The present application relates to a gaming device, a method and gaming system with a changing arrangement of symbol display positions.
Electronic gaming machines (“EGMs”) or gaming devices provide a variety of wagering games such as slot games, video poker games, video blackjack games, roulette games, video bingo games, keno games and other types of games that are frequently offered at casinos and other locations. Play on EGMs typically involves a player establishing a credit balance by inputting money, or another form of monetary credit, and placing a monetary wager (from the credit balance) on one or more outcomes of an instance (or single play) of a primary or base game. In many games, a player may qualify for secondary games or bonus rounds by attaining a certain winning combination or triggering event in the base game. Secondary games provide an opportunity to win additional game instances, credits, awards, jackpots, progressives, etc. Awards from any winning outcomes are typically added back to the credit balance and can be provided to the player upon completion of a gaming session or when the player wants to “cash out.”
“Slot” type games are often displayed to the player in the form of various symbols arrayed in a row-by-column grid or matrix. Specific matching combinations of symbols along predetermined paths (or paylines) through the matrix indicate the outcome of the game. The display typically highlights winning combinations/outcomes for ready identification by the player. Matching combinations and their corresponding awards are usually shown in a “pay-table” which is available to the player for reference. Often, the player may vary his/her wager to include differing numbers of paylines and/or the amount bet on each line. By varying the wager, the player may sometimes alter the frequency or number of winning combinations, frequency or number of secondary games, and/or the amount awarded.
Typical games use a random number generator (RNG) to randomly determine the outcome of each game. The game is designed to return a certain percentage of the amount wagered back to the player (RTP=return to player) over the course of many plays or instances of the game. The RTP and randomness of the RNG are critical to ensuring the fairness of the games and are therefore highly regulated. Upon initiation of play, the RNG randomly determines a game outcome and symbols are then selected which correspond to that outcome. Notably, some games may include an element of skill on the part of the player and are therefore not entirely random.
Embodiments provide a gaming device, a method and gaming system with a changing arrangement of symbol positions for which symbols are selected. The arrangement of symbol positions changes if certain symbols are selected in prior games. A current symbol position state is stored which controls how many symbol positions are active in a given game. If certain symbols are selected, the symbol position state is updated for the next game by adding at least one symbol position so that symbols are selected for more symbol positions in a next game.
An embodiment provides gaming device comprising a display, a processor, and a memory storing (a) a current symbol position state defining, for each of a plurality of columns of symbol positions, a number of symbol positions for which symbols are to be selected; (b) a pay table; and (c) instructions. When the instructions are executed by the processor cause the processor to control the display to display a plurality of columns of symbol positions corresponding to the current symbol position state, select symbols for the displayed symbol positions by selecting stopping positions of a plurality of reel strips, wherein at least one of the reel strips comprises at least one designated symbol, evaluate the selected symbols for winning combinations based on the pay table, and responsive to the selected symbols of a column including a designated symbol, modify the symbol position state for the respective column to include at least one additional symbol position for a next symbol selection.
Another embodiment provides method of operating a gaming device having a display. The method comprises storing a current symbol position state defining, for each of a plurality of columns of symbol positions, a number of symbol positions for which symbols are to be selected, controlling the display to display a plurality of columns of symbol positions corresponding to the current symbol position state, selecting symbols for the displayed symbol positions by selecting stopping positions of a plurality of reel strips, wherein at least one of the reel strips comprises at least one designated symbol, evaluating the selected symbols for winning combinations based on a pay table, and responsive to the selected symbols of a column including a designated symbol, modifying the stored symbol position state for the respective column to include at least one additional symbol position for a next symbol selection.
Another embodiment provides a gaming system comprising a display, one or more processors, and a memory storing (a) a current symbol position state defining, for each of a plurality of columns of symbol positions, a number of symbol positions for which symbols are to be selected; (b) a pay table; and (c) instructions. When the instructions are executed by the one or more processors, they cause the one or more processors to control the display to display a plurality of columns of symbol positions corresponding to the current symbol position state, select symbols for the displayed symbol positions by selecting stopping positions of a plurality of reel strips, wherein at least one of the reel strips comprises at least one designated symbol, evaluate the selected symbols for winning combinations based on the pay table, and responsive to the selected symbols of a column including a designated symbol, modify the symbol position state for the respective column to include at least one additional symbol position for a next symbol selection.
The detailed description presents innovations in user interface (“UI”) features of electronic gaming devices, as well as innovations in features of backend processing to implement the UI features. For example, gaming systems that enable modifying a symbol position state during gameplay (e.g., in a slot-type game) are described. The symbol position state may be modified by determining stopping positions of a plurality of overlay reel strips, each including designated symbols indicating a change in symbol position state for a given column. In exemplary implementations, as the number of symbol positions in a given column changes, different overlay reels (e.g., overlay reels including fewer designated symbols) are used to determine whether to modify the symbol position state. As a result, the probability that any column will grow may be controlled even as the symbol position state for a given column changes. Moreover, in example implementations, prior to beginning each game (e.g., prior to each spin of the slot-type game) a user may select from a plurality of bet options to place on the game. A memory may store symbol position states for each of the selectable bet options and change the current symbol position state to the stored state for the associated selected bet option. As a result, some of the gaming systems described herein inhibit opportunistic betting strategies by players, wherein the player bets low when the number of symbol positions is low and increases their selected bet as the number of symbol positions grow.
Communication between the gaming devices 104A-104X and the server computers 102, and among the gaming devices 104A-104X, may be direct or indirect, such as over the Internet through a website maintained by a computer on a remote server or over an online data network including commercial online service providers, Internet service providers, private networks, and the like. In other embodiments, the gaming devices 104A-104X may communicate with one another and/or the server computers 102 over RF, cable TV, satellite links and the like.
In some embodiments, server computers 102 may not be necessary and/or preferred. For example, the present invention may, in one or more embodiments, be practiced on a stand-alone gaming device such as gaming device 104A, gaming device 104B or any of the other gaming devices 104C-104X. However, it is typical to find multiple EGMs connected to networks implemented with one or more of the different server computers 102 described herein.
The server computers 102 may include a central determination gaming system server 106, a ticket-in-ticket-out (TITO) system server 108, a player tracking system server 110, a progressive system server 112, and/or a casino management system server 114. Gaming devices 104A-104X may include features to enable operation of any or all servers for use by the player and/or operator (e.g., the casino, resort, gaming establishment, tavern, pub, etc.). For example, game outcomes may be generated on a central determination gaming system server 106 and then transmitted over the network to any of a group of remote terminals or remote gaming devices 104A-104X that utilize the game outcomes and display the results to the players.
Gaming device 104A is often of a cabinet construction which may be aligned in rows or banks of similar devices for placement and operation on a casino floor. The gaming device 104A often includes a main door 116 which provides access to the interior of the cabinet. Gaming device 104A typically includes a button area or button deck 120 accessible by a player that is configured with input switches or buttons 122, an access channel for a bill validator 124, and/or an access channel for a ticket printer 126.
In
In many configurations, the gaming machine 104A may have a main display 128 (e.g., video display monitor) mounted to, or above, the gaming display area 118. The main display 128 can be a high-resolution LCD, plasma, LED, or OLED panel which may be flat or curved as shown, a cathode ray tube, or other conventional electronically controlled video monitor.
In some embodiments, the bill validator 124 may also function as a “ticket-in” reader that allows the player to use a casino issued credit ticket to load credits onto the gaming device 104A (e.g., in a cashless ticket (“TITO”) system). In such cashless embodiments, the gaming device 104A may also include a “ticket-out” printer 126 for outputting a credit ticket when a “cash out” button is pressed. Cashless TITO systems are well known in the art and are used to generate and track unique bar-codes or other indicators printed on tickets to allow players to avoid the use of bills and coins by loading credits using a ticket reader and cashing out credits using a ticket-out printer 126 on the gaming device 104A. In some embodiments a ticket reader can be used which is only capable of reading tickets. In some embodiments, a different form of token can be used to store a cash value, such as a magnetic stripe card.
In some embodiments, a player tracking card reader 144, a transceiver for wireless communication with a player's smartphone, a keypad 146, and/or an illuminated display 148 for reading, receiving, entering, and/or displaying player tracking information is provided in EGM 104A. In such embodiments, a game controller within the gaming device 104A can communicate with the player tracking server system 110 to send and receive player tracking information.
Gaming device 104A may also include a bonus topper wheel 134. When bonus play is triggered (e.g., by a player achieving a particular outcome or set of outcomes in the primary game), bonus topper wheel 134 is operative to spin and stop with indicator arrow 136 indicating the outcome of the bonus game. Bonus topper wheel 134 is typically used to play a bonus game, but it could also be incorporated into play of the base or primary game.
A candle 138 may be mounted on the top of gaming device 104A and may be activated by a player (e.g., using a switch or one of buttons 122) to indicate to operations staff that gaming device 104A has experienced a malfunction or the player requires service. The candle 138 is also often used to indicate a jackpot has been won and to alert staff that a hand payout of an award may be needed.
There may also be one or more information panels 152 which may be a back-lit, silkscreened glass panel with lettering to indicate general game information including, for example, a game denomination (e.g., $0.25 or $1), pay lines, pay tables, and/or various game related graphics. In some embodiments, the information panel(s) 152 may be implemented as an additional video display.
Gaming devices 104A have traditionally also included a handle 132 typically mounted to the side of main cabinet 116 which may be used to initiate game play.
Many or all the above described components can be controlled by circuitry (e.g., a gaming controller) housed inside the main cabinet 116 of the gaming device 104A, the details of which are shown in
Note that not all gaming devices suitable for implementing embodiments of the present invention necessarily include top wheels, top boxes, information panels, cashless ticket systems, and/or player tracking systems. Further, some suitable gaming devices have only a single game display that includes only a mechanical set of reels and/or a video display, while others are designed for bar counters or table tops and have displays that face upwards.
An alternative example gaming device 104B illustrated in
Example gaming device 104B includes a main cabinet 116 including a main door 118 which opens to provide access to the interior of the gaming device 104B. The main or service door 118 is typically used by service personnel to refill the ticket-out printer 126 and collect bills and tickets inserted into the bill validator 124. The door 118 may also be accessed to reset the machine, verify and/or upgrade the software, and for general maintenance operations.
Another example gaming device 104C shown is the Helix™ model gaming device manufactured by Aristocrat® Technologies, Inc. Gaming device 104C includes a main display 128A that is in a landscape orientation. Although not illustrated by the front view provided, the landscape display 128A may have a curvature radius from top to bottom, or alternatively from side to side. In some embodiments, display 128A is a flat panel display. Main display 128A is typically used for primary game play while secondary display 128B is typically used for bonus game play, to show game features or attraction activities while the game is not in play or any other information or media desired by the game designer or operator.
Many different types of games, including mechanical slot games, video slot games, video poker, video black jack, video pachinko, keno, bingo, and lottery, may be provided with or implemented within the depicted gaming devices 104A-104C and other similar gaming devices. Each gaming device may also be operable to provide many different games. Games may be differentiated according to themes, sounds, graphics, type of game (e.g., slot game vs. card game vs. game with aspects of skill), denomination, number of paylines, maximum jackpot, progressive or non-progressive, bonus games, and may be deployed for operation in Class 2 or Class 3, etc.
Alternatively, a game instance (i.e. a play or round of the game) may be generated on a remote gaming device such as a central determination gaming system server 106 (not shown in
The gaming device 200 may include a topper display 216 or another form of a top box (e.g., a topper wheel, a topper screen, etc.) which sits above main cabinet 218. The gaming cabinet 218 or topper display 216 may also house a number of other components which may be used to add features to a game being played on gaming device 200, including speakers 220, a ticket printer 222 which prints bar-coded tickets or other media or mechanisms for storing or indicating a player's credit value, a ticket reader 224 which reads bar-coded tickets or other media or mechanisms for storing or indicating a player's credit value, and a player tracking interface 232. The player tracking interface 232 may include a keypad 226 for entering information, a player tracking display 228 for displaying information (e.g., an illuminated or video display), a card reader 230 for receiving data and/or communicating information to and from media or a device such as a smart phone enabling player tracking. Ticket printer 222 may be used to print tickets for a TITO system server 108. The gaming device 200 may further include a bill validator 234, buttons 236 for player input, cabinet security sensors 238 to detect unauthorized opening of the cabinet 218, a primary game display 240, and a secondary game display 242, each coupled to and operable under the control of game controller 202.
Gaming device 200 may be connected over network 214 to player tracking system server 110. Player tracking system server 110 may be, for example, an OASIS® system manufactured by Aristocrat® Technologies, Inc. Player tracking system server 110 is used to track play (e.g. amount wagered, games played, time of play and/or other quantitative or qualitative measures) for individual players so that an operator may reward players in a loyalty program. The player may use the player tracking interface 232 to access his/her account information, activate free play, and/or request various information. Player tracking or loyalty programs seek to reward players for their play and help build brand loyalty to the gaming establishment. The rewards typically correspond to the player's level of patronage (e.g., to the player's playing frequency and/or total amount of game plays at a given casino). Player tracking rewards may be complimentary and/or discounted meals, lodging, entertainment and/or additional play. Player tracking information may be combined with other information that is now readily obtainable by a casino management system.
Gaming devices, such as gaming devices 104A-104X, 200, are highly regulated to ensure fairness and, in many cases, gaming devices 104A-104X, 200 are operable to award monetary awards (e.g., typically dispensed in the form of a redeemable voucher). Therefore, to satisfy security and regulatory requirements in a gaming environment, hardware and software architectures are implemented in gaming devices 104A-104X, 200 that differ significantly from those of general-purpose computers. Adapting general purpose computers to function as gaming devices 200 is not simple or straightforward because of: 1) the regulatory requirements for gaming devices 200, 2) the harsh environment in which gaming devices 200 operate, 3) security requirements, 4) fault tolerance requirements, and 5) the requirement for additional special purpose componentry enabling functionality of an EGM. These differences require substantial engineering effort with respect to game design implementation, hardware components and software.
When a player wishes to play the gaming device 200, he/she can insert cash or a ticket voucher through a coin acceptor (not shown) or bill validator 234 to establish a credit balance on the gamine machine. The credit balance is used by the player to place wagers on instances of the game and to receive credit awards based on the outcome of winning instances. The credit balance is decreased by the amount of each wager and increased upon a win. The player can add additional credits to the balance at any time. The player may also optionally insert a loyalty club card into the card reader 230. During the game, the player views the game outcome on the game displays 240, 242. Other game and prize information may also be displayed.
For each game instance, a player may make selections, which may affect play of the game. For example, the player may vary the total amount wagered by selecting the amount bet per line and the number of lines played. In many games, the player is asked to initiate or select options during course of game play (such as spinning a wheel to begin a bonus round or select various items during a feature game). The player may make these selections using the player-input buttons 236, the primary game display 240 which may be a touch screen, or using some other input device which enables a player to input information into the gaming device 200. In some embodiments, a player's selection may apply across a plurality of game instances. For example, if the player is awarded additional game instances in the form of free games, the player's prior selection of the amount bet per line and the number of lines played may apply to the free games. The selections available to a player will vary depending on the embodiment. For example, in some embodiments a number of pay lines may be fixed. In other embodiments, the available selections may include different numbers of ways to win instead of different numbers of pay lines.
During certain game events, the gaming device 200 may display visual and auditory effects that can be perceived by the player. These effects add to the excitement of a game, which makes a player more likely to enjoy the playing experience. Auditory effects include various sounds that are projected by the speakers 220. Visual effects include flashing lights, strobing lights or other patterns displayed from lights on the gaming device 200 or from lights behind the information panel 152 (
When the player is done, he/she cashes out the credit balance (typically by pressing a cash out button to receive a ticket from the ticket printer 222). The ticket may be “cashed-in” for money or inserted into another machine to establish a credit balance for play.
In order to implement this feature, at step 510, the processor 204 retrieves the symbol position state from memory 208 based on the received bet option. Examples of symbol position states are illustrated in
At step 515, processor controls display 240 to display plurality of columns of symbol positions corresponding to the current symbol position state. Referring briefly to
In an example embodiment of the invention, symbols are selected for the symbol positions from two types of reel strips: base reel strips and overlay reel strips, where the overlay reels strips carry the designated symbols that can cause the symbol position state to be changed. In other embodiments, symbols can be selected from a single set of reel strips that includes the designated reel symbols, however, the mechanism employing overlay reel strips has the advantage of enabling more fine-grained control over the probability of growth of the number of symbol positions.
At step 450, the processor 204 maps symbols of the nth base reel strip to an nth column of symbol positions based on the mapped reel position and a reference position. In an example, the reference position is the bottom position of the symbol positions of each column of symbol positions, for example, corresponding to row 821 in
At step 460, the processor 204 determines whether symbols have been selected for all of the base reel strips, and if not the processor reverts to step 420 and iterates through steps 430, 440 and 450 until it is determined at step 460 that symbols have been selected from all n base reel strips and mapped to all n columns of symbol positions after which the symbol selection process ends 470. Different numbers of symbols may be mapped to different numbers of symbol positions.
At step 521 the processor 204 determines whether all columns of symbol positions have reached their maximum height because if they have, there is no need to for processor 204 to determine whether they should grow further, and hence no need for processor to conduct steps 522 or 525 because as will be apparent from the following description, the mechanism for deciding whether to grow the reels is dependent on use of set of overlay reels. If the columns have reached the maximum height, the processor proceeds directly to step 530 and displays the selected symbols.
If the columns of symbols are not determined to be at their maximum height at step 521, then at step 522, the processor 204 sets the overlay reels to be used of set of overlay reels stored in memory 208 based on the symbol position state. In an embodiment, a plurality of different overlay reels are used and they are individually selectable for each column.
In
Referring to
At step 750, the processor maps symbols of the mth overlay reel to an (m+1)th symbol positions based on the reel position and a reference position. The processor 204 maps symbols to the (m+1)th symbol position because there is no overlay strip that corresponds to the first column 811. That is, to ensure correct registration between the overlay reel strips and the underlying symbol positions.
In an example, the reference position is the bottom position of the symbol positions of each column symbol positions, for example corresponding to row 821 in
At step 760, the processor 204 checks whether the counter equals the number of overlay reel strips (here 3) and if it does, the process ends 770. If not the process returns to step 720 and iterates through the steps. If, for example, in the second iteration, the symbol at reel strip position 611 of reel two 623 is selected at step 740, the “Grow 1” symbol 663 will be mapped to the bottom symbol position of the third column 813 with blank symbols being mapped to those above. In this example, the “Grow 1” symbol will be displayed in superposition over the symbol selected at step 520 for this position.
In an example, the symbol from the overlay reel may completely replace the underlying symbol. In another example, if the underlying symbol contributes to a win or falls into a designated category, for example such as a scatter symbol that forms part of a trigger condition, then processor 204 control display of the symbols so that display alternates between the overlay symbol and the underlying base symbol.
A reason for modifying the overlay reels is to control the rate of growth of the columns of symbols. It will be appreciated that if the same reels were used, for example the reels of
It will also be appreciated that there are more symbol positions to populate as the columns grow. Thus during the mapping process performed by processor 204 at step 750 is based on the number of symbol positions. For example, if for the fourth column of symbol positions 814, the symbol selected to be mapped to the bottom symbol position of the column from overlay reel 3 624 is the blank symbol 674, then the three symbols above it, i.e. blank symbols 672, 673 and designated symbol 671 would be mapped to the symbol positions of the fourth column, such that the designated symbol 671 would be displayed at the symbol position in the fourth row 824.
Returning to
At step 545, the processor evaluates the displayed symbols based on a pay table. In an embodiment of the invention, the evaluation mechanism is a reel power mechanism where all symbol positions of any one column can be combined with the symbol positions of other column positions and the symbols are evaluated from left to right. It is advantageous to use a reel power type evaluation because there is no need to add additional win lines when additional symbol positions are added. It will be appreciated that the added symbol positions provide the player with additional opportunities to obtain a winning combination. For example, with the initial five by three array of symbol positions shown in
After the symbols are evaluated at step 545, the processor 204 determines at step 550 whether there is a Grow 1 symbol at any of the symbol positions and if so adds one symbol position step 555. An example of a Grow 1 symbol is symbol 852 in
At step 560 the processor determines whether there is a Grow 2 symbol. That is whether there is the secondary category of designated symbol. An example of the second class of designated symbol is symbol 878 shown in column 3 813 in
In order to provide a mechanism by which the number of symbol positions in a column can reduce, if the column reaches a maximum height as determined at step 570, the processor 204 sets 575 a column counter specific to the column to monitor a number of games that will be conducted with the column at the maximum height before it is reset to its initial height. In one example illustrated in the example before the counter is set to 3 at step 575.
At step 580 the processor decreases any counters that are pending by one and at step 585, the processor determines whether any column counter has reached zero. If it has at step 582 the processor resets the symbol position state in respect of that column, such that for the next game the column will be set to its initial state.
At step 590, the game ends. In this respect, in the context of the embodiment, a reference to a game ending is used to apply both to the end of a paid game and to the end of any awarded free games and hence the flow chart 500 shows different starting points for a next free game 594 and a next paid game 592.
In one example, a number of free games may be awarded by processor 204, for example in response to a trigger condition such as a particular symbol combination appearing during a paid game.
In this example, as the set of symbol positions can change dynamically during any game if there is a next free game 594 after game ends 590, the processor 204 returns to step 515 and controls the display based on the current symbol position state which could include any modifications that occurred in the prior game. Accordingly, if there are a series of free games awarded as part of playing the game, the processor 204 iterates through each of the free games and the symbol position state used in any individual free game will take into account any symbol positions the processor 204 added or reset during the prior free games.
Where the next game is paid game 592, then the processor 204 reenters the process at step 505 by receiving a bet option in respect of the next paid game. This enables the symbol position state to be retrieved based on the current bet option in that is being made. Thus, avoiding a player from betting higher once symbol positions with improved chance of winning have been established. In some examples, there may be a time period after which the symbol positions reset. For example, if the gaming machine is inactive for a defined period.
In other embodiments, the processor 204 may determine whether a player has been identified at the gaming machine and for example by obtaining a player identifier entered by the player. For example, using a player tracking card. In such an embodiment, when the player removes their player tracking card, the symbol position state of the gaming machine may be reset.
A number of other variations may be made in other example embodiments. For example, rather than the separate base and overlay reels being used, in other embodiments, the designated symbols could be located on the base reels. As indicated above, this is not as advantageous as where overlay reels are used because the overlay reels allow for independent control of the probability of the symbol positions being added to any one of the columns and symbol positions.
In such embodiments, should a grow symbol appear on a reel that has reached a maximum height, an alternative award can be made such as an extra game at the free height or a reset of the counter.
In an example embodiment of the invention, it is advantageous that a ratio between the first category of designated symbols (Grow 1) that add one symbol position and the second category of symbols (Grow 2) that adds sufficient symbol positions for the columns to grow to their maximum height is in the range of 1-15 to 1-25 and preferably about 1-20. This ratio ensures that the column height increases incrementally much more often than it does sharply.
It will also be appreciated that while it has been described that the two set of overlay reels that have been described in
As indicated above, in other embodiments there may not be both maximum growth and single position growth symbols. In alternatives there could just be single position growth in response to a designated symbol or individual designated symbols could specify the number of symbols to be added. Further overlay reels of different columns could have different designated columns.
An example embodiment is described in relation to
If players cannot understand a game they tend to stop playing the game. Conversely, the more quickly the player can understand how the game operates, the more likely they are to persist with playing with it. Further, in the present game where a symbol state is retained from game to game including between, paid games in some examples, it is important that the player is aware of the current state of the game in order to inform their decision as to whether they wish to play an additional game.
Referring to
Accordingly, the display in
As shown in
Following the explosion and as shown in
In
As shown in
A special transformation animation 873 is displayed in
An oversized wild symbol 875 is displayed in
In
While the invention has been described with respect to the figures, it will be appreciated that many modifications and changes may be made by those skilled in the art without departing from the spirit of the invention. Any variation and derivation from the above description and figures are included in the scope of the present invention as defined by the claims.
Number | Date | Country | Kind |
---|---|---|---|
2019201024 | Feb 2019 | AU | national |
This application is a continuation of and claims priority to U.S. patent application Ser. No. 16/773,530, filed Jan. 27, 2020, and entitled “GAMING DEVICE WITH A CHANGING ARRANGEMENT OF SYMBOL DISPLAY POSITIONS,” which claims priority from Australian Application No. 2019201024 entitled “GAMING DEVICE WITH A CHANGING ARRANGEMENT OF SYMBOL DISPLAY POSITIONS” filed on Feb. 14, 2019, the contents and disclosures of each of which are hereby incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
6120377 | McGinnis, Sr. | Sep 2000 | A |
6123333 | McGinnis, Sr. | Sep 2000 | A |
6305686 | Perrie | Oct 2001 | B1 |
6336860 | Webb | Jan 2002 | B1 |
6508469 | Promutico | Jan 2003 | B2 |
6520856 | Walker | Feb 2003 | B1 |
6932340 | Schaefer | Aug 2005 | B1 |
6932700 | Bennett | Aug 2005 | B2 |
7210997 | Hughs-Bair | May 2007 | B2 |
7624986 | Nicely | Dec 2009 | B2 |
8556699 | Kato | Oct 2013 | B2 |
8795048 | Schaefer | Aug 2014 | B2 |
8795059 | Aoki | Aug 2014 | B2 |
9189926 | Hallerbach | Nov 2015 | B2 |
10102710 | Boese | Oct 2018 | B2 |
10186107 | Kitamura | Jan 2019 | B2 |
10255751 | Boese | Apr 2019 | B2 |
10332334 | Bolling, Jr. | Jun 2019 | B2 |
11257327 | Sanborn | Feb 2022 | B1 |
11551514 | Indrakumar | Jan 2023 | B2 |
20010034264 | Berman | Oct 2001 | A1 |
20050159208 | Pacey | Jul 2005 | A1 |
20060116194 | Pacey | Jun 2006 | A1 |
20070060293 | Svanas | Mar 2007 | A1 |
20070060299 | Nelson | Mar 2007 | A1 |
20070191084 | Tarantino | Aug 2007 | A1 |
20080064477 | Fong | Mar 2008 | A1 |
20080108411 | Jensen | May 2008 | A1 |
20090137309 | Thomas | May 2009 | A1 |
20110045906 | Berman | Feb 2011 | A1 |
20120115606 | Seelig | May 2012 | A1 |
20130065663 | Johnson | Mar 2013 | A1 |
20150379831 | Lee | Dec 2015 | A1 |
20160140799 | Berman | May 2016 | A1 |
20170154499 | Lange | Jun 2017 | A1 |
20170236383 | Nakamura | Aug 2017 | A1 |
20170365127 | Zoble | Dec 2017 | A1 |
20180025585 | Schmidt | Jan 2018 | A1 |
20190130696 | Compton | May 2019 | A1 |
20190156633 | Halvorson | May 2019 | A1 |
20200250923 | Ceniceroz | Aug 2020 | A1 |
Entry |
---|
Office Action (Non-Final Rejection) dated Dec. 21, 2021 for U.S. Appl. No. 16/850,704 (pp. 1-11). |
Office Action (Non-Final Rejection) dated May 24, 2022 for U.S. Appl. No. 16/850,704 (pp. 1-13). |
Office Action (Non-Final Rejection) dated Mar. 28, 2022 for U.S. Appl. No. 16/773,530 (pp. 1-21). |
Office Action (Final Rejection) dated Dec. 6, 2022 for U.S. Appl. No. 16/850,704 (pp. 1-12). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Aug. 25, 2022 for U.S. Appl. No. 16/773,530 (pp. 1-7). |
Office Action (Non-Final Rejection) dated Apr. 12, 2023 for U.S. Appl. No. 16/850,704 (pp. 1-15). |
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Oct. 24, 2023 for U.S. Appl. No. 16/850,704 (pp. 1-8). |
Number | Date | Country | |
---|---|---|---|
20230107038 A1 | Apr 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16773530 | Jan 2020 | US |
Child | 18061971 | US |