This invention relates to a gaming intelligence system and method for correlating game and player information from independent information sources.
Many conventional gaming machines have two separate systems for collecting operational data. The first collects transaction information and player information. The second collects transaction information and game information. The transactional information typically includes game plays, amounts paid in (Coin In), amounts paid out (Coin Out) and Jackpots.
To date it has not been possible to relate game information to players. This would be useful for marketing purposes and to optimize gaming operations including machine layout and gaming machine operation.
It is an object of the invention to provide a gaming intelligence system and method that provides such functionality or to at least provide the public with a useful choice.
According to one exemplary embodiment there is provided a method of correlating player and game information from two sets of gaming information obtained from a plurality of gaming machines wherein a first set of information includes player information and transactional information and a second set of information includes game information and transactional information wherein by optimizing an allocation of transactional information using a goodness measure correlations between player information and game information are obtained.
According to another exemplary embodiment there is provided a gaming intelligence system comprising:
It is acknowledged that the terms “comprise”, “comprises” and “comprising” may, under varying jurisdictions, be attributed with either an exclusive or an inclusive meaning. For the purpose of this specification, and unless otherwise noted, these terms are intended to have an inclusive meaning—i.e. they will be taken to mean an inclusion of the listed components which the use directly references, and possibly also of other non-specified components or elements.
Reference to any prior art in this specification does not constitute an admission that such prior art forms part of the common general knowledge.
The accompanying drawings which are incorporated in and constitute part of the specification, illustrate embodiments of the invention and, together with the general description of the invention given above, and the detailed description of exemplary embodiments given below, serve to explain the principles of the invention.
Referring to
Data from the monitoring units 1a to 6a and 1b to 6b is supplied over a communications network 8 (that may be wired or wireless) to a data analysis system 7. Data analysis system 7 may determine precise or optimized correlations between players and games played. The term “correlation” in this specification refers to associations between players and games and not necessarily a statistical relationship.
The method of the invention will be illustrated by way of example. In the example the actual data is as shown in Table 1 below but this information is not available in the gaming systems to which this invention is directed.
The actual data available is that from monitoring units 1a to 6a relating to player and transactional data as shown in table 2 below and that from monitoring units 1b to 6b relating to game and transactional data as shown in table 3 below.
Tables may then be compiled providing an initial allocation of games to players for each field of transaction information. Tables 4 to 6 show such tables for Games, Coin In and Coin Out. The tables 4 to 6 include totals from tables 2 and 3 and error values for each row and column representing the difference between the totals row or column and the sum of the table values in the row or column.
The initial table values may be allocated in a number of ways including:
Error values are calculated after the tables are populated.
Table 4 has been populated using the Easy allocation method. The totals 8, 11 and 5 are obtained from the first column of table 2. The totals 15, 15 and 9 are obtained from first column of able 3. The first table cell to filled using the Easy allocation method is the Alice:Keno cell. From table 2 it is known that Alice has had 8 game plays and so these are all allocated to this cell. The next cell is the Bob:Keno cell and although Bob has had 11 game plays only 7 are available in view of the total of 15 for the row. As the total row value has been reached all remaining row values must be zero.
Populating the next row the Alice:Video Poker cell must be zero as Alice's entire column total has been used above. The Bob:Video Poker cell is populated with 4—being the remainder that Bob has available. The Charles:Video Poker cell is populated with 5 being the maximum he has available. The remaining values must all be zero as all players values have been allocated. The error values are then calculated. The same method is used to populate tables 5 and 6.
A first iteration is then processed. One preferred method is to identify a non zero value and consider a swap of the value or a portion of the value with another cell that is not in the same row or column. Applying a “greedy” approach the largest values may be assessed first. Alternatively using a “maximum descent” approach all possible swaps may be evaluated in each iteration. Whilst a single swap is described for each iteration swaps may affect more than a pair of cells.
In this example we swap the entries for Alice:Keno & Bob:Video Poker. This swap will move 4 in Games table 4, 21 in Coin In table 5, and 0 in Coin Out table 6. These are the minimum of the values in both selected records. Alice:Keno decreases by 4, 21, 0; Bob:Video Poker decreases by 4, 21, 0; Alice:Video Poker increases by 4, 21, 0; and Bob:Keno increases by 3, 21, 0. The values after this iteration are shown in table 7.
This swap increases sparsity by one, as the record in Bob, Video Poker is now zero.
Each swap is evaluated to see if it is beneficial or detrimental to a goodness measure. A range of possible goodness measures may be employed but a preferred goodness measure is a weighted combination of factors. One preferred goodness measure includes sparsity and Coin In: Coin Out ratios. It has been found that incentivizing sparsity in the goodness measure assists in driving rapid convergence as well as producing solutions with lower dimensionality that may be more usable.
The weightings may be dependent upon the usage of output information. Greater sparsity may be better where clear trends are desired whereas Coin In: Coin Out ratio may be emphasised where greater accuracy is desired. The weightings may also change during processing—for example emphasising sparsity at the beginning and Coin In: Coin Out ratio towards the end.
A swap satisfying the goodness measure may be retained and one that fails may be rejected and the previous tables reinstated. Processing then goes on to a further iteration (i.e. the next swaps) as outlined above.
The goodness measure may undergo annealing as iterations progress—i.e. a higher level of goodness may be required for a swap to be accepted in later stages of processing. The initial level may in fact be low enough to ensure that a wide range of possible solution paths are explored in early iteration.
In order to consider a wide range of possible solution paths a “Shotgun” approach may be employed where periodically the result at a certain stage of processing is saved and the tables are all re-initialised (Preferably using the Random population technique in paragraph 3 above). By doing this a number of times the possible solution space may be better explored. The values obtained at the end of each processing cycle may be compared to select the result best satisfying the goodness measure. This result may go through further iterations until convergence is achieved.
There is thus provided a method and system enabling the correlation of player and game information via matching of transaction information. Using sparsity as a measure of goodness emphasizes key correlations and drives solution by reducing entries and avoiding data spread.
While the present invention has been illustrated by the description of the embodiments thereof, and while the embodiments have been described in detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details, representative apparatus and method, and illustrative examples shown and described. Accordingly, departures may be made from such details without departure from the spirit or scope of the applicant's general inventive concept.
This application claims benefit of U.S. Provisional Ser. No. 61/707,433, filed 28 Sep. 2012 and which application is incorporated herein by reference. To the extent appropriate, a claim of priority is made to the above disclosed application.
Number | Name | Date | Kind |
---|---|---|---|
20030078101 | Schneider | Apr 2003 | A1 |
20030109307 | Boyd | Jun 2003 | A1 |
20070243928 | Iddings | Oct 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20140171181 A1 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
61707433 | Sep 2012 | US |