Embodiments of this invention are related to computer gaming and more specifically to audio headsets used in computer gaming.
Many video game systems make use of a headset for audio communication between a person playing the game and others who can communicate with the player's gaming console over a computer network. Many such headsets can communicate wirelessly with a gaming console. Such headsets often contain a microphone and speakers that are power by a battery and wireless transceivers. If the gaming headset battery goes down, the game could go down. To permit charging of the battery during play many headsets make use of a charging mechanism such as a charging cradle or Universal Serial Bus (USB) port. However, for safety reasons it is undesirable to use a USB charger on a gaming headset during use. Charging the headset battery with the charging cradle is generally safer since it keeps the headset away from the user's head during charging. However, placing the headset in a charging cradle generally makes the headset microphone and speakers unavailable to the user during charging.
It is within this context that embodiments of the present invention arise.
The teachings of the present invention can be readily understood by considering the following detailed description in conjunction with the accompanying drawings, in which:
Although the following detailed description contains many specific details for the purposes of illustration, anyone of ordinary skill in the art will appreciate that many variations and alterations to the following details are within the scope of the invention. Accordingly, examples of embodiments of the invention described below are set forth without any loss of generality to, and without imposing limitations upon, the claimed invention.
A according to an embodiment of the present invention an audio headset 100 may be configured as shown in
The headset 100 may include a first audio signal interface 105 coupled to the near-field microphone 106 and a second audio signal interface 107 coupled to the far-field microphone 108. In addition, a third audio signal interface 109 may be coupled to the headset speaker 110 and processor 102. The audio interfaces 105, 107 and 109 may be configured to facilitate transfer of audio signals, in digital or analog form, between the headset 100 and the console device 130 via a console interface 131. One or more of the audio interfaces 105, 107, 109 and the console interface 131 may be wireless interfaces, e.g., implemented according to a personal area network standard, such as the Bluetooth standard. In some embodiments, the functions of all three interfaces 105, 107, 109 may be implemented by a single component coupled to the processor 102.
A rechargeable battery 112 may be mounted to the case 101 and coupled to the processor 102, memory 104, near-field microphone 106, far-field microphone 108 and headset speaker 110 to provide electrical power to these components. The battery 112 may be charged through one or more charging interfaces including a cradle charging interface 114 and one or more alternative charging interfaces 116, such as a Universal Serial Bus (USB) interface. To facilitate charging the battery in accordance with embodiments of the invention, the headset 100 may include a cradle detection circuit 118 mounted to the case 101 and coupled to the processor 102. The cradle detection circuit 118 may be configured to electrically contact a corresponding interface 119 on the cradle 111. By way of example, the cradle detection circuit 118 may include two electrodes that form an open circuit when the headset 100 is not in the cradle 111. The cradle may include a corresponding electrode that closes the circuit when the headset is placed in the cradle. The cradle 111 may be connected to a power source, such as a wall outlet so that electrical current may flow from an interface 115 on the cradle 111 through the cradle interface 114 on the headset 100 to charge the battery 112. The headset 100 may optionally include a power switch 113 coupled to the battery 112 to permit the user to manually turn the headset on and off.
To facilitate charging of the battery 112, the processor may execute software 120, which may be stored in the memory 104. The software 120 may include a set of processor-executable instructions that are configured, when executed on the processor 102 to implement a method 200 for charging the battery 112 in accordance with an embodiment of the present invention. The method 200 may be understood by referring simultaneously to
After the software 120 detects that the headset has been placed in the cradle, the software may then shut off the headset 100, including the near-field microphone 106, far-field microphone 108 and headset speaker 110 in response to detecting placement of the headset in the charging cradle, as indicated at 204. In some embodiments, the power switch 113 may be coupled to both the battery 112 and the processor 102. The software 120 and power switch 113 may be configured to permit a user to turn on the headset after the power has been turned off at 204. After the power has been turned off at 204, far-field microphone 108 may then be turned on but not the near-field microphone 106, as indicated at 206, and the battery 112 may be charged with the charging cradle 111 as indicated at 208. This allows the user transmit speech to the console 130 through the far-field microphone while the headset battery is being charged on the cradle 111.
After the headset has been shut off, the software 120 may optionally route audio signals for the headset speaker 110 to a remote speaker that is not part of the headset, as indicated at 207. By way of example, the remote speaker may be a speaker 142 associated with the audio-visual monitor 140, e.g., a television speaker. This allows the user to receive audio from the console 130 while the headset battery 112 is charging on the cradle 111. The routing of the audio signals to the remote speaker 142 may be implemented in whole or in part by the software 136 running on the processor 132 in the console device 130.
Using an apparatus and method of the type described above, when a headset battery is low—the console device 130 may notify the user visually and audibly. The user can place headset 100 on the cradle 111. The headset goes into a charging mode after shutting down. The user can turn on headset while it is in cradle using the power switch 113. The headset can detect that it is in the cradle without USB connection using the cradle detection circuit 118. During the charging mode, the headset may perform functions such as establishing a wireless connection to the console device 130 (e.g., Bluetooth pairing).
An apparatus and method involving a headset with both a near-field and far-field microphone may use differentiation between audio signal strength at near-field and far-field microphones to distinguish between user speech and competing speech. User speech is strong at both microphones. Other speech and sounds are only strong at the far-field microphone. By way of example, according to an alternative embodiment shown in
The headset 300 may be used in conjunction with a method 400 for distinguishing between user speech and competing sounds according to an embodiment of the present invention. By way of example and without limitation, the method 400 may be implemented by software 320 running on a processor 332 that is part of the console device 330. The software 320 may be stored in a memory 334 coupled to the console processor 332. Alternatively, the software 320 may be implemented on a processor and memory that are part of the headset 300.
The method 400 may be understood by referring simultaneously to
While the above is a complete description of the preferred embodiment of the present invention, it is possible to use various alternatives, modifications and equivalents. Therefore, the scope of the present invention should be determined not with reference to the above description but should, instead, be determined with reference to the appended claims, along with their full scope of equivalents. Any feature described herein, whether preferred or not, may be combined with any other feature described herein, whether preferred or not. In the claims that follow, the indefinite article “A” or “An” refers to a quantity of one or more of the item following the article, except where expressly stated otherwise. The appended claims are not to be interpreted as including means-plus-function limitations, unless such a limitation is explicitly recited in a given claim using the phrase “means for”.