A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.
1. Field of the Invention
The present invention is directed to wagering games, gaming machines, networked gaming systems and methods and, more particularly, to wagering games, gaming machines, networked gaming systems and methods having a simulated musical interface.
2. Description of the Related Art
Gaming devices such as casino gaming devices, e.g. slot machines, have been popular for over a century. In general, a gaming machine allows a player to play a game in exchange for a wager. Depending on the outcome of the game, the player may be entitled to an award which is paid to the player by the gaming machine, normally in the form of currency or game credits. Gaming machines may include flashing displays, lighted displays, or sound effects to capture a player's interest in a gaming device.
Initially such devices were mechanical devices presenting one or more mechanical spinning reels to randomly select and display winning or losing outcomes at a single pay line. Modernly such devices are computer controlled and some include video displays, electromechanical stepper controlled physical reels or combinations thereof. Typically these devices display game features of a base game and perhaps one or more bonus or secondary games. For example, for a video device, the game may present a base game depicting video images of five reels each with three display positions, i.e. coordinates producing a 3×5 matrix of positions for symbols. One or more pay lines are provided. Under control of the computer processor the video display depicts the reels spinning and stopping to arrange the game symbols in the matrix and where a predetermined winning combination of symbols is obtained on a wagered upon (i.e. enabled) pay line or pay arrangement the player receives a prize. Of course the foregoing description should not be deemed to be limiting since awards may be issued for symbols scattered in the matrix, i.e. a “scatter pay” and some symbols may trigger additional features such as a secondary game.
Some gaming machine games today include one or more progressive prize awards. In some configurations, the progressive prize may have a small probability of a player winning it; thus making it possible to have a larger progressive prize. In other game configurations, the progressive prize may be a small amount; thus allowing the player patron to win the progressive prize more frequently. In most typical game configurations, the player wins the progressive prize as a result of a specific game outcome within the primary or main game.
Another important feature of maintaining player interest in a gaming machine includes providing the player with many opportunities to win awards, such as cash or prizes. For example, in some slot machines, the display windows show more than one adjacent symbol on each reel, thereby allowing for multiple-line betting. Feature games of various types have been employed to reward players above the amounts normally awarded on a standard game pay schedule. Generally, such feature games are triggered by predetermined events such as one or more appearances of certain combinations of indicia in a primary game. In order to stimulate interest, feature games are typically set to occur at a gaming machine on a statistical cycle based upon the number of primary game plays. Feature games may include free spins of the base game, alteration of the base game for a number of spins, e.g. making one or more symbols wild or altering the symbol sets for the reels, a game where a player makes selections to reveal one or more prizes or otherwise interacts with a game feature to produce, or try to produce, an additional award. These different features to captivate and maintain player interest.
While gaming machines including feature games with wild symbols have been successful, there remains a need for such feature games that provide players with enhanced excitement. In particular, there remains a need for a game in which a player is awarded wild symbols in a new and entertaining way.
In accordance with one or more embodiments, a method of operating a wagering game for a gaming machine including a non-transitory memory device and executed by a processor of the gaming machine includes the steps of initializing a tally; presenting a plurality of games comprising spinning one of more symbol-bearing reels to produce a game outcome and, for each special symbol displayed as part of the game outcome, incrementing the tally. Upon conclusion of the presentation of the plurality of games, the steps further include presenting an additional game outcome including spinning the one of more symbol-bearing reels to produce an additional game outcome, wherein, one or more of the symbols displayed as part of the additional outcome is replaced by one or more wild symbols, the number of symbols replaced by wild symbols determined by the tally.
In accordance with one or more other embodiments, a method of operating a wagering game for a gaming machine including a non-transitory memory device and executed by a processor of the gaming machine includes the steps of presenting a plurality of games, each of the plurality of games including designating a symbol as a designated symbol and spinning one of more symbol-bearing reels to produce a game outcome and, for each designated symbol displayed as part of the game outcome, treating that symbol as a wild symbol in evaluating the game outcome for any winning combinations of symbols; and retaining the wild characteristic of the designated symbol for all subsequent games in the plurality of games.
Other features and advantages will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, which illustrate by way of example, the features of the various embodiments.
Referring now to the drawings, and more particularly to
In accordance with one embodiment, the player may play up to four base games simultaneously, as illustrated by
In particular,
In accordance with another embodiment, the placement of wild symbols may be restricted to a particular area of the reels, for example, only on reels 2-5. This creates a situation in which it is no longer advantageous to collect additional special symbols. In the example game of the illustrations, reels 2-5 provide a maximum of 12 locations which can randomly receive a wild symbol. Once a maximum of 12 special symbols have been tallied, no additional “frog symbols” are tallied (
In accordance with one or more embodiments of the invention, progressive prizes may be awarded as part of game play. In one or more embodiments, one or more triggering events may award one or more progressive prizes. In some embodiments, these events are tied to game outcomes. In other embodiments, these events may be “mystery” events (
In one or more embodiments, the prizes for feature game play may be accumulated based on funding mechanisms other than a percentage of wagers accumulated by the gaming machine. For example, an operator may initially fund various award pools with a pre-determined amount of money, such as $1000 for one progressive, $500 for a second progressive, $100 for a third progressive and so on. Subsequently, the casino operator may determine to increase the amounts of one or more of the awards at pre-determined times which may be periodically or randomly selected with a range of times or periods. Once a winner has occurred at any level, the award levels may be rolled back to the initial funding level. In one or more embodiments, only the winning award level is rolled back to the initial funding level.
In one or more embodiments, the prizes for feature game play may be set amounts, i.e. non-progressive. In one or more embodiments, the algorithms to determine the amounts may be determined by a statistical percentage based on an average take of a gaming machine and the likelihood of the win over a period of time. In the case where one or more gaming machines are networked, a common award table may be utilized where the award algorithms are determined based on an average take (total wagers) of all the networked gaming machines and the likelihood of a win of an award over a period of time. Each award may be calculated in a similar manner based on the likelihood of a winning outcome being achieved during a game play session.
In accordance with other embodiments providing wild symbols to a player, as illustrated by
In other embodiments, each spin of the bonus may be associated with a particular type of symbol. For example, all “Bars”, all “7's” or all symbols that contain a certain marking or common graphical element may be converted to wild on their associated spin. In still other embodiments, symbols may be converted on a one to one relationship between the current spin of the bonus and the position/pay level of the symbol. For example, the most prevalent symbols on the reels, lowest pays on the pay table, may be converted on the first spin. The second-most prevalent symbol on the reel, second lowest pay on the pay table, may be converted on the second spin, and so on. In one or more embodiments, an iconic representation of the current total number of converted symbols along with those symbols that have not yet been converted may be displayed.
In various embodiments, by way of non-limiting example, converted symbols may be visually converted simultaneously, may be converted in reel order (left to right, right to left, etc.), converted according to their order in the pay table (ascending or descending value), are converted in an order specified by player input.
In some embodiments, converted symbols are converted on a single spin basis or for a group of spins rather than for all remaining spins or converted symbols remain converted until a secondary event or outcome such as a “no win” or other event occurs. In other embodiments, only symbols on a particular reel or subset of reels may be convertible.
Referring to
In one or more embodiments, cabinet housing 1420 houses a processor, circuitry, and software (not shown) for receiving signals from the player-activated buttons 1460, operating the games, and transmitting signals to the respective displays and speakers. Any shaped cabinet may be implemented with any embodiment of gaming machine 1400 so long as it provides access to a player for playing a game. For example, cabinet 1420 may comprise a slant-top, bar-top, or table-top style cabinet, including a Bally Cinevision™ or CineReels™ cabinet. The operation of gaming machine 1400 is described more fully below.
The plurality of player-activated buttons 1460 may be used for various functions such as, but not limited to, selecting a wager denomination, selecting a game to be played, selecting a wager amount per game, initiating a game, or cashing out money from gaming machine 400. Buttons 460 may be operable as input mechanisms and may include mechanical buttons, electromechanical buttons or touch screen buttons. Optionally, a handle 1485 may be rotated by a player to initiate a game.
In one or more embodiments, buttons 1460 may be replaced with various other input mechanisms known in the art such as, but not limited to, a touch screen system, touch pad, track ball, mouse, switches, toggle switches, or other input means used to accept player input such as a Bally iDeck™. One other example input means is a universal button module as disclosed in U.S. application Ser. No. 11/106,212, entitled “Universal Button Module,” filed on Apr. 14, 2005, which is hereby incorporated by reference. Generally, the universal button module provides a dynamic button system adaptable for use with various games and capable of adjusting to gaming systems having frequent game changes. More particularly, the universal button module may be used in connection with playing a game on a gaming machine and may be used for such functions as selecting the number of credits to bet per hand.
Cabinet housing 1420 may optionally include top box 1450 which contains “top glass” 1452 comprising advertising or payout information related to the game or games available on gaming machine 1400. Player tracking panel 1436 includes player tracking card reader 1434 and player tracking display 1432. Voucher printer 1430 may be integrated into player tracking panel 1436 or installed elsewhere in cabinet housing 1420 or top box 1450.
Game display 1440 may present a game of chance wherein a player receives one or more outcomes from a set of potential outcomes. For example, one such game of chance is a video slot machine game. In other aspects of the invention, gaming machine 1400 may present a video or mechanical reel slot machine, a video keno game, a lottery game, a bingo game, a Class II bingo game, a roulette game, a craps game, a blackjack game, a mechanical or video representation of a wheel game or the like.
Mechanical or video/mechanical embodiments may include game displays such as mechanical reels, wheels, or dice as required to present the game to the player. In video/mechanical or pure video embodiments, game display 1440 is, typically, a CRT or a flat-panel display in the form of, but not limited to, liquid crystal, plasma, electroluminescent, vacuum fluorescent, field emission, or any other type of panel display known or developed in the art. Game display 1440 may be mounted in either a “portrait” or “landscape” orientation and be of standard or “widescreen” dimensions (i.e., a ratio of one dimension to another of at least 16×9). For example, a widescreen display may be 32 inches wide by 18 inches tall. A widescreen display in a “portrait” orientation may be 32 inches tall by 18 inches wide. Additionally, game display 440 preferably includes a touch screen or touch glass system (not shown) and presents player interfaces such as, but not limited to, credit meter (not shown), win meter (not shown) and touch screen buttons (not shown). An example of a touch glass system is disclosed in U.S. Pat. No. 6,942,571, entitled “Gaming Device with Direction and Speed Control of Mechanical Reels Using Touch Screen,” which is hereby incorporated by reference in its entirety for all purposes.
Game display 1440 may also present information such as, but not limited to, player information, advertisements and casino promotions, graphic displays, news and sports updates, or even offer an alternate game. This information may be generated through a host computer networked with gaming machine 1400 on its own initiative or it may be obtained by request of the player using either one or more of the plurality of player-activated buttons 1460; the game display itself, if game display 1440 comprises a touch screen or similar technology; buttons (not shown) mounted about game display 1440 which may permit selections such as those found on an ATM machine, where legends on the screen are associated with respective selecting buttons; or any player input device that offers the required functionality.
Cabinet housing 1420 incorporates a single game display 1440. However, in alternate embodiments, cabinet housing 1420 or top box 1450 may house one or more additional displays 1453 or components used for various purposes including additional game play screens, animated “top glass,” progressive meters or mechanical or electromechanical devices (not shown) such as, but not limited to, wheels, pointers or reels. The additional displays may or may not include a touch screen or touch glass system.
Referring to
Peripherals 1551 connect through i/o board 1553 to base game integrated circuit board 1503. For example, a bill/ticket acceptor is typically connected to a game input-output board 1553 which is, in turn, connected to a conventional central processing unit (“CPU”) base game integrated circuit board 1503, such as an Intel Pentium microprocessor mounted on a gaming motherboard. I/O board 1553 may be connected to base game integrated circuit board 1503 by a serial connection such as RS-232 or USB or may be attached to the processor by a bus such as, but not limited to, an ISA bus. The gaming motherboard may be mounted with other conventional components, such as are found on conventional personal computer motherboards, and loaded with a game program which may include a gaming machine operating system (OS), such as a Bally Alpha OS. Base game integrated circuit board 1503 executes a game program that causes base game integrated circuit board 1503 to play a game. In one embodiment, the game program provides a slot machine game having adjustable multi-part indicia. The various components and included devices may be installed with conventionally and/or commercially available components, devices, and circuitry into a conventional and/or commercially available gaming machine cabinet, examples of which are described above.
When a player has inserted a form of currency such as, for example and without limitation, paper currency, coins or tokens, cashless tickets or vouchers, electronic funds transfers or the like into the currency acceptor, a signal is sent by way of I/O board 1553 to base game integrated circuit board 1503 which, in turn, assigns an appropriate number of credits for play in accordance with the game program. The player may further control the operation of the gaming machine by way of other peripherals 1551, for example, to select the amount to wager via electromechanical or touch screen buttons. The game starts in response to the player operating a start mechanism such as a handle or touch screen icon. The game program includes a random number generator to provide a display of randomly selected indicia on one or more displays. In some embodiments, the random generator may be physically separate from gaming machine 1500; for example, it may be part of a central determination host system which provides random game outcomes to the game program. Thereafter, the player may or may not interact with the game through electromechanical or touch screen buttons to change the displayed indicia. Finally, base game integrated circuit board 1503 under control of the game program and OS compares the final display of indicia to a pay table. The set of possible game outcomes may include a subset of outcomes related to the triggering of a feature game. In the event the displayed outcome is a member of this subset, base game integrated circuit board 1503, under control of the game program and by way of I/O Board 1553, may cause feature game play to be presented on a feature display.
Predetermined payout amounts for certain outcomes, including feature game outcomes, are stored as part of the game program. Such payout amounts are, in response to instructions from base game integrated circuit board 1503, provided to the player in the form of coins, credits or currency via I/O board 1553 and a pay mechanism, which may be one or more of a credit meter, a coin hopper, a voucher printer, an electronic funds transfer protocol or any other payout means known or developed in the art.
In various embodiments, the game program is stored in a memory device (not shown) connected to or mounted on the gaming motherboard. By way of example, but not by limitation, such memory devices include external memory devices, hard drives, CD-ROMs, DVDs, and flash memory cards. In an alternative embodiment, the game programs are stored in a remote storage device. In one embodiment, the remote storage device is housed in a remote server. The gaming machine may access the remote storage device via a network connection, including but not limited to, a local area network connection, a TCP/IP connection, a wireless connection, or any other means for operatively networking components together. Optionally, other data including graphics, sound files and other media data for use with the EGM are stored in the same or a separate memory device (not shown). Some or all of the game program and its associated data may be loaded from one memory device into another, for example, from flash memory to random access memory (RAM).
In one or more embodiments, peripherals may be connected to the system over Ethernet connections directly to the appropriate server or tied to the system controller inside the EGM using USB, serial or Ethernet connections. Each of the respective devices may have upgrades to their firmware utilizing these connections.
GMU 1507 includes an integrated circuit board and GMU processor and memory including coding for network communications, such as the G2S (game-to-system) protocol from the Gaming Standards Association, Las Vegas, Nev., used for system communications over the network. As shown, GMU 1507 may connect to card reader 1555 through bus 1557 and may thereby obtain player card information and transmit the information over the network through bus 1541. Gaming activity information may be transferred by the base game integrated circuit board 1503 to GMU 1507 where the information may be translated into a network protocol, such as S2S, for transmission to a server, such as a player tracking server, where information about a player's playing activity may be stored in a designated server database.
PIB 1509 includes an integrated circuit board, PID processor, and memory which includes an operating system, such as Windows CE, a player interface program which may be executable by the PID processor together with various input/output (I/O) drivers for respective devices which connect to PIB 1509, such as player interface devices 511, and which may further include various games or game components playable on PIB 1509 or playable on a connected network server and PIB 1509 is operable as the player interface. PIB 1509 connects to card reader 1555 through bus 1523, display 1559 through video decoder 1561 and bus 1521, such as an LVDS or VGA bus.
As part of its programming, the PID processor executes coding to drive display 1559 and provide messages and information to a player. Touch screen circuitry interactively connects display 1559 and video decoder 1561 to PIB 1509, such that a player may input information and cause the information to be transmitted to PIB 1509 either on the player's initiative or responsive to a query by PIB 1509. Additionally soft keys 1565 connect through bus 1517 to PIB 1509 and operate together with display 1559 to provide information or queries to a player and receive responses or queries from the player. PIB 1509, in turn, communicates over the CMS/SMS network through Ethernet switch 1531 and busses 1535, 1539 and with respective servers, such as a player tracking server.
Player interface devices 1511 are linked into the virtual private network of the system components in gaming machine 1501. The system components include the iVIEW processing board and game monitoring unit (GMU) processing board. These system components may connect over a network to the slot management system (such as a commercially available Bally SDS/SMS) and/or casino management system (such as a commercially available Bally CMP/CMS).
The GMU system component has a connection to the base game through a serial SAS connection and is connected to various servers using, for example, HTTPs over Ethernet. Through this connection, firmware, media, operating system software, gaming machine configurations can be downloaded to the system components from the servers. This data is authenticated prior to install on the system components.
The system components include the iVIEW processing board and game monitoring unit (GMU) processing board. The GMU and iVIEW can combined into one like the commercially available Bally GTM iVIEW device. This device may have a video mixing technology to mix the EGM processor's video signals with the iVIEW display onto the top box monitor or any monitor on the gaming device.
In accordance with one or more embodiments,
As shown in the example, there are three layers: a hardware layer 1605; an operating system layer 1610, such as, but not limited to, Linux; and a game kernel layer 1600 having game manager 1603 therein. In one or more embodiments, the use of a standard operating system 1610, such a UNIX-based or Windows-based operating system, allows game developers interfacing to the gaming kernel to use any of a number of standard development tools and environments available for the operating systems. This is in contrast to the use of proprietary, low level interfaces which may require significant time and engineering investments for each game upgrade, hardware upgrade, or feature upgrade. The game kernel layer 1600 executes at the user level of the operating system 1610, and itself contains a major component called the I/O Board Server 1615. To properly set the bounds of game application software (making integrity checking easier), all game applications interact with gaming kernel 1600 using a single API 1602 in game manager 1603. This enables game applications to make use of a well-defined, consistent interface, as well as making access points to gaming kernel 1600 controlled, where overall access is controlled using separate processes.
For example, game manager 1603 parses an incoming command stream and, when a command dealing with I/O comes in (arrow 1604), the command is sent to an applicable library routine 1612. Library routine 1612 decides what it needs from a device, and sends commands to I/O Board Server 1615 (see arrow 1608). A few specific drivers remain in operating system 1610's kernel, shown as those below line 1606. These are built-in, primitive, or privileged drivers that are (i) general (ii) kept to a minimum and (iii) are easier to leave than extract. In such cases, the low-level communications is handled within operating system 1610 and the contents passed to library routines 1612.
Thus, in a few cases library routines may interact with drivers inside operating system 1610, which is why arrow 1608 is shown as having three directions (between library utilities 1612 and I/O Board Server 1615, or between library utilities 1612 and certain drivers in operating system 1610). No matter which path is taken, the logic needed to work with each device is coded into modules in the user layer of the diagram. Operating system 1610 is kept as simple, stripped down, and common across as many hardware platforms as possible. The library utilities and user-level drivers change as dictated by the game cabinet or game machine in which it will run. Thus, each game cabinet or game machine may have an base game integrated circuit board 1503 connected to a unique, relatively dumb, and as inexpensive as possible I/O adapter board 1540, plus a gaming kernel 1600 which will have the game-machine-unique library routines and I/O Board Server 1615 components needed to enable game applications to interact with the gaming machine cabinet. Note that these differences are invisible to the game application software with the exception of certain functional differences (i.e., if a gaming cabinet has stereo sound, the game application will be able make use of API 1602 to use the capability over that of a cabinet having traditional monaural sound).
Game manager 1603 provides an interface into game kernel 1600, providing consistent, predictable, and backwards compatible calling methods, syntax, and capabilities by way of game application API 1602. This enables the game developer to be free of dealing directly with the hardware, including the freedom to not have to deal with low-level drivers as well as the freedom to not have to program lower level managers 1630, although lower level managers 630 may be accessible through game manager 1603's interface 1602 if a programmer has the need. In addition to the freedom derived from not having to deal with the hardware level drivers and the freedom of having consistent, callable, object-oriented interfaces to software managers of those components (drivers), game manager 1603 provides access to a set of upper level managers 1620 also having the advantages of consistent callable, object-oriented interfaces, and further providing the types and kinds of base functionality required in casino-type games. Game manager 1603, providing all the advantages of its consistent and richly functional interface 1602 as supported by the rest of game kernel 1600, thus provides a game developer with a multitude of advantages.
Game manager 1603 may have several objects within itself, including an initialization object (not shown). The initialization object performs the initialization of the entire game machine, including other objects, after game manager 1603 has started its internal objects and servers in appropriate order. In order to carry out this function, the kernel's configuration manager 1621 is among the first objects to be started; configuration manager 1621 has data needed to initialize and correctly configure other objects or servers.
The upper level managers 1620 of game kernel 1600 may include game event log manager 1622 which provides, at the least, a logging or logger base class, enabling other logging objects to be derived from this base object. The logger object is a generic logger; that is, it is not aware of the contents of logged messages and events. The log manager's (1622) job is to log events in non-volatile event log space. The size of the space may be fixed, although the size of the logged event is typically not. When the event space or log space fills up, one embodiment will delete the oldest logged event (each logged event will have a time/date stamp, as well as other needed information such as length), providing space to record the new event. In this embodiment, the most recent events will thus be found in the log space, regardless of their relative importance. Further provided is the capability to read the stored logs for event review.
In accordance with one embodiment, meter manager 1623 manages the various meters embodied in the game kernel 1600. This includes the accounting information for the game machine and game play. There are hard meters (counters) and soft meters; the soft meters may be stored in non-volatile storage such as non-volatile battery-backed RAM to prevent loss. Further, a backup copy of the soft meters may be stored in a separate non-volatile storage such as EEPROM. In one embodiment, meter manager 1623 receives its initialization data for the meters, during startup, from configuration manager 1621. While running, the cash in (1624) and cash out (1625) managers call the meter manager's (1623) update functions to update the meters. Meter manager 1623 will, on occasion, create backup copies of the soft meters by storing the soft meters' readings in EEPROM. This is accomplished by calling and using EEPROM manager 1631.
In accordance with still other embodiments, progressive manager 1626 manages progressive games playable from the game machine. Event manager 1627 is generic, like log manager 1622, and is used to manage various gaming machine events. Focus manager 628 correlates which process has control of various focus items. Tilt manager 1632 is an object that receives a list of errors (if any) from configuration manager 1621 at initialization, and during game play from processes, managers, drivers, etc. that may generate errors. Random number generator manager 1629 is provided to allow easy programming access to a random number generator (RNG), as a RNG is required in virtually all casino-style (gambling) games. RNG manager 1629 includes the capability of using multiple seeds.
In accordance with one or more embodiments, a credit manager object (not shown) manages the current state of credits (cash value or cash equivalent) in the game machine, including any available winnings, and further provides denomination conversion services. Cash out manager 1625 has the responsibility of configuring and managing monetary output devices. During initialization, cash out manager 1625, using data from configuration manager 1621, sets the cash out devices correctly and selects any selectable cash out denominations. During play, a game application may post a cash out event through the event manager 1627 (the same way all events are handled), and using a callback posted by cash out manager 1625, cash out manager 1625 is informed of the event. Cash out manager 1625 updates the credit object, updates its state in non-volatile memory, and sends an appropriate control message to the device manager that corresponds to the dispensing device. As the device dispenses dispensable media, there will typically be event messages being sent back and forth between the device and cash out manager 1625 until the dispensing finishes, after which cash out manager 1625, having updated the credit manager and any other game state (such as some associated with meter manager 1623) that needs to be updated for this set of actions, sends a cash out completion event to event manager 1627 and to the game application thereby. Cash in manager 624 functions similarly to cash out manager 1625, only controlling, interfacing with, and taking care of actions associated with cashing in events, cash in devices, and associated meters and crediting.
In a further example, in accordance with one or more embodiments, I/O server 1615 may write data to the gaming machine EEPROM memory, which is located in the gaming machine cabinet and holds meter storage that must be kept even in the event of power failure. Game manager 1603 calls the I/O library functions to write data to the EEPROM. The I/O server 1615 receives the request and starts a low priority EEPROM thread 1616 within I/O server 1615 to write the data. This thread uses a sequence of 8 bit command and data writes to the EEPROM device to write the appropriate data in the proper location within the device. Any errors detected will be sent as IPC messages to game manager 1603. All of this processing is asynchronous.
In accordance with one embodiment, button module 1617 within I/O server 1615, polls (or is sent) the state of buttons every 2 ms. These inputs are debounced by keeping a history of input samples. Certain sequences of samples are required to detect a button was pressed, in which case the I/O server 1615 sends an inter-process communication event to game manager 1603 that a button was pressed or released. In some embodiments, the gaming machine may have intelligent distributed I/O which debounces the buttons, in which case button module 1617 may be able to communicate with the remote intelligent button processor to get the button events and simply relay them to game manager 1603 via IPC messages. In still another embodiment, the I/O library may be used for pay out requests from the game application. For example, hopper module 1618 must start the hopper motor, constantly monitor the coin sensing lines of the hopper, debounce them, and send an IPC message to the game manager 1603 when each coin is paid.
Further details, including disclosure of lower level fault handling and/or processing, are included in U.S. Pat. No. 7,351,151 entitled “Gaming Board Set and Gaming Kernel for Game Cabinets” and provisional U.S. patent application No. 60/313,743, entitled “Form Fitting Upgrade Board Set For Existing Game Cabinets,” filed Aug. 20, 2001; said patent and provisional are both fully incorporated herein by explicit reference.
Referring to
Gaming machines 1703 include various peripheral components that may be connected with USB, serial, parallel, RS-485 or Ethernet devices/architectures to the system components within the respective gaming machine. The GMU has a connection to the base game through a serial SAS connection. The system components in the gaming cabinet may be connected to the servers using HTTPs or G2S over Ethernet. Using CMS 1707 and/or SMS 1705 servers and devices, firmware, media, operating systems, and configurations may be downloaded to the system components of respective gaming machines for upgrading or managing floor content and offerings in accordance with operator selections or automatically depending upon CMS 1707 and SMS 1705 master programming. The data and programming updates to gaming machines 1703 are authenticated using conventional techniques prior to install on the system components.
In various embodiments, any of the gaming machines 1703 may be a mechanical reel spinning slot machine or a video slot machine or a gaming machine offering one or more of the above described games including a group play game. Alternately, gaming machines 1703 may provide a game with a simulated musical instrument interface as a primary or base game or as one of a set of multiple primary games selected for play by a random number generator. A gaming system of the type described above also allows a plurality of games in accordance with the various embodiments of the invention to be linked under the control of a group game server (not shown) for cooperative or competitive play in a particular area, carousel, casino or between casinos located in geographically separate areas. For example, one or more examples of group games under control of a group game server are disclosed in U.S. application Ser. No. 11/938,079, entitled “Networked System and Method for Group Play Gaming,” filed on Nov. 9, 2007, which is hereby incorporated by reference in its entirety for all purposes.
All or portions of the present invention may also be implemented or promoted by or through a system as suggested in
The players/users may access the cloud service 1804 and the applications and data provided thereby through the Internet or through broadband wireless cellular communication systems and any intervening sort range wireless communication such as WiFi. The players/users may access the applications and data through various social media offerings such as Facebook, Twitter, Yelp, MySpace, LinkedIn or the like.
As but an example, a player/user may have a player account with a casino enterprise Z. That account may include data such as the player's credit level, their rating and their available comps. At their smart phone 1812 the player/user sends a request to the clout service 1804 (perhaps through a previously downloaded application) to request the status of their available comps such as how many comp points they have and what may be available through redemption of those points (e.g. lodging, cash back, meals or merchandise). The application for the request may present casino promotions, graphics or other advertising to the player/user. The application, to support such a request, would typically require the player/user to enter a PIN. The cloud service 1004 forwards the inquiry to the bonusing servicer 1800 which, in turn, confirms the PIN and retrieves the requested information from the data warehouse 1735 or player tracking CMS/CMP server 1737. Alternatively the data may be stored in the cloud service 1804 and routinely updated from the data warehouse 1735 or player tracking CMS/CMP server 1737. In this instance the request would be responded to from data residing with the cloud service 1804. The information is formatted by the cloud server 1804 application and delivered to the player/user. The delivery may be formatted based upon the player/user's device operating system (OS), display size or the like.
The cloud service 1800 may also host game applications to provide virtual instances of games for free, promotional, or where permitted, P2P (Pay to Play) supported gaming. Third party developers may also have access to placing applications with the cloud service 1804 through, for example a national operations center (Bally NOC 1814). A game software manufacturer such as Bally Gaming, Inc. may also provide game applications on its own or on behalf of the casino enterprise.
Other media such as advertising, notices (such as an upcoming tournament) may also be provided to the cloud service 1804. When a player/user accesses the cloud service 1804 certain media may be delivered to the player/user in a manner formatted for their application and device.
The various embodiments described above are provided by way of illustration only and should not be construed to limit the claimed invention. Those skilled in the art will readily recognize various modifications and changes that may be made to the claimed invention without following the example embodiments and applications illustrated and described herein, and without departing from the true spirit and scope of the invention.