system of this embodiment includes a player database for storing player profiles, a player tracking module for tracking players and a credit system for providing automated casino transactions.
In one embodiment, the gaming device disclosed herein is associated with or otherwise integrated with one or more player tracking systems. Player tracking systems enable gaming establishments to recognize the value of customer loyalty through identifying frequent customers and rewarding them for their patronage. In one embodiment, the gaming device and/or player tracking system tracks any player's gaming activity at the gaming device. In one such embodiment, the gaming device includes at least one card reader 38 in communication with the processor. In this embodiment, a player is issued a player identification card which has an encoded player identification number that uniquely identifies the player. When a player inserts their playing tracking card into the card reader to begin a gaming session, the card reader reads the player identification number off the player tracking card to identify the player. The gaming device and/or associated player tracking system timely tracks any suitable information or data relating to the identified players gaming session. Directly or via the central controller, the gaming device processor communicates such information to the player tracking system. The gaming device and/or associated player tracking system also timely tracks when a player removes their player tracking card when concluding play for that gaming session. In another embodiment, rather than requiring a player to insert a player tracking card, the gaming device utilizes one or more portable devices carried by a player, such as a cell phone, a radio frequency identification tag or any other suitable wireless device to track when a player begins and ends a gaming session. In another embodiment, the gaming device utilizes any suitable biometric technology or ticket technology to track when a player begins and ends a gaming session.
During one or more gaming sessions, the gaming device and/or player tracking system tracks any suitable information or data, such as any amounts wagered, average wager amounts, and/or the time at which these wagers are placed. In different embodiments, for one or more players, the player tracking system includes the player's account number, the players card number, the player's first name, the player's surname, the players preferred name, the player's player tracking ranking, any promotion status associated with the player's player tracking card, the player's address, the players birthday, the player's anniversary, the player's recent gaming sessions, or any other suitable data. In one embodiment, such tracked information and/or any suitable feature associated with the player tracking system is displayed on a player tracking display 40. In another embodiment, such tracked information and/or any suitable feature associated with the player tracking system is displayed via one or more service windows (not shown) which are displayed on the central display device and/or the upper display device.
In one embodiment, a plurality of the gaming devices are capable of being connected together through a data network. In one embodiment, the data network is a local area network (LAN), in which one or more of the gaming devices are substantially proximate to each other and an on-site central server or controller as in, for example, a gaming establishment or a portion of a gaming establishment. In another embodiment, the data network is a wide area network (WAN) in which one or more of the gaming devices are in communication with at least one off-site central server or controller. In this embodiment, the plurality of gaming devices may be located in a different part of the gaming establishment or within a different gaming establishment than the off-site central server or controller. Thus, the WAN may include an off-site central server or controller and an off-site gaming device located within gaming establishments in the same geographic area, such as a city or state. The WAN gaming system may be substantially identical to the LAN gaming system described above, although the number of gaming devices in each system may vary relative to one another.
In another embodiment, the data network is an internet or intranet. In this embodiment, the operation of the gaming device can be viewed at the gaming device with at least one internet browser. In this embodiment, operation of the gaming device and accumulation of credits may be accomplished with only a connection to the central server or controller (the internet/intranet server) through a conventional phone or other data transmission line, digital subscriber line (DSL), T-1 line, coaxial cable, fiber optic cable, or other suitable connection. In this embodiment, players may access an internet game page from any location where an internet connection and computer or other internet facilitator is available. The expansion in the number of computers and number and speed of internet connections in recent years increases opportunities for players to play from an ever-increasing number of remote sites. It should be appreciated that the enhanced bandwidth of digital wireless communications may render such technology suitable for some or all communications, particularly if such communications are encrypted. Higher data transmission speeds may be useful for enhancing the sophistication and response of the display and interaction with the player.
As mentioned above, in one embodiment, the present disclosure may be employed in a server-based gaming system. In one such embodiment, as described above, one or more gaming devices are in communication with a central server or controller. The central server or controller may be any suitable server or computing device which includes at least one processor and a memory or storage device. In alternative embodiments, the central server is a progressive controller or another gaming machine in the gaming system. In one embodiment, the memory device of the central server stores different game programs and instructions, executable by a gaming device processor, to control the gaming device. Each executable game program represents a different game or type of game which may be played on one or more of the gaming devices in the gaming system. Such different games may include the same or substantially the same game play with different pay tables. In different embodiments, the executable game program is for a primary game, a secondary game or both. In another embodiment, the game program may be executable as a secondary game to be played simultaneous with the play of a primary game (which may be downloaded to or fixed on the gaming device) or vice versa.
In this embodiment, each gaming device at least includes one or more display devices and/or one or more input devices for interaction with a player. A local processor, such as the above-described gaming device processor or a processor of a local server, is operable with the display device(s) and/or the input device(s) of one or more of the gaming devices.
In operation, the central controller is operable to communicate one or more of the stored game programs to at least one local processor. In different embodiments, the stored game programs are communicated or delivered by embedding the communicated game program in a device or a component (e.g., a microchip to be inserted in a gaming device), writing the game program on a disc or other media, or downloading or streaming the game program over a dedicated data network, internet, or a telephone line. After the stored game programs are communicated from the central server, the local processor executes the communicated program to facilitate play of the communicated program by a player through the display device(s) and/or input device(s) of the gaming device. That is, when a game program is communicated to a local processor, the local processor changes the game or type of game played at the gaming device.
In another embodiment, a plurality of gaming devices at one or more gaming sites may be networked to the central server in a progressive configuration, as known in the art, wherein a portion of each wager to initiate a base or primary game may be allocated to one or more progressive awards. In one embodiment, a progressive gaming system host site computer is coupled to a plurality of the central servers at a variety of mutually remote gaming sites for providing a multi-site linked progressive automated gaming system. In one embodiment, a progressive gaming system host site computer may serve gaming devices distributed throughout a number of properties at different geographical locations including, for example, different locations within a city or different cities within a state.
In one embodiment, the progressive gaming system host site computer is maintained for the overall operation and control of the progressive gaming system. In this embodiment, a progressive gaming system host site computer oversees the entire progressive gaming system and is the master for computing all progressive jackpots. All participating gaming sites report to, and receive information from, the progressive gaming system host site computer. Each central server computer is responsible for all data communication between the gaming device hardware and software and the progressive gaming system host site computer. In one embodiment, an individual gaming machine may trigger a progressive award win. In another embodiment, a central server (or the progressive gaming system host site computer) determines when a progressive award win is triggered. In another embodiment, an individual gaming machine and a central controller (or progressive gaming system host site computer) work in conjunction with each other to determine when a progressive win is triggered, for example through an individual gaming machine meeting a predetermined requirement established by the central controller.
In one embodiment, a progressive award win is triggered based on one or more game play events, such as a symbol-driven trigger. In other embodiments, the progressive award triggering event or qualifying condition may be achieved by exceeding a certain amount of game play (such as number of games, number of credits, or amount of time), or reaching a specified number of points earned during game play. In another embodiment, a gaming device is randomly or apparently randomly selected to provide a player of that gaming device one or more progressive awards. In one such embodiment, the gaming device does not provide any apparent reasons to the player for winning a progressive award, wherein winning the progressive award is not triggered by an event in or based specifically on any of the plays of any primary game. That is, a player is provided a progressive award without any explanation or alternatively with simple explanations. In another embodiment, a player is provided a progressive award at least partially based on a game triggered or symbol triggered event, such as at least partially based on the play of a primary game.
In one embodiment, one or more of the progressive awards are each funded via a side bet or side wager. In this embodiment, a player must place or wager a side bet to be eligible to win the progressive award associated with the side bet. In one embodiment, the player must place the maximum bet and the side bet to be eligible to win one of the progressive awards. In another embodiment, if the player places or wagers the required side bet, the player may wager at any credit amount during the primary game (i.e., the player need not place the maximum bet and the side bet to be eligible to win one of the progressive awards). In one such embodiment, the greater the player's wager (in addition to the placed side bet), the greater the odds or probability that the player will win one of the progressive awards. It should be appreciated that one or more of the progressive awards may each be funded, at least in part, based on the wagers placed on the primary games of the gaming machines in the gaming system, via a gaming establishment or via any suitable manner.
In another embodiment, one or more of the progressive awards are partially funded via a side-bet or side-wager which the player may make (and which may be tracked via a side-bet-meter). In one embodiment, one or more of the progressive awards are funded with only side-bets or side-wagers placed. In another embodiment, one or more of the progressive awards are funded based on player's wagers as described above as well as any side-bets or side-wagers placed.
In one alternative embodiment, a minimum wager level is required for a gaming device to qualify to be selected to obtain one of the progressive awards. In one embodiment, this minimum wager level is the maximum wager level for the primary game in the gaming machine. In another embodiment, no minimum wager level is required for a gaming machine to qualify to be selected to obtain one of the progressive awards.
In another embodiment, a plurality of players at a plurality of linked gaming devices in a gaming system participate in a group gaming environment. In one embodiment, a plurality of players at a plurality of linked gaming devices work in conjunction with one another, such as by playing together as a team or group, to win one or more awards. In one such embodiment, any award won by the group is shared, either equally or based on any suitable criteria, amongst the different players of the group. In another embodiment, a plurality of players at a plurality of linked gaming devices compete against one another for one or more awards. In one such embodiment, a plurality of players at a plurality of linked gaming devices participate in a gaming tournament for one or more awards. In another embodiment, a plurality of players at a plurality of linked gaming devices play for one or more awards wherein an outcome generated by one gaming device affects the outcomes generated by one or more linked gaming devices.
Various embodiments of the disclosed gaming device and method of operating a gaming device provide a Pachisuro-style slot game. Referring specifically to
It should be appreciated that in various embodiments, the Pachisuro-style gaming device and game may include any suitable type of reel, any suitable number of reels, such as three to five reels, each reel may include any suitable number of stop positions and the stop positions of each reel may be numbered in any suitable fashion. Thus, although in
Referring back to
In this example embodiment, the gaming device also includes one or more processors 12 and one or more memory devices 14. For each reel, the processor 12 randomly determines the stop position at which the reel ultimately stops based on a virtual map stored in the memory device 14 for an initiating stop position of that reel which is determined by the player's activation of the stop input device for that reel as defined above.
More specifically, in this illustrated embodiment, the first reel 54a has 22 stop positions and 22 virtual maps, the second reel 54b has 22 stop positions and 22 virtual maps, and the third reel 54c has 22 stop positions and 22 virtual maps. The virtual map for the initiating position enables the processor to randomly determine which of the following stop positions the reel will stop at based on a randomly generated number. It should be appreciated that in one embodiment, the processor 12 randomly generates the number after the player activates the stop input device associated with the respective reel. In other embodiments, the processor 12 randomly generates the number before the player activates the stop input device for the reel.
Each virtual map includes a range of stop positions and for each stop position in the range, an associated weight. The processor 12 randomly determines a stop position based on the weights associated with the stop positions in the range of the virtual map.
More specifically, referring to
In this embodiment, during a play of the Pachisuro-style game, when the first reel 54a is spinning, if the initiating stop position is stop position 0 of the first reel 54a, the gaming device will stop the first reel 54a at a stop position between stop position 17 and stop position 21.
More specifically, referring to
It should be appreciated that in various other embodiments, a different symbol display area associated with each reel could be used as a point of reference for determining the initiating stop position for each reel for each spin of that reel. For example, the top symbol display area of a reel or bottom symbol display area may be the point of reference for the reels for determining the initiating stop positions in various other embodiments.
It should be appreciated that in various other embodiments, instead of a symbol display area, the location of a stop position relative to a predetermined reference line may be determinative of the initiating stop position for the reel when the player activates the stop input device associated with the reel.
In various other embodiments, the initiating stop position is determined based on a step count of a step motor associated with a mechanical reel. For example, in one embodiment, the step motor of a reel includes 132 steps, 6 for each stop position of the 22 stop position reel. Thus, stop position 0 is associated with steps 1 to 6, stop position 1 is associated with steps 7 to 12, and so on. In this embodiment, if the player activates the stop input device associated with the reel when the step motor is at step 9, stop position 1 is the initiating stop position. It should be appreciated that in such embodiments, the step motor may include any suitable number of steps. Further, it should be appreciated that the initiating stop position for each reel may be determined in any other suitable manner in various other embodiments.
Specifically, for example, if the player activates stop position 30a associated with the first reel 54a when the symbol associated with stop position 0 is positioned within display area 55d in
The above is an example of a random number generation method which could be implemented by the processor 12 to randomly determine a stop position according to the weights in virtual map 110a. It should be appreciated that in any of the embodiments herein, any suitable random number generation technique utilizing the weights or different probabilities in the virtual maps may be used to randomly determine stop positions. For example, in various other embodiments, the processor 12 randomly generates a number larger than the sum of the weights for a virtual map and the number is scaled down to a number within the sum of the weights for the virtual map based on a suitable mathematical conversion.
In this example, although the processor 12 randomly determines a number, it should be appreciated that by adjusting the weights assigned to each stop position, a gaming device designer can adjust the likelihood of the processor 12 randomly selecting each respective stop position in the virtual map. For example, according to virtual map 11a, if the player activates stop input device 30a when stop position 0 (an “Orange” symbol) is displayed, the first reel 54a is most likely to stop at stop position 18 (associated with a “Free Shot” symbol). A gaming device designer can change this likelihood by shifting the weights associated with the stop positions in virtual map 110a, as discussed in more detail below.
It should be appreciated that although in virtual map 110a, each stop position is associated with a different weight, in various other embodiments, a plurality of stop positions in a virtual map are associated with a same weight. In various other embodiments, all of the stop positions in one or more virtual maps are associated with a same weight. In yet another embodiment, each stop position of each virtual map of one or more, but not all, of a plurality of reels is associated with a same weight.
It should be appreciated that in various other embodiments, a plurality of stop positions of one or more reels are associated with a same virtual map. Thus, in such embodiments, each stop position of each reel is not associated with a different virtual map.
It should also be appreciated that in various other embodiments, the sum of the weights in one or more virtual maps of one or more reels is different. It should be further appreciated that in various other embodiments, one or more virtual maps of one or more reels may include a range of stop positions including a different number of stop positions.
It should be appreciated that in various embodiments, a plurality of variables influence the ability of a mechanical reel to stop at a desired number of stop positions (e.g., one or two) following an initiating stop position including: (a) the size of the mechanical reel; (b) the size of the symbols on the reel strip associated with the mechanical reel; and (c) the speed of the mechanical reel when the respective stop input device is activated. In various embodiments, the number of stop positions past the initiating stop position a reel is able to stop at and the number of stop positions in the range of one or more virtual maps may vary based on variations in these variables.
Additionally, in various other embodiments, the number of stop positions after the initiating stop position for a respective reel before the first stop position in the range of stop positions for the virtual map associated with the initiating stop position may be different for different reels.
It should also be appreciated that in this embodiment, the upper range of the average expected payback percentage stops at 95% to enable the gaming provider to receive funds to ultimately provide back to players in the form of progressive awards, bonus awards, or any other suitable form.
This embodiment of the Pachisuro-style game enables highly skilled players to achieve higher payback percentages than unskilled players. If the player can identify the stop positions as the player activates respective stop input devices, the player can target certain combinations of stop positions. For example, over time, a highly skilled player may recognize that when they activate the stop input devices when certain symbols are displayed, they repeatedly receive high awards, even if not frequently (a high volatility experience), or receive low awards frequently (a low volatility experience). Thus, the player may try to repeatedly activate the stop input devices when these symbols are displayed. In this example, the highly skilled player has identified a combination of stop positions associated with a component paytable that has a high payback percentage. As a simple example, a component paytable is associated with stop position 5 of the first reel 54a, stop position 5 of the second reel 54b and stop position 5 of the third reel 54c and has an average expected payback percentage of 95%. Thus, if a highly skilled player repeatedly activates the stop input devices when stop position 5 of the first reel 54a is located at the first payline 52a, stop position 5 of the second reel 54b is located at the first payline 52a and stop position 5 of the third reel 54c is located at the first payline 52a, the highly skilled player will achieve a theoretical payback percentage of 95% a large number of plays of the game.
In various embodiments, the memory device 14 also stores a multiplier look-up table including a plurality of multiplier tables, and for each multiplier table, one or more of the combinations of stop positions associated with the multiplier table.
In this embodiment, the gaming device designer configures each multiplier table such that the average expected payback percentage of the component paytable associated with the multiplier table multiplied by the average multiplier value of the multiplier table results in an adjusted average expected payback percentage for the component paytable that is within the desired payback range, such as 80% to 95%. This range of average expected payback percentages for the component paytables may vary by gaming jurisdiction. In embodiments in which this range is more narrow (e.g., 84% to 95%), the multiplier tables are configured to bring the average expected payback percentage of the component paytables associated with multiplier tables into the narrower range.
In one embodiment, the gaming device designer associates one or more component paytables with a respective multiplier table based on a range of average expected payback percentages within which the average expected payback percentage of the component paytable is located.
In the embodiments disclosed herein, the player is required to wager at least 5 credits on a play of the game (one credit for each of the five paylines). Also, players may be able to wager multiple credits on each payline. It should be appreciated that in various other embodiments, the player does not need to wager on each of the paylines in the game and may wager on more or less than five paylines. It should also be appreciated that in various other embodiments, the player may make other types of wagers on a play of the game in addition to wagering on one or more paylines, including side wagers on one or more game outcomes or events occurring.
Weight table 150 and component paytable 160, as in the case of other examples discussed below, appear complicated due to the inclusion of five paylines in the probability analysis. It should be appreciated that in various other embodiments including a single payline, or fewer paylines than five, the methodology used in building these tables would be the same, but the tables would be smaller.
For example, as illustrated in
Still referring to
Component paytable 160, associated with the combination of stop position 0 of the first reel 54a, stop position 0 of the second reel 54b and stop position 0 of the third reel 54c, includes the plurality of predetermined winning symbol combinations from overall paytable 140 and the awards associated with those winning symbol combinations.
The predetermined winning symbol combination “Red 7-Red 7-Red 7” in component paytable 160 is analyzed below for illustrative purposes. The probability of “Red 7-Red 7-Red 7” being displayed at the first payline 52a is 0% ([46×0×33]/[256×256×256]). The probability of “Red 7-Red 7-Red 7” being displayed at the second payline 52b is 0.308% ([68×38×20]/[256×256×256]). The probability of “Red 7-Red 7-Red 7” being displayed at the third payline 52c is 0% ([0×0×48]/[256×256×256]). The probability of “Red 7-Red 7-Red 7” being displayed at the fourth payline 52d is 0% ([68×0×48]/[256×256×256]). The probability of “Red 7-Red 7-Red 7” being displayed at the fifth payline 52e is 0% ([0×0×20]/[256×256×256]). This results in a total probability (for all five paylines) of 0.308% of the combination “Red 7-Red 7-Red 7” being displayed at any of the first payline 52a, the second payline 52b, the third payline 52c, the fourth payline 52d and the fifth payline 52e.
In component paytable 160, the contribution of each respective predetermined winning symbol combination to the average expected payback percentage of component paytable 160 is the probability of the symbol combination being generated at any of the five paylines multiplied by the award associated with the predetermined winning symbol combination. Thus, in component paytable 160, the contribution of the predetermined winning symbol combination “Red 7-Red 7-Red 7” is 61.607%.
The above methodology also applies to determining the contribution of each of the other predetermined winning symbol combinations in component paytable 160 to the average expected payback percentage of component paytable 160.
Note that paytable 160 illustrates for this combination of stop positions, the player has a chance at receiving a free spin resulting from the symbol combination “Free Shot-Free Shot-Free Shot.” This award does not contribute to the average expected payback percentage of the paytable. In various embodiments of the Pachisuro-style game, the gaming device may require the player to place an additional wager to be eligible for a free spin associated with the symbol combination “Free Shot-Free Shot-Free Shot.” In various other embodiments, the player is eligible to receive a free spin for this symbol combination when the game is offered as a bonus game.
The average expected payback percentage per credit of component paytable 160 is 33.13% (the sum of the probability of displaying each respective predetermined winning symbol combination at any of the five paylines multiplied by the award associated with each respective predetermined winning symbol combination, divided by five since there are five paylines). It should be appreciated that each payline also has its own average expected payback percentage (although the specific math is not shown).
In this embodiment, 33.13% is not within the designated range of payback percentages for the component paytables of 80% to 95%. Thus, the gaming device designer associates component paytable 160 with a multiplier table in accordance with table 170. Specifically, the average expected payback percentage of component paytable 160 is 33.13%. Thus, referring to table 170 in
Multiplier table Q 190 includes a plurality of multiplier values, ranging from one to twenty. Each multiplier value is associated with a weight. When multiplier table Q 190 is used for a play of the game (if the combination of stop positions activated by the player is associated with a component paytable having a payback percentage between 33.01 and 36.5%), the gaming device randomly selects a multiplier from the plurality of multipliers in table 190. The processor 12 randomly determines a multiplier from table 190 based on the weights accorded each of the respective multipliers. As illustrated in table 190, each multiplier multiplied by its respective weight, divided by the sum of the weights (10,000) indicates the contribution of each respective multiplier to an average multiplier for the multiplier table 190. The average multiplier of multiplier table 190 is 2.55, as indicated in
The use of such multiplier tables not only increases the adjusted average expected payback percentage of component paytables constructed for certain combinations of virtual maps, but also creates two levels of randomization when a player activates the stop input devices at a combination of stop positions (or virtual maps) associated with a multiplier table. In other words, the processor first randomly selects a stop position for each reel from the virtual map associated with the initiating stop position, which is determined based on the player's activation of the stop input device associated with the reel. Then, if the combination of virtual maps is associated with a multiplier table, the gaming device randomly determines a multiplier from the multiplier table based on a randomly generated number to apply to any award resulting from the combination of symbols displayed when all of the reels stop spinning. It should be appreciated that as in the case of the randomly determined numbers used for the virtual maps, the randomly determined number used for a multiplier table may be generated by the processor 12 at any suitable time. For example, in various embodiments, the processor generates the random number before the player activates any stop input devices. In various other embodiments, the processor 12 randomly generates the number after the player has activated each of the stop input devices associated with the reels.
The flowchart of
The processor accepts an input from stop input device 30a associated with reel 54a, determines the initiating stop position for the first reel 54a based on when stop input device 30a is activated and randomly determines a stop position for the first reel 54a based on the virtual map associated with the initiating stop position, as illustrated in blocks 304a, 306a and 308a. The processor then causes the first reel 54a to stop spinning at the determined stop position, as illustrated in block 310a.
The processor accepts an input from stop input device 30b associated with the second reel 54b, determines the initiating stop position for the second reel 54b based on when stop input device 30b is activated and randomly determines a stop position for the second reel 54b based on the virtual map associated with the initiating stop position, as illustrated in blocks 304b, 306b and 308b. The processor then causes the second reel 54b to stop spinning at the determined stop position, as illustrated in block 310b.
The processor accepts an input from stop input device 30c associated with the third reel 54c, determines the initiating stop position for the third reel 54c based on when stop input device 30c is activated and randomly determines a stop position for the third reel 54c based on the virtual map associated with the initiating stop position, as illustrated in blocks 304c, 306c and 308c. The processor then causes the third reel 54c to stop spinning at the determined stop position, as illustrated in block 310c.
After the first reel 54a, second reel 54b, and third reel 54c have stopped spinning, the processor evaluates the symbols displayed at the symbol display areas for predetermined winning symbol combinations using the overall paytable 140 for the Pachisuro-style game, as illustrated in block 312. The processor then determiners any awards associated with the predetermined winning symbol combinations using the overall paytable 140, as illustrated in block 314.
The processor then checks the multiplier look-up table 142 stored in the memory device to determine if the combination of stop positions selected by the player is associated with a multiplier table, as illustrated in diamond 316. If the stop position combination is associated with a multiplier table, the processor randomly determines a multiplier from the multiplier table and applies the randomly determined multiplier to any determined awards, as illustrated in blocks 318 and 320. Finally, the processor causes the gaming device to provide any determined awards to the player, as illustrated in block 322.
In this embodiment, the Pachisuro-style game is a primary game. However, it should be appreciated that in various other embodiments, the Pachisuro-style game is a bonus game and the player need not input a wager to play the game.
In this embodiment, after the player inputs the wager, each of the first reel 54a, the second reel 54b and the third reel 54c begin spinning as illustrated in
It should be appreciated that in this embodiment, the player is not required to activate the stop input devices in any particular order. However, in various other embodiments, the player may be required to activate stop input device 30a first, then stop input device 30b, and finally stop input device 30c. In various other embodiments, the player may be required to activate the stop input devices in any suitable order or simultaneously.
In this embodiment, the stop position associated with the center position (55d, 55e or 55f, respectively) when a respective stop input device is activated is used to determine the virtual map the processor 12 uses to randomly determine a stop position at which to stop the reel.
Referring to
In this example, the processor 12 randomly selects stop position 18 and thus, the processor 12 causes first reel 54a to stop spinning such that stop position 18 (associated with a “Free Shot” symbol) is displayed at symbol display area 55d, as illustrated in
The player activates stop input device 30b when stop position 0 of the second reel 54b is displayed at symbol display area 55e. Thus, the processor 12 selects virtual map 120a illustrated in
In this example, the processor 12 randomly selects stop position 17 and thus, the gaming device stops spinning the second reel 54b such that stop position 17 (associated with an “Orange” symbol) is displayed at symbol display area 55e, as illustrated in
The player activates stop input device 30c when stop position 0 of the third reel 54c is displayed at symbol display area 55f. Thus, the gaming device selects virtual map 130a illustrated in
In this example, the processor 12 randomly selects stop position 21 and thus, the processor 12 causes the third reel 54c to stop spinning such that stop position 21 (associated with a “1 Bar” symbol) is displayed at symbol display area 55f, as illustrated in
After all of the reels stop spinning, the gaming device determines if at least one of the plurality of predetermined winning symbol combinations of overall game paytable 140 is displayed at any of the paylines. Referring to overall paytable 140 in
Additional examples of working weight tables and component paytables developed by a gaming device designer for the embodiment discussed above are discussed below.
In this example, the combination of the virtual maps associated with these stop positions provides a relatively high probability of a player receiving an award for a predetermined winning symbol combination associated with a relatively low award. This combination of the stop positions, if selected repeatedly, could appeal to a low volatility player that would rather receive lower awards more frequently than receive higher awards less frequently. Other combinations may provide high volatility and similar combinations may be grouped in close proximity so that players learn that one area of the reel tends to produce frequent, low wins while another area produces rare, high wins.
In this embodiment, the player is required to wager at least five credits on a play of the game (one credit for each of the five paylines). Table 230 in
For example, as illustrated in
Still referring to
Component paytable 240, associated with the combination of stop position 1 of the first reel 54a, stop position 2 of the second reel 54b and stop position 3 of the third reel 54c, includes the plurality of predetermined winning symbol combinations from overall paytable 140 and the awards associated with those respective predetermined winning symbol combinations.
The predetermined winning symbol combination “xx-xx-Cherry” (in other words, the display of a “Cherry” symbol anywhere on the third reel 54c) in paytable 240 is analyzed below for illustrative purposes. The probability of “xx-xx-Cherry” being displayed at the first payline 52a is 10.547% ([(19+124+28+85)×(38+35+61+122)×27]/[256×256×256]). The probability of “xx-xx-Cherry” being displayed at the second payline 52b is 6.25% ([(98+28+85+19+26)×(35+66+38+61+56)×16]/[256×256×256]). The probability of “xx-xx-Cherry” being displayed at the third payline 52c is 60.156% ([(28+104+26+98)×(61+38+56+35+66)×154]/[256×256×256]). The probability of “xx-xx-Cherry” being displayed at the fourth payline 52d is 60.156% ([(98+28+85+19+26)×(38+35+61+122)×154]/[256×256×256]). The probability of “xx-xx-Cherry” being displayed at the fifth payline 52e is 6.25% ([(98+28+85+19+26)×(35+66+38+61+56)×16]/[256×256×256]). This results in a total probability (for all five paylines) of 143.36% of the combination “xx-xx-Cherry” being displayed at any of the first payline 52a, the second payline 52b, the third payline 52c, the fourth payline 52d and the fifth payline 52e.
In component paytable 240, the contribution of each respective predetermined winning symbol combination to the average expected payback percentage of component paytable 240 is the probability of the symbol combination being generated at any of the five paylines multiplied by the award associated with the predetermined winning symbol combination. Thus, in component paytable 240, the contribution of the predetermined winning symbol combination “xx-xx-Cherry” is 143.36%.
It should also be appreciated that the above methodology also applies to determining the contribution of each of the other predetermined winning symbol combinations in component paytable 240.
The average expected payback percentage of component paytable 240 is thus 42.153% (the sum of the probability of displaying each respective predetermined winning symbol combination on any of the five paylines multiplied by the award associated with each respective predetermined winning symbol combination, divided by five since there are five paylines).
In this embodiment, 42.153% is not within the designated range of average expected payback percentages for the component paytables of 80% to 95%. Thus, the gaming device designer associates the component paytable 240 with multiplier table S 200, according to table 170. The average multiplier of multiplier table S 200 is 2.1, as indicated in
In this example, the combination of the virtual maps associated with these stop positions provides a relatively low probability of a player receiving an award, but when it does occur it is a relatively high award for a predetermined winning symbol combination including three “Jackpot” symbols. A skilled player seeking a higher volatility gaming experience may try to repeatedly stop the reels such that three Jackpot symbols are displayed at a payline.
In this embodiment, the player is required to wager at least five credits on a play of the game (one credit for each of the five paylines). Table 250 in
For example, as illustrated in
Component paytable 260, associated with the combination of stop position 6 of the first reel 54a, stop position 9 of the second reel 54b and stop position 7 of the third reel 54c, includes the plurality of predetermined winning symbol combinations from overall paytable 140 and the awards associated with those winning symbol combinations.
The predetermined winning symbol combination “Jackpot-Jackpot-Jackpot” in paytable 260 is analyzed below for illustrative purposes. The probability of “Jackpot-Jackpot-Jackpot” being displayed at the first payline 52a is 0.127% ([59×6×60]/[256×256×256]). The probability of “Jackpot-Jackpot-Jackpot” being displayed at the second payline 52b is 0.058% ([10×48×35]/[256×256×256]). The probability of “Jackpot-Jackpot-Jackpot” being displayed at the third payline 52c is 0.028% ([16×29×10]/[256×256×256]). The probability of “Jackpot-Jackpot-Jackpot” being displayed at the fourth payline 52d is 0.004% ([10×6×10]/[256×256×256]). The probability of “Jackpot-Jackpot-Jackpot” being displayed at the fifth payline 52e is 0.020% ([16×6×35]/[256×256×256]). This results in a total probability (for all five paylines) of 0.278% of the combination “Jackpot-Jackpot-Jackpot” being displayed at any of the first payline 52a, the second payline 52b, the third payline 52c, the fourth payline 52d and the fifth payline 52e.
In component paytable 260, the contribution of each respective predetermined winning symbol combination to the average expected payback percentage of component paytable 260 is the probability of the symbol combination being generated at any of the five paylines multiplied by the award associated with the predetermined winning symbol combination. Thus, in component paytable 260, the contribution of the predetermined winning symbol combination “Jackpot-Jackpot-Jackpot” is 278%.
The above methodology also applies to determining the contribution of each of the other predetermined winning symbol combinations in component paytable 260.
The average expected payback percentage of component paytable 260 is 79.722% (the sum of the probability of displaying each respective predetermined winning symbol combination on any of the five paylines multiplied by the award associated with each respective predetermined winning symbol combination, divided by five since there are five paylines).
In this embodiment, 79.722% is not within the designated range of average expected payback percentages for the component paytables of 80% to 95%. Thus, the gaming device designer associates the component paytable 260 with multiplier table D1220, according to table 170. The average multiplier of multiplier table D1220 is 1.18, as indicated in
Changing one weight in one virtual map will impact the adjusted average expected payback percentage of any component paytable constructed using the virtual map. More specifically, as illustrated in
Likewise, adjusting a multiplier weight in the multiplier table changes the average multiplier of the multiplier table, which changes the adjusted average expected payback percentage of the component paytable (and possibly even the component paytables the gaming device designer associates the multiplier table with).
It should be appreciated that in various other embodiments, the evaluation of the symbols for predetermined winning symbol combinations may be a multi-way evaluation, as discussed in detail above. It should be appreciated that in various such embodiments, to construct an overall paytable for the game, suitable component paytables, as discussed above, based on a multi-way symbol evaluation (as described above) as opposed to a payline-based evaluation would be constructed by the game designer.
It should be appreciated that in various embodiments, the game may include one or more wild or other suitable functional symbols that improve the player's chance at receiving an award. It should be appreciated that in such embodiments, the component paytables constructed by the gaming device designer take such symbols into account.
It should be appreciated that in various other embodiments, the game may utilize symbol stacking. Symbol stacking is implemented by forming stacks of one or more identical symbols in adjacent symbol positions of a reel strip utilized by a single reel. The identical symbols on the same single reel are adjacent to each other, and thus “stacked.” For example, in a slot game with three rows of symbols, three cherry symbols may appear adjacent to each other on a reel to form a stack of three cherry symbols. When a gaming device generates stacks of symbols that are identical on three or more adjacent reels, multiple winning symbol combinations can be formed and the gaming machine can provide large payouts to the player if portions of one or more stacks of symbols are displayed.
It should be appreciate the various other embodiments of the game incorporate a cascading symbol feature. In one such embodiment, the gaming device stops the plurality of reels after the stop input devices are activated. Then, the gaming device evaluates the displayed symbols and provides an award for each winning symbol combination formed. The gaming device (in a video reel embodiment) then removes the displayed symbols that form the winning symbol combination(s) to create one or more empty symbol positions. The gaming machine shifts zero, one, or more of the remaining displayed symbols downward into zero, one, or more of the empty symbol positions and generates and displays a symbol for each remaining empty symbol position. The gaming machine re-evaluates the displayed symbols, provides an award for any displayed winning symbol combinations and repeats the steps of removing symbols, shifting symbols, generating new symbols, and evaluating symbol combinations until no winning symbol combination is displayed.
In various embodiments, if the player does not activate any of the stop input devices within a predetermined amount of time, the processor will randomly select a stop position for each of the reels. In various such embodiments, each stop position of each reel is associated with a weight and the processor randomly selects a stop position for each reel, subject to the weight associated with each stop position.
In other such embodiments, the processor may immediately cause all the reels to stop spinning if the player does not activate any stop input devices within a designated amount of time. In such embodiments, the reel spin speed may be randomized such that the position of one reel relative to another varies as the reels spin.
In various embodiments in which a plurality of reels in the Pachisuro-style game stop if a player has not activated a respective stop input device within a predetermined amount of time, each of the reels may stop after a different predetermined amount of time.
In another embodiment, for one or more of the reels, if the player has not selected the stop input device associated with a reel after a predetermined amount of time, the processor uses the virtual map of the stop position displayed at the time of the time-out to randomly select one of the following stop positions. In various embodiments, a random factor is added to the predetermined amount of time or to reel spin speed.
It should be appreciated that in various embodiments, the processor randomly selects a stop position for one or more, but not all, of the plurality of reels independent of any player action and the player causes the stopping of one or more, but not all, of the plurality of reels based on the initiating stop position for the reel selected by the players activation of the stop input device. For example, in an embodiment including three reels, the gaming device randomly determines respective stop positions for the first two reels, as in traditional slot machines. After the first two reels have stopped spinning, the player causes the selection of an initiating stop position and ultimate stopping of the third reel by activating the stop input device associated with the third reel. This creates an additional element of player strategy, in that the player may attempt to stop the third reel to achieve certain predetermined winning symbol combinations based on the symbols randomly determined and already displayed at the first and second reels.
In another such embodiment, the processor randomly selects one of the predetermined combinations of stop positions (10,648 in the above detailed exampled). This stopping method may be similar or identical to existing slot machines.
In various other embodiments, the gaming device enables a player to buy a skill advantage for one or more plays of the game for a designated amount of credits. In various embodiments, the skill advantage includes at least one of: (a) illuminating or emphasizing one or more symbols, reels or input devices to indicate when the player should stop one or more reels; (b) spinning one or more of the reels slower than during normal game play; (c) spinning one or more of the reels at a constant rate; and (d) audio tones that correlate to the best time to stop a reel. These skill advantages provide the player a better opportunity to obtain higher awards. For example, if the player has identified an ideal combination of initiating stop positions, slowing down the reels enables the player to better control the timing of the activation of the stop input devices relative to the symbols displayed.
In various other embodiments, the skill advantage is triggered by a game outcome or event and is effective for a predetermined number of games or until the player wins or loses a predetermined number of games.
In various embodiments, the gaming device adjusts the speed of reel decelerations such that the reels come to a stop at the same rate after a respective stop input device is activated. For example, for a first reel, the processor may randomly determine a following stop position at which to stop the first reel which is three symbol positions away. For a second reel, the processor may randomly determine a following stop position at which to stop the second reel which is fifteen symbol positions way. In this embodiment, the gaming device stops both of the first and second reels at the same speed after the respective stop input devices are activated. Thus, the average velocity of the second reel would be higher than that of the first reel as the second reel decelerates.
In various other embodiments, the virtual maps and reel spin speeds may vary when the Pachisuro-style game is provided as a bonus game, providing varying skill levels.
In another embodiment in which the Pachisuro-style game is a bonus game, the reels may spin backwards (or the opposite direction of that in the base game) in the bonus game. This would also require an additional virtual map for each stop position depending on the direction.
In another embodiment, a Pachisuro-style bonus game may challenge the player to hit a specific symbol, or activate the stop input device at the time the specific symbol is displayed at a designated symbol display area while one or more respective reels are spinning. In one such embodiment, each reel will automatically stop a designated number (e.g., two) of stop positions after the stop input device is activated. In certain embodiments of this bonus game, multiple spins of one or more reels are provided to the player and the reel spin speed increases sequentially with each subsequent spin.
In another embodiment in which the Pachisuro-style game is provided as a bonus game, the gaming device improves the players odds of receiving a desired award by using the same paytable for consecutive stop positions. In such embodiments, the virtual maps for one or more consecutive stop positions include the same range of stop positions and respective weights, such that the player has a larger period of time (or range of stop positions) during which to stop the reels.
In another embodiment in which the Pachisuro-style game is a bonus game, the gaming device enables the player to stop each of the plurality of reels of the game at the same time by activating a single stop input device. In this embodiment, when the player selects the stop input device, the reels will stop such that an aligned symbol combination is displayed at the reels.
In various embodiments, the Pachisuro-style game includes different skill levels. In certain such embodiments, a player may receive higher awards for higher skill levels. The player may select which skill level they want to play. In this case, the player would know that they may receive smaller payouts for the same winning combinations for playing an easy version compared to playing a higher skill level version. In one embodiment, the reels spin faster in higher skill levels. Alternatively, the cost to play may be different to play a higher skill level version.
In other embodiments, digital glass or another suitable display may display a persistence game including storyboarding. In such embodiments, various game events or bonuses in the Pachisuro-style game enable the player to advance in the persistence game.
For example, certain symbols associated with stop positions on the reels could cause certain events to happen in the persistence game. In one simple example, the persistence game has a travel theme in which a player travels to different destinations. A designated symbol is a plane ticket symbol, or other suitable symbol, symbolizing an advance to another destination or level in the persistence game. If this symbol is displayed when the reels come to a stop, the player advances as appropriate in the persistence game. It should be appreciated that such a persistence game may have any game theme in various other embodiments.
In certain other embodiments, a player stops one or more of a plurality of reels in a Pachisuro-style game by activating a stop input device as described in the above detailed embodiment. However, in these embodiments, the processor 12 causes one or more of the reels to stop without player interaction, like a reel in a traditional slot game. Thus, the player has some input into the symbols displayed when the reels stop spinning, but does not control all of the reels.
In another embodiment, the gaming device plays music while the player is playing the Pachisuro-style game. In one such embodiment, the music is synchronized with the spinning of the reels to help the player develop a “rhythm” which aids in stopping the reels at desired times. For example, in one embodiment, the reels spin at 80 revolutions per minute and the music being played includes 80 beats per minute, or a multiple thereof. Additionally, in a higher skill level version, the beats per minute may be slightly different than the revolutions per minute in an attempt to challenge the player's timing.
It should be appreciated that in various other embodiments, the reels may spin at any suitable speed.
It should be appreciated that in various other embodiments, the Pachisuro-style game may include independent reels. Specifically, in such an embodiment, independent reels associated with each respective symbol display area spin independently, in any direction and start and stop at different times as desired by the implementer. It should be appreciated that in such an embodiment, each of a plurality of stop input devices could be associated with a plurality of independent reels (e.g., three) stacked vertically. In one such embodiment, a player stops each of the independent reels in a column by activating the stop input device associated with the column. In other such embodiments, different stop input devices are associated with each respective independent reel, or any suitable number of the independent reels.
It should be appreciated that in various other embodiments, the Pachisuro game is offered in a multi-player configuration. In one such embodiment, different players activate the respective stop input devices for each of a plurality of different reels. In such embodiments, players may share an award in any suitable manner or an award may only be provided to a designated player. It should also be appreciated that in various such embodiments, the multi-player configuration may be provided as a bonus game incorporating a central display, wherein players qualify for the bonus play based on suitable base game or wager-based criteria.
It should be appreciated that in various embodiments, the memory device stores an additional virtual map for each entire reel including each of the stop positions of the respective reel and a weight associated with each respective stop position in the virtual map for the entire reel. In one such embodiment, if the player has not activated the stop input device associated with the mechanical reel after a predetermined amount of time, the processor 12 determines which of the stop positions the mechanical reel will stop at using the virtual map for the entire reel, based on the weights in the virtual map for the entire reel and a randomly determined number.
It should be appreciated that in various other embodiments, if the player has not activated the stop input device associated with the mechanical reel after a predetermined amount of time, the processor randomly determines the initiating stop position for the reel when the reel is spinning.
It should be appreciated that in various embodiments, the memory device may store a component paytable for each combination of stop positions of the plurality of reels, wherein each component paytable has an average expected payback percentage within a designated range of average expected payback percentages.
It should be appreciated that each of the foregoing examples are for illustrative purposes and that any of the features of any of the examples or other disclosure herein may be combined in any manner.
It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present invention and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.