The invention relates to digital signal processing of a video image for improved picture quality on a display. This invention particularly relates to the reduction of static and/or dynamic visual artifacts and anomalies such as false contour on a display.
Static false contour is typically defined as the visual artifact that occurs on a still frame when pixels in close proximity have similar values expressed by opposite or very different subfield weighting. Dynamic false contour is typically defined as the visual artifact that occurs in a moving image when a pixel changes from its current value to a close value expressed by a subfield weighting that is opposite or significantly different from the original value. Dynamic false contour is a motion artifact.
The practice of this invention is described herein with reference to an AC gas discharge plasma display panel (PDP). However, this invention may also be practiced with DC gas discharge plasma displays and other display technologies including flat panel displays and projection displays. Passive and active matrix displays may be used, especially displays in which gray scale is achieved through multiplexing.
Other display technologies include active matrix electroluminescent displays (ELD), liquid crystal displays (LCD) including active matrix or thin film transistor LCD, passive LCD, and ferroelectric liquid crystal (FLC) displays, for example as disclosed in U.S. Pat. Nos. 5,302,966 (Stewart), 5,652,600 (Khormaei et al.), 6,035,070 (Moon et al.), 6,801,213 (Bergstrom et al.), 6,985,164 (Rogers et al.), 7,119,773 (Kim), and US. Patent Application 2006/007249 (Reddy et al.), all incorporated herein by reference.
Contemplated displays also include light-emitting diode displays (LED), organic electroluminescent displays, and organic light-emitting diode (OLED) displays. OLED is also called organic light-emitting display. OLED is divided into molecular electroluminescent (EL) and polymer EL. Molecular OLED is disclosed in the prior art by Eastman Kodak, Pioneer of Japan, and Sanyo of Japan. Polymer OLED is disclosed by Philips of Holland, Dow Chemical, UNIAX, and Cambridge University (UK). OLED may be passive matrix or active matrix. Examples are disclosed in U.S. Pat. Nos. 6,395,328 (May), 6,592,969 (Burroughes et al.), 6,858,324 (Towns et al.), 6,861,799 (Friend et al.), 6,949,291 (Holmes et al.), 6,960,877 (Heeks et al.), 6,992,438 (Burroughes et al.), 7,005,196 (Carter et al.), 7,005,484 (Holmes et al.), 7,008,999 (Ho et al.), 7,023,012 (Grzzi et al.), 7,053,412 (Hack et al.), 7,071,612 (Burroughes et al.), 7,074,884 (Towns et al.), 7,078,251 (Burroughes et al.), and 7,215,306 (Lo), all incorporated herein by reference.
The invention may be practiced with projection displays such as digital micro mirror device (DMD) arrays as disclosed in the prior art by Texas Instruments and others or any other projection display that uses multiplexing to achieve gray scale, for example as disclosed in U.S. Pat. Nos. 5,751,379 (Markandey et al.), 5,986,640 (Baldwin et al.), 6,061,049 (Pettitt et al.), 7,265,766 (Kempf), and 7,446,785 (Hewlett et al.), all incorporated herein by reference.
A plasma display panel (PDP) consists of a grid of addressable cell elements, also called pixels or subpixels. As used herein, pixel means subpixel, cell, or subcell and cell means subcell, pixel, or subpixel. A cell or pixel element is defined by the cross point of a row electrode and a column electrode for a columnar discharge display or a column electrode and two row electrodes for a surface discharge display. In the case of a surface discharge display, a pair of row electrodes (X and Y) are termed scan electrode and sustain electrode. As part of each cell element, there is an ionizable gas. In both columnar discharge and surface discharge PDP displays, at least one electrode is isolated with dielectric from the ionizable gas. When the appropriate voltages are applied to the row and column electrodes, the ionizable gas discharges. The discharge may produce visible light or invisible light such as UV light that excites a phosphor. In either case, the cell only has two states, a “light-emitting” state and a “non-light-emitting” state. In most applications, gray scale is achieved through time multiplexing. In a single video frame, the number of times cells are put into the discharge state is proportional to the input luminance defined by the input video signal. The input luminance is the digitally created video input to a PDP from a video receiver or other source.
A single video field is divided in time into ‘n’ number of weighted subfields, each weighted by a unique number of discharge pulses (or sustain pulses). A subfield consists of an addressing period in which cells are selected to be “light-emitting” or “non-light-emitting” and a sustain period in which cells that have been selected to be “light-emitting” produce light proportional to the number of sustains in the subfield. In practice the number of subfields (n) in a field is limited by various timing constraints including addressing time and sustain time. These in turn may be dependent on various physical attributes of the plasma display panel, including display structure, display resolution, gas composition, gas pressure, and the number of rows to address.
Displays including PDP represent gray levels by techniques that cause undesirable visual artifacts such as false contours including flicker and noise. Various methods have been proposed in the prior art to reduce static and dynamic false contours in displays including PDP. These methods include spatial multiplexing, frame multiplexing, binary weighting of subfields, non-binary weighting of subfields, control of light pulse timing, error diffusion, gamma correction, equalizing pulse, compression of light emission time, and optimization of subfield pattern. Optimization of subfield pattern includes optimizing the number of subfields in a frame and optimizing the sustain ratios from subfield to subfield. The following prior art relates to artifact reduction and is incorporated herein by reference: U.S. Pat. Nos. 6,008,793 (Shigeta), 6,018,329 (Kida et al.), 6,473,464 (Weitbruch et al.), 6,476,875 (Correa et al.), 6,661,469 (Kawabata et al.), 6,707,943 (Gicquel et al.), 7,187,348 (Iwami et al.), European Patent Application EP 1022714A2 (Shigeta et al.), European Patent Application EP 0 720 139A3 (Okano et al.), Development of New Driving Method for AC-PDPs, and Improvement of Moving Video Image Quality on PDPs by Reducing the Dynamic False Contour, T. Shigeta et al., SID 98 Digest, pp. 287-290 (1998), Quantitative Measure of Dynamic False Contours on Plasma Display, Yoon-Seok Choi et al., IDW 99, pp. 783-786 (1999).
Gamma correction is disclosed in U.S. Pat. Nos. 5,012,163 (Alcorn et al.), 5,546,101 (Sugawara), 6,215,468 (Van Mourik), 6,654,028 (Yamakawa), 6,778,182 (Yamakawa), 7,025,252 (Kim), 7,075,243 (Park), 7,088,313 (Kang), 7,102,696 (Kao et al.), 7,365,711 (Kim), 7,397,445 (B aek), 7,414,598 (Lee), and U.S. Patent Application Publication Nos. 2006/0125718 (Weitbruch et al.), 2007/0065008 (Kao et al.), and 2008/0018561 (Song et al.), all incorporated herein by reference.
Error diffusion is disclosed in U.S. Pat. Nos. 5,623,281 (Markandey et al.), 6,771,832 (Naito et al.), 6,774,873 (Hsu et al.), 6,836,263 (Naka et al.), 6,956,583 (Lee), 7,025,252 (Kim), 7,071,954 (Takahashi), 7,075,560 (Ohe et al.), 7,088,316 (Kao et al.), 7,126,563 (Lin et al.), 7,180,480 (Lee et al.), 7,236,147 (Morita et al.), 7,339,706 (Ohta), 7,355,570 (Choi), 7,408,530 (Yang), 7,414,598 (Lee), 7,420,571 (Lee et al.), and 7,420,576 (Takeuchi et al.), all incorporated herein by reference.
The Floyd-Steinberg error diffusion technique uses a scheme of division and distribution of error to minimize visual artifacts and is disclosed and/or discussed in Floyd, R. W. and Steinberg, L., “An Adaptive Algorithm For Spatial Gray Scale”, SID 75 Digest, Society for Information Display, 1975, pages 36 to 37, and U.S. Pat. Nos. 4,680,645 (Dispoto et al.), 4,890,167 (Nakazato et al.), 5,045,952 (Eschbach), and 5,434,672 (McGuire), all incorporated herein by reference.
Pioneer of Tokyo, Japan has disclosed a technique called CLEAR for the reduction of false contour and related problems. CLEAR stands for High-Contrast, Low Energy Address and Reduction of False Contour Sequence. See Development of New Driving Method for AC-PDPs, High Contrast Low Energy Address and Reduction of False Contour Sequence “CLEAR”, by Tokunaga et al. of Pioneer, Proceedings of the Sixth International Display Workshops, IDW 99, pages 787-790, Dec. 1-3, 1999, Sendai, Japan, European Patent Application EP 1 020 838A1 published Jul. 19, 2000 (Tokunaga et al.) of Pioneer, U.S. Pat. Nos. 6,985,126 (Hoppenbrouwers et al.), 7,075,504 (Tokunaga et al.), 7,339,554 (Hsu et al.), and U.S. Patent Application Publication Nos. 2006/0001606 (Yim) and 2006/0022906 (Kamiyamaguchi et al.), all incorporated herein by reference.
CLEAR is one example of a technique that combines multiple concepts of dither gray scale, error diffusion, gamma correction, and subfield weighting to produce a PDP with few visual artifacts.
In accordance with this invention, there is provided a method to achieve gray scale through time multiplexing and spatial multiplexing that reduces visual artifacts and provides high contrast at low brightness and luminance in a display such as a PDP.
This invention also comprises improvements in artifact reduction in a PDP or other display by means of gamma correction, error diffusion, and dithering.
This invention also comprises a center of light mass artifact reduction method and a unique drive method that provides for the addressing of a large number of rows without dual scan, without decreasing brightness, and without causing flicker.
a,
5
b,
5
c,
5
d, and 5e are graphs of gamma curves.
a is a prior art dither table.
b,
9
c,
9
d,
9
e are dither tables in accordance with the practice of this invention.
f is a block diagram of a circuit to implement the dither tables of 9b, 9c, 9d, and 9e.
Thus for SF 1, the ratio of the number of sustains relative to the number of sustains in the four other SFs is 16:8:4:2:1. The input luminance is the digitally created video input to a PDP from a video receiver or other source. In the case where the input luminance of a cell is 16, the cell is put into the light-emitting state during SF 1. When the input luminance of a cell is 15, it is put into the light-emitting state in SF 2, 3, 4, and 5. In the above example of
To illustrate false contour in the example of
The above was described with 5 subfield and 32 gray levels. Typically 256 gray levels are realized with 8 binary weighted subfields having sustain ratios as follows.
This subfield weighting has the advantage of not allowing large changes in subfield weighting with small changes in input luminance. This type of subfield weighting helps to eliminate motion artifact and false contour. Further advantage may be obtained if a cell or pixel is turned ‘on’ only once in a frame, and left ‘on’ in proportion to its gray value rather than being turned ‘on’ and ‘off’ several times in a frame. This method is disclosed in U.S. Pat. No. 4,385,293 (Wisnieff), incorporated herein by reference.
In this method, if a cell is to be turned on, it is turned on in the first subfield. It stays on in proportion to the input luminance. Once a cell is turned off, it stays off for the remainder of the subfield. Thus for 10 subfields, only 11 unique gray scale values may be achieved. To achieve more perceived gray values with this method, it is necessary to spatially and temporally multiplex the image. This can be achieved with the circuit diagram in
In
In this example, if the input luminance ranges from 0 to 255 levels, realized in 8 binary weighted bits, the upper four bits, which can range from 0 to 15, must be remapped to range from 0 to 10. In this way each of the four upper bits can serve to select one of the eleven valid combinations of
The four lower bits are further processed to contribute the temporal and spatial multiplexing and thus increase the number of perceived gray levels. However, they are also mapped so that they do not contribute to rollover in subsequent steps.
In
EP 1022714A2 cited above discloses selecting between two gamma curves on alternate frames with normalizing and gamma correction of the input data. Examples of the shape of the gamma curves are shown in
In accordance with this invention, unique gamma curves are applied to the normalized data based on spatial position and time. Further, unique gamma curves can be applied to each color, e.g. red, blue, and green. A number of pixels are selectively grouped so as to act in concert and a different and unique gamma curve is applied to the input luminance of each pixel, the shape of each gamma curve being such that only a limited number of pixels change with incremental changes in luminance, while the other pixels in the group remain unchanged. By minimizing the number of pixels that change in a given area with incremental changes of input luminance, motion artifacts and false contour are reduced. Unique gamma curves can be applied to red, blue, and green for low level grays to reduce the graininess caused by the difference in the brightness between the brightness of the lowest subfield and black. In this case it is advantageous to allow the lowest brightness to be represented by blue, then gradually introducing red and then green. Although this type of gamma correction does not produce “true color” at low level grays, it is acceptable and can produce a pleasing image free of other previously mentioned artifacts.
The gamma curves are shaped so as to prevent simultaneous changes in the grouped pixels when the input luminance increases from n to n+1 or decreases from n to n−1.
a through 5d illustrate the improved gamma mapping applied to a four pixel quadrant. Four “stair step” curves in
The gamma correction methods of this invention may be used alone or in combination with one or more other artifact reduction methods including error diffusion, dithering, and center of light mass as described herein.
In another embodiment of this invention, the gamma corrected data is further processed to realize more gray levels through error diffusion and dithering. Error diffusion is defined as a method of adding random noise to the input luminance data pixel by pixel as described herein. This method makes less obvious the patterns that will occur when spatial dithering is applied over an area.
EC=KNW*ENW+KN*EN+KNE*ENE+KW*EW+KC*LSB
Ec is the error term of Pc. The two bit value of Ec is stored and used to calculate the error terms of the pixels to the East, Southeast, and South of PC. Additionally, the carry bit of EC is added to the gamma corrected input luminance data.
To prevent the carry from producing a predictable pattern, the value of the coefficients may be changed from frame to frame.
For example
In accordance with this invention, some of the K·E products of the Floyd Steinberg method are replaced with a randomly generated value to obtain EC for the pixel PC.
EC=Random[max(LSB)×(KNW+KN) . . . 0]+KNE·ENEKW·EW+KC·LSB
where max(LSB) equals the maximum value of the LSB. In the case where 2 LSB are used, the maximum value is 2. In the case where 3 LSB are used, the max(LSB) equals 8. The term Random [max(LSB)×(KNW+KN) . . . 0] denotes a random number generated between max(LSB)×(KNW+KN) and 0.
This randomization prevents predictable patterns and provides higher contrast even in a sparsely populated screen or at low luminance even in an almost dark PDP screen. The substitution of randomly generated values provides less complex data processing because some of the storage error value requirements are eliminated.
In one embodiment, the E·K products comprised of the lower two constants 1/16, and 3/16 are replaced with a random number. In this way only two neighbor pixels are considered to produce error diffusion instead of four neighbor pixels. The random value has the effect of allowing an occasional carry even if the neighbors provide 0 error input.
This invention is especially useful when input luminance data from an A/D source is provided two pixels at a time. In this case, the prior art would use a clock doubler to calculate the error value and the carry of a given pixel at the required rate. The randomization method of this invention allows the error value and carry of both pixels to be calculated simultaneously without the need to double the clock.
In this example, the constants used are 7/16 and 5/16 and the constants that are included in the random term are 1/16 and 3/16. Therefore,
Error(odd)=[7·EN+5·EW+16·LSB+Random(12 . . . 0)]/16
Error(even)=[7·ENW+5·EN+16·LSB+Random(12 . . . 0)]/16
In the implementation of the error diffusion method as shown in
Rand[7 . . . 0] is a random value input to the equations. Odd Remainder and Even Remainder are the error diffusion values of the previous line which are stored in a FIFO. Collectively Rand[7 . . . 0], MRE(1 . . . 0), MRO(1 . . . 0), Odd Remainder, and Even Remainder are the input data. The input data are passed through successive registered states, “D”, in which they are either summed or multiplied in accordance with the invention. This is done synchronous with the dot clock. The final stage results in an Even Remainder and an Odd Remainder which are fed back into the FIFOs. The carry value is summed with the most significant bit of odd and even data to provide the error diffusion.
In accordance with another embodiment of this invention, the randomization method may be used in combination with varying one or more of the coefficients K.
The error diffusion methods of this invention may be used alone or in combination with one or more other artifact reduction methods including gamma correction, dithering, and center of light mass as described herein.
The dither coefficients are added to the next least significant bit (the dither bit) along with the carry to produce the final value that is sent to the frame buffer for display on the screen. Pioneer has disclosed adding dither coefficients to a 2×2 quadrant of pixels. This method can be improved by using a larger dither matrix, such as a 4×4 matrix and optimizing the dither coefficients based on input color, input luminance, and type of video input e.g. a moving or still image. By using a larger dither matrix, more apparent gray scales are achieved. The coefficients should be selected to evenly distribute the gray scale dither pattern over the area matrix. Dither coefficients should also be selected in such a way as to limit the carry value added to the upper bit, when summed with the dither bit of the input luminance and the carry bit from the error diffusion. In this way the value of the upper bit of a single pixel is limited to toggling between n and n+1. When the same input luminance is applied to the 4×4 pixel matrix, all the values of the upper bit of the pixels of that matrix will be at a value of n or n+1. In other words a single input luminance will be manifested as maximum of two values on the screen. The percentage of the two values will determine the perceived gray level. If a matrix of 16 pixels has all n values, it will be 1/16 dimmer then a matrix that averages n in 15 out of 16 pixels and n+1 in 1 out of 16 pixels. By limiting the output to n and n+1 for a given input luminance, the image will be improved because of less flicker.
Dither tables are used, a different dither table for static images, dynamic images, high level luminance or brightness (high level gray scale), and low level luminance or brightness (low level gray scale).
For example
In this example, 10 subfields are used.
f is a block diagram of the dither processing circuit. The dither table is selected based on luminance input, spatially by row and column input, and in time by frame input.
The dithering methods of this invention may be used alone or in combination with one or more other artifact reduction methods including gamma correction, error diffusion, and center of light mass as described herein.
The center of light method is also known as the center of light gravity or center of mass method wherein the eye responds to a concentration of light and its relative position from other concentrations of light. PCT Publication WO 2004/003881 by Weitbruch et al. of Thomson, incorporated herein by reference, defines the temporal center of gravity of light as applied to a PDP. In a PDP these are light pulses produced by the sustain pulses. Different luminance inputs, which are close in value, produce artifacts in adjacent pixels or in pixels as they change between these values. For example, in a plasma display using binary weighting of 8 subfields the values of 127 and 128 are close in value, but have significantly different centers of light gravity or mass because of timing differences in the sustain pulses. This is apparent to the viewer with the problem being manifested in motion artifacts such as flicker or false contour. To reduce artifacts, the timing of the light pulse is controlled such that the center of light gravity or mass increases monotonically, that is, as a monotonic function with increasing input luminance. This may be done by adjusting the timing of subfields as well as the weighting of subfields.
The center of light method of this invention may be used alone or in combination with one or more artifact reduction methods including gamma correction, error diffusion, and dithering as described herein.
There are a number of architectures and methods for addressing a plasma display. One embodiment of this invention comprises addressing one display section of a PDP while another section of the PDP is being simultaneously sustained. This architecture is called Simultaneous Address and Sustain (SAS) and is described in further detail below. In one preferred embodiment of this invention, the center of light mass invention is used with SAS architectures.
SAS offers a unique electronic architecture which is different from prior art columnar discharge and surface discharge electronics architectures such as ADS, AWD, and MASS discussed below. SAS offers important advantages over other electronic architecture.
An important feature and advantage of SAS is that it allows the selective addressing of one section of a surface discharge PDP with selective write and/or selective erase voltages while another section of the panel is being simultaneously sustained. A section is defined as a predetermined number of bulk sustain electrodes x and row scan electrodes y. In a surface discharge display, a single row is comprised of one pair of parallel top electrodes x and y. In accordance with one embodiment and practice of the SAS architecture, there is provided the simultaneous addressing and sustaining of at least two sections S1 and S2 of a surface discharge PDP having a row scan, bulk sustain, and data electrodes, which comprises addressing one section S1 of the PDP while a sustaining voltage is being simultaneously applied to at least one other section S2 of the PDP.
In another SAS embodiment, the simultaneous addressing and sustaining is interlaced whereby one pair of electrodes y and x are addressed without being sustained and an adjacent pair of electrodes y and x are simultaneously sustained without being addressed. This interlacing can be repeated throughout the display. In this embodiment, a section S is defined as one or more pairs of interlaced y and x electrodes.
In an SAS system with essentially binary weighted subfields, it has been observed that artifacts such as false contour and flicker may occur between the different sections 51 and S2. This is because in an essentially binary weighted system, the two sections 51 and S2 are sustained and addressed at different times and do not have balanced centers of light gravity or mass.
An improved picture may be obtained with SAS by using gamma corrected subfields with carefully timed sustains to balance the center of light gravity or mass between S1 and S2. Automatic Power Level (APL) is a concept understood in the industry. The number of sustains are reduced when the picture has a heavy fill factor and increased when the picture has a sparse fill factor. Table I and Table II below show the subfield count for two extreme APLs to be applied to the two sections S1 and S2 during even and odd frames. Other APL values are possible. The Tables I and II illustrate the concept with 12 subfields although subfield numbers are possible including but not limited to 6, 7, 8, 9, 10, 11, 12, 13, and 14 or combinations of these.
In one preferred embodiment, a cell is selectively addressed once per frame. Thus, when 12 subfields (sf) are used, only 13 combinations of true gray scale are realized. In this case selective addressing may be made through a selective erase or a selective write. By applying gamma correction, error diffusion, and spatial and sequential dithering as described in this invention, flicker will be further eliminated, more apparent gray shades will be realized, and a large number of rows may be addressed in a single scan.
In another embodiment, a cell is limited to only a few subfield changes such as on or off per frame to minimize artifacts.
The Bright APLs are on top and the Dim APLs are on bottom. The unit dclock (dclk)=25 Mhz, which results in a frame rate of nominally 16.6 ms. Even with the large number of sustains (950) in the Bright APL, there is time to address the display in each subfield in accordance with SAS. In the preferred embodiment, this is done with selective erase. To further illustrate the center of light method, assume a given input luminance provided to a pixel in section S1 corresponds to 109 sustains out of a possible 951. During odd frames the pixel will be in the ON STATE for SF1 through SF5 for a total of 109 sustains. During even frames the pixel will alternately be on for SF1 through SF5 for a total of 84 sustains and SF1 through SF6 for a total of 136 sustains. The result is an average of 109 sustains. Although the number of sustains changes from frame to frame, the timing is such that the center of light gravity or mass does not change drastically from frame to frame. The average center of light gravity or mass is localized around a constant point and the sustains are averaged to the desired value consistent with the input luminance. A pixel in section S2 would receive the same values and the same average sustains except that it would be out of phase by one frame compared to a pixel in S1. The sustain order for this pixel would be 84-109-136-109 instead of 109-84-109-136.
The artifact reduction method of this invention may be used with any suitable AC plasma display (AC-PDP) structure. The PDP industry has used two basic AC-PDP structures, the two-electrode columnar discharge structure, and the three-electrode surface discharge structure.
The columnar discharge structure has been widely used in monochrome AC plasma displays that emit orange or red light from a neon gas discharge. The two-electrode columnar discharge display structure is disclosed in U.S. Pat. Nos. 3,499,167 (Baker et al.) and 3,559,190 (Bitzer et al.). The two-electrode columnar discharge structure is also referred to as opposing electrode discharge, twin substrate discharge, or co-planar discharge. In the two-electrode columnar discharge AC plasma display structure, the sustaining voltage is continuously applied between an electrode on a rear or bottom substrate and an opposite electrode on the front or top viewing substrate. The gas discharge takes place between the two opposing electrodes in-between the top viewing substrate and the bottom substrate.
The present invention is described with reference to a surface discharge AC plasma display panel having a structure with three or more electrodes defining each pixel or cell. In a three-electrode surface discharge AC plasma display, a sustaining voltage is applied between a pair of adjacent parallel electrodes that are on the front or top viewing substrate. These parallel electrodes are called the bulk sustain electrode and the row scan electrode. The row scan electrode is also called a row sustain electrode because of its dual functions of address and sustain. The opposing electrode on the rear or bottom substrate is a column data electrode and is used to periodically address a row scan electrode on the top substrate. The sustaining voltage is applied to the bulk sustain and row scan electrodes on the top substrate. The gas discharge takes place between the row scan and bulk sustain electrodes on the top viewing substrate.
As disclosed and illustrated in Baker ‘167, the two-electrode columnar discharge AC plasma display panel is an opposing discharge display with the sustaining voltage being applied to the two opposing top and bottom electrodes. The discharge takes place between these two opposing electrodes and in-between the opposing top and bottom substrates. In a multi-color columnar discharge PDP structure as disclosed in U.S. Pat. No. 5,793,158 issued to Donald K. Wedding, incorporated herein by reference, phosphor stripes or layers are deposited along the barrier walls on the bottom substrate adjacent to and extending in the same direction as the bottom electrode. The discharge between the two opposite electrodes generates electrons and ions that bombard and deteriorate the phosphor thereby shortening the life of the phosphor and the PDP.
In a three-electrode surface discharge AC plasma display panel, the sustaining voltage and resulting gas discharge occur between the electrode pairs on the top or front viewing substrate above and remote from the phosphor on the bottom substrate. This separation of the discharge from the phosphor prevents electron bombardment and deterioration of the phosphor deposited on the walls of the barriers or in the grooves (or channels) on the bottom substrate adjacent to and/or over the third (data) electrode. Because the phosphor is spaced from the discharge between the two electrodes on the top substrate, the phosphor is not subject to electron bombardment as in a columnar discharge PDP.
In a two electrode columnar discharge PDP as disclosed by Wedding ‘158, each light-emitting pixel is defined by a gas discharge between a bottom or rear electrode x and a top or front opposite electrode y, each cross-over of the two opposing arrays of bottom electrodes x and top electrodes y defining a pixel or cell.
In a surface discharge PDP, each light-emitting pixel or cell is defined by the gas discharge between two electrodes on the top substrate. In a multi-color RGB display, the pixels may be called subpixels or sub-cells. Photons from the discharge of an ionizable gas at each pixel or subpixel excite a photoluminescent phosphor that emits red, blue, or green light.
In one embodiment of this invention, there is used a surface discharge PDP structure. The three-electrode multi-color surface discharge AC plasma panel structure is widely disclosed in the prior art including U.S. Pat. Nos. 5,661,500 (Shinoda et al.), 5,674,553, (Shinoda et al.), 5,745,086 (Weber), and 5,736,815 (Amemiya), all of which are incorporated herein by reference.
Surface discharge PDP has manufacturing advantages over columnar discharge. For example, the deposition of phosphor in the manufacture of surface discharge is very forgiving because the phosphor covers the electrodes on the back (bottom) substrate without decreasing panel life.
In a columnar discharge PDP structure, the phosphor is more precisely deposited and cannot cover electrode discharge sites on the back substrate without further decreasing phosphor life. There is little or no forgiveness in deposition of the phosphor. It may also be necessary to use an overcoat such as magnesium oxide to protect the phosphor from discharge ion bombardment. However, a protective overcoat decreases light output from the phosphor. A protective phosphor overcoat is typically not required in the manufacture of a surface discharge display structure.
The surface discharge PDP structure is much less sensitive than columnar discharge to variations in the gas discharge gap between the back and front substrates. In a columnar discharge PDP structure, the gap must be more precisely controlled to avoid variations and distortions in luminance and chromaticity.
The luminance (brightness) and contrast ratio are higher in a surface discharge and the power lower. This results in a much higher luminous efficiency for a surface discharge PDP than a columnar discharge PDP.
The columnar discharge PDP or surface discharge PDP may be a single plane structure, also called a single substrate or monolithic structure. Examples of single plane PDPs are disclosed in U.S. Pat. Nos. 3,666,981 (Lay), 3,811,061 (Nakayama et al.), 3,860,846 (Mayer), 3,885,195 (Amano), 3,935,494 (Dick et al.), 4,106,009 (Dick et al.), 4,164,678 (Biazzo et al.), all of which are incorporated by reference.
The PDP may also be constructed of gas filled microspheres. Examples of PDP structures containing microspheres are disclosed in U.S. Pat. Nos. 2,644,113 (Etzkorn), 3,848,248 (Maclntyre), 4,035,690 (Roeber), and 6,545,422 (George et al.), all incorporated herein by reference. PDP structures with microspheres are also disclosed in copending U.S. patent application Ser. No. 10/431,446, filed May 8, 2003, U.S. Pat. No. 7,456,574 issued to Carol Ann Wedding and U.S. Pat. Nos. 6,864,631 and 7,247,989 issued to Donald K. Wedding, all incorporated herein by reference.
The PDP may also be constructed of gas filled elongated tubes. Examples of PDP structures containing elongated tubes are disclosed in U.S. Pat. Nos. 3,602,754 (Pfaender et al.), 3,654,680 (Bode et al.), 3,969,718 (Strom), 3,990,068 (Mayer et al.), 4,027,188 (Bergman), 5,984,747 (Bhagavatula et al.), 6,255,777 (Kim et al.), 6,545,422 (George et al.) and 6,577,060 (Tokai et al.), all incorporated herein by reference. PDP structures with elongated tubes are also disclosed in U.S. Pat. Nos. 7,122,961, 7,157,854, and 7,176,628 issued to Carol Ann Wedding, all incorporated herein by reference.
In one embodiment, the artifact reduction methods of this invention, especially the center of mass method, are used with SAS architecture. However, this invention may be practiced with other suitable PDP electronics addressing schemes or electronics architecture. Examples of such addressing schemes and architectures are discussed below and include ADS, AWD, and MASS. In the preferred practice of this invention, there is used ADS or SAS with a surface discharge PDP. ADS or SAS are typically used in combination with slow ramp reset voltages, as discussed below.
The prior art has disclosed addressing architectures for monochrome and multi-color columnar discharge PDP. The columnar discharge PDP is an opposite discharge two-electrode structure with an array of bottom electrodes x and an array of top opposite electrodes y, the crossover of each bottom x electrode and each top y electrode defining a cell or pixel. The sustaining voltage is applied to the opposite bottom electrode x and to the top electrode y with the gas discharge taking place between the bottom electrode x and top electrode y. Examples of addressing architectures for columnar discharge PDP are disclosed in U.S. Pat. Nos. 5,075,597, 5,828,356, and 6,191,763, all incorporated herein by reference.
A basic electronics architecture for addressing and sustaining a surface discharge AC plasma display is called Address Display Separately (ADS). The ADS architecture is disclosed in a number of Fujitsu patents including U.S. Pat. Nos. 5,541,618 and 5,724,054, both issued to Dr. Tsutae Shinoda of Fujitsu Ltd., Kawasaki, Japan and incorporated herein by reference. Also see U.S. Pat. No. 5,446,344 issued to Yoshikazu Kanazawa of Fujitsu, incorporated by reference, and Shinoda et al. ‘500 referenced above. ADS has become a basic electronic architecture widely used in the AC plasma display industry with surface discharge PDP.
Fujitsu ADS architecture is commercially used by Fujitsu and is also widely used by competing manufacturers including Matsushita and others. ADS is disclosed in FIGS. 2, 3, 11 of U.S. Pat. No. 5,745,086 (Weber), incorporated by reference. The ADS method of addressing and sustaining a surface discharge display as disclosed in U.S. Pat. Nos. 5,541,618 and 5,724,054 issued to Dr. Tsutae Shinoda of Fujitsu sustains the entire panel (all rows) after the addressing of the entire panel. The addressing and sustaining are done separately and are not done simultaneously as in the practice of the SAS architecture.
The prior art has also described surface discharge structures where there is a sharing of electrodes between pixels or subpixels on the front substrate. Fujitsu has described this structure in a paper by Kanazawa et al. published on pages 154 to 157 of the 1999 Digest of the Society for Information Display, incorporated herein by reference. Fujitsu calls this “Alternating Lighting on Surfaces” or ALIS. This structure and the addressing architecture are disclosed in European Patent Application EP 0 945 975A1 filed by Setoguchi et al. of Fujitsu, incorporated herein by reference. Fujitsu has used ALIS with ADS. The ALIS shared electrodes structure and electronic processing methods may be used in the practice of the embodiments of this invention.
Another architecture used in the prior art is called Address While Display (AWD). The AWD electronics architecture was first used during the 1970s and 1980s for addressing and sustaining monochrome PDP. In AWD architecture, the addressing (write and/or erase pulses) are interspersed with the sustain waveform and may include the incorporation of address pulses onto the sustain waveform. Such address pulses may be on top of the sustain and/or on a sustain notch or pedestal. See for example U.S. Pat. Nos. 3,801,861 (Petty et al.), and 3,803,449 (Schmersal). FIGS. 1 and 3 of the Shinoda 054 ADS patent discloses AWD architecture as prior art.
The prior art AWD electronics architecture for addressing and sustaining monochrome PDP has also been adopted for addressing and sustaining multi-color PDP. For example, Samsung Display Devices Co., Ltd., has disclosed AWD and the superimpose of address pulses with the sustain pulse. Samsung specifically labels this as Address While Display (AWD). See High-Luminance and High-Contrast HDTV PDP with Overlapping Driving Scheme, J. Ryeom et al., pages 743 to 746, Proceedings of the Sixth International Display Workshops, IDW 99, Dec. 1-3, 1999, Sendai, Japan. AWD is also disclosed in U.S. Pat. No. 6,208,081 issued to Yoon-Phil Eo and Jeong-duk Ryeom of Samsung, incorporated by reference.
LG Electronics Inc. has disclosed a variation of AWD with a Multiple Addressing in a Single Sustain (MASS) in U.S. Pat. Nos. 6,198,476 (Hong et al.) and 5,914,563 (Lee et al.), both incorporated herein by reference.
SAS architecture comprises addressing one display section of a surface discharge PDP while another section of the PDP is being simultaneously sustained. This architecture is called Simultaneous Address and Sustain (SAS) and is disclosed in U.S. Pat. No. 6,985,125, incorporated herein by reference.
SAS offers a unique electronic architecture which is different from prior art columnar discharge and surface discharge electronics architectures including ADS, AWD, and MASS. It offers important advantages as discussed herein.
In accordance with the practice of SAS with a surface discharge PDP, addressing voltage waveforms are applied to a surface discharge PDP having an array of data electrodes on a bottom or rear substrate and an array of at least two electrodes on a top or front viewing substrate, one top electrode being a bulk sustain electrode x and the other top electrode being a row scan electrode y. The row scan electrode y may also be called a row sustain electrode because it performs the dual functions of both addressing and sustaining.
An important feature and advantage of SAS is that it allows selectively addressing of one section of a surface discharge PDP with selective write and/or selective erase voltages while another section of the panel is being simultaneously sustained. A section is defined as a predetermined number of bulk sustain electrodes x and row scan electrodes y. In a surface discharge PDP, a single row is comprised of one pair of parallel top electrodes x and y.
In one embodiment of SAS, there is provided the simultaneous addressing and sustaining of at least two sections S1 and S2 of a surface discharge PDP having a row scan, bulk sustain, and data electrodes, which comprises addressing one section S1 of the PDP while a sustaining voltage is being simultaneously applied to at least one other section S2 of the PDP.
In another embodiment, the simultaneous addressing and sustaining is interlaced whereby one pair of electrodes y and x are addressed without being sustained and an adjacent pair of electrodes y and x are simultaneously sustained without being addressed. This interlacing can be repeated throughout the display. In this embodiment, a section S is defined as one or more pairs of interlaced y and x electrodes.
In the practice of SAS, the row scan and bulk sustain electrodes of one section that is being sustained may have a reference voltage which is offset from the voltages applied to the data electrodes for the addressing of another section such that the addressing does not electrically interact with the row scan and bulk sustain electrodes of the section which is being sustained.
In a plasma display in which gray scale is realized through time multiplexing, a frame or a field of picture data is divided into subfields. Each subfield is typically composed of a reset period, an addressing period, and a number of sustains. The number of sustains in a subfield corresponds to a specific gray scale weight. Pixels that are selected to be “on” in a given subfield will be illuminated proportionally to the number of sustains in the subfield. In the course of one frame, pixels may be selected to be “on” or “off” for the various subfields. A gray scale image is realized by integrating in time the various “on” and “off” pixels of each of the subfields.
Addressing is the selective application of data to individual pixels. It includes the writing or erasing of individual pixels.
Reset is a voltage pulse which forms wall charges to enhance the addressing of a pixel. It can be of various waveform shapes and voltage amplitudes including fast or slow rise time voltage ramps and exponential voltage pulses. A reset is typically used at the start of a frame before the addressing or sustaining of a section. A reset may also be used before the addressing period of a subsequent subfield. In one embodiment, a reset is applied to all sections before the simultaneous address and sustain.
In accordance with another embodiment of the SAS architecture, there is applied a slow rise time or slow ramp reset voltage with a positive or negative slope so as to provide a uniform wall charge at all pixels in the PDP.
The slower the rise time of the reset ramp, the less visible the light or background glow from those off pixels (not in the on-state) during the slow ramp bulk address. Less background glow is particularly desirable for increasing the contrast ratio which is inversely proportional to the light-output from the off pixels during the reset pulse. Those off pixels which are not in the on-state will give a background glow during the reset. The slower the ramp, the less light output with a resulting higher contrast ratio. Typically the “slow ramp reset voltages” disclosed in the prior art have a slope of about 3.5 volts per microsecond with a range of about 2 to about 9 volts per microsecond.
In the SAS architecture, it is possible to use “slow ramp reset voltages” below 2 volts per microsecond, for example about 1 to 1.5 volts per microsecond without decreasing the number of PDP rows, without decreasing the number of sustain pulses or without decreasing the number of subfields.
This invention may be practiced with slow ramp reset voltages. In one embodiment there is used ADS with slow ramp reset. In another embodiment, there is used SAS with slow ramp reset.
The prior art discloses slow rise slopes or ramps for the addressing of AC plasma displays. The early patents include U.S. Pat. Nos. 4,063,131 (Miller), 4,087,805 (Miller), 4,087,807 (Miavecz), 4,611,203 (Criscimagna et al.), and 4,683,470 (Criscimagna et al.), all incorporated herein by reference.
An architecture for a slow ramp reset voltage is disclosed in U.S. Pat. No. 5,745,086 (Weber), incorporated by reference. Weber ‘086 discloses positive or negative ramp voltages that exhibit a slope that is set to assure that current flow through each display pixel site remains in a positive resistance region of the gas discharge characteristics. The slow ramp architecture is disclosed in FIG. 11 of Weber ‘086 in combination with the Fujitsu ADS.
PCT Patent Application WO 00/30065 filed by Junichi Hibino et al. of Matsushita also discloses architecture for a slow ramp reset voltage and is incorporated by reference. This reference discloses a total ramp reset cycle time restricted to less than 360 microseconds for a display panel resolution up to 1080 row scan electrodes with a maximum of 8 subfields using dual scan. With dual scan, Habino et al. can obtain up to 15 subfields for lower resolution displays such as 480 and 768 row scan electrodes.
The SAS architecture allows for a ramp reset cycle time up to 1000 microseconds (one millisecond) or more depending upon the PDP resolution. For a display panel resolution of 1080 row scan electrodes, the SAS architecture allows for a ramp reset cycle time up to 800 microseconds without decreasing the number of sustains and/or subfields as required in the prior art. For lower panel scan row resolutions of 480 and 768, SAS architecture allows a ramp reset cycle time up to 1000 microseconds.
Habino et al. specifies a reset voltage rise slope of no more than 9 volts per microsecond. Because the entire reset cycle time of Habino et al. is a maximum of 360 microseconds, it is not feasible for Habino et al. to use a reset ramp slope of 1.5 volts per microsecond without also decreasing the maximum or peak voltage amplitude of the reset voltage below the amplitude required for reliable discharge and stable addressing. The practice of the SAS architecture allows for the use of a reset ramp slope of 1 to 1.5 volts per microsecond at the maximum reset voltage amplitude required for reliable discharge and stable addressing.
The practice of the SAS architecture and invention also allows the use of a low reset voltage rise slope of about 1 to 1.5 volts per microsecond with an overall ramp reset cycle time up to 1000 microseconds. In one embodiment of this invention practiced with SAS, there is used a ramp reset cycle time of 800 microseconds, a display resolution of 1080 row scan electrodes, and a reset voltage rise slope of 1 to 1.5 volts per microsecond. The resolutions typically contemplated in the practice of this invention are 480, 600, 768, 1024, 1080, and 1200 row scan electrodes which are currently used in the PDP industry. However, other resolutions may be used.
SAS allows for simultaneous addressing and sustaining thereby providing more time within the frame for other waveform operations. By comparison the ADS architecture of Fujitsu allocates 75 percent of the frame time for addressing and 25 percent for sustaining.
Because both the addressing and sustaining are completed in 75 percent of the available frame time, SAS has 25% remaining frame time.
SAS has the ability to provide 6 to 17 subfields for panel resolutions up to 768 row scan electrodes and 10 to 12 subfields for resolutions of 1080 row scan electrodes without using dual scan.
With SAS, the slow ramp reset can be tailored to ramp slopes of 1.5 microseconds per volt or less which greatly minimizes background glow. This is not possible with the ADS approach of Fujitsu. SAS also provides for more uniform contrast ratio, uniform wall charge profile and improved stability in addressing.
In the practice of this invention the PDP may be physically divided into at least two sections with each section being addressed by separate electronics. This was first disclosed in U.S. Pat. Nos. 4,233,623 and 4,320,418 issued to Dr. Thomas J. Pavliscak, both incorporated by reference. It is also disclosed in U.S. Pat. No. 5,914,563 (Lee et al.), incorporated herein by reference.
In the PDP industry this dividing of the PDP into two sections with separate electronics for each section is called dual scan. It is more costly to use dual scan because of the added electronics and reduced PDP yield. However, dual scan has been necessary with ADS and AWD architecture in order to obtain sufficient subfields at higher resolutions. The practice of SAS architecture allows for a larger number of subfields at higher resolutions without using dual scan.
SAS maintains higher probability of priming particles due to its virtual “dual scan” like operation. Coupled with improved priming and uniform wall charge distribution, SAS allows for the addressing of high resolution AC plasma displays with 10 to 12 subfields at a high resolution of 1080 row scan electrodes without dual scan.
Each barrier 13 comprises a bottom portion 13A and a top portion 13B. The top portion 13B is dark or black for increased contrast ratio. The bottom portion 13A may be translucent, opaque, dark, or black. The top substrate 15 is transparent glass for viewing and contains y row scan (or sustain) electrodes 18A and x bulk sustain electrodes 18B, dielectric layer 16 covering the electrodes 18A and 18B, and a magnesium oxide layer 17 on the surface of dielectric 16. The magnesium oxide is for secondary electron emission and helps lower the overall operating voltage of the display.
A plurality of channels 19 are formed by the barriers 13 containing the phosphor 14. When the two substrates 11 and 15 are sealed together, an ionizable gas mixture is introduced into the channels 19. This is typically a Penning mixture of the rare gases. Such gases are well known in the manufacture and operation of gas discharge displays.
As noted above, each electrode 12 on the bottom substrate 11 is called a column data electrode. The y electrode 18A on the top substrate 15 is the row scan (or sustain) electrode and the x electrode 18B on the top substrate 15 is the bulk sustain electrode. A pixel or subpixel is defined by the three electrodes 12, 18A, and 18B. The gas discharge is initiated by voltages applied between a bottom column data electrode 12 and a top y row scan electrode 18A. The sustaining of the resulting discharge is done between an electrode pair of the top y row scan electrode 18A and a top x bulk sustain electrode 18B. Each pair of the y and x electrodes is a row.
Phosphor 14R emits red luminance when excited by photons from the gas discharge within the plasma panel. Phosphor 14G emits green luminance when excited by photons from the gas discharge within the plasma panel. Phosphor 14B emits blue luminance when excited by photons from the gas discharge within the plasma panel.
Although not illustrated in
Split or divided electrodes connected by cross-overs may also be used for x and y for example as disclosed in U.S. Pat. No. 3,603,836 issued to John Grier, incorporated by reference. A split electrode structure may also be used for the column data electrodes.
The column data electrodes may be of different widths for each R, G, B phosphor as disclosed in U.S. Pat. No. 6,034,657 (Tokunaga et al.), incorporated herein by reference.
The electrode arrays on either substrate are shown in
Although the practice of this invention is described herein with each pixel or subpixel defined by a three-electrode surface discharge structure, it will be understood that this invention may also be used with surface discharge structures having more than three distinct electrodes, for example more than two distinct electrodes on the top substrate and/or more than one distinct electrode on the bottom substrate. In the literature, some surface discharge structures have been described with four or more electrodes including three or more electrodes on the front substrate.
In Phases 1 and 6 of
Phase 2 of
As illustrated in
H is a period of time sufficient to allow the ramp to take advantage of the priming caused by the narrow sustain pulse and erase.
At the end of Phase 2 the row scan electrode y and bulk sustain electrode x go back to reference. This can also occur at the end of Phase 4 and the beginning of Phase 5, but such requires additional circuitry and adds to the cost of the system.
Phase 3 of
Phase 4 of
Phase 5 of
The bulk sustain electrode x has a positive voltage applied throughout the addressing phase to induce charge transport between the pair of electrodes x and y which are sustained after the addressing discharge has taken place.
The waveform of
In Table III there is presented a 10 subfield example using the waveform of
Table IV shows one subfield within the frame.
Table V shows 10 subfields with a different number of sustains in each subfield for S1 and S2
Table VI shows one subfield within the frame.
In the case of different sustains being employed by S1 and S2, an additional advantage may be derived by changing the order in which S1 and S2 are addressed. Additional time savings may also be obtained if the section with the larger number of sustains is addressed in phase 2. This allows for a greatest amount of overlap to occur between sustaining and addressing in Phase 3. The result is more time available for ramped resets, additional sustains, additional subfields, and/or more rows.
The waveforms of
The SAS architecture allows for a larger number of sustain cycles per frame. This allows for a brighter display or alternatively more subfields per display. This also improves the PDP operating margin (window) due to more time allowed for the various overhead functions.
In the practice of this invention, the center of light gravity or mass artifact reduction methods of this invention may be used alone or in combination with other artifact reduction methods with the SAS architecture for the reduction of visual artifacts including static and dynamic contour between two PDP sections being simultaneously addressed and sustained. These other artifact reduction methods include gamma correction, error diffusion, and dithering as described herein.
In the practice of this invention, the artifact reduction methods of this invention may also be used with ADS or other addressing architectures for the reduction of visual artifacts including static and dynamic contour. Thus the artifact reduction methods of this invention including gamma correction, error diffusion, dithering, and center of light may be used alone or in combination (and/or with other methods) for reducing artifacts in ADS or other addressing architectures and PDP structures including ALIS.
In the practice of this invention, an integrated circuit may be utilized to perform one or more of the artifact reduction methods and/or to perform timing control methods. Such integrated circuit(s) may comprise a monolithic structure which receives and processes digital signals (input luminance). The processing may comprise one or more artifact reduction methods such as described herein including gamma correction, error diffusion, and dithering. Timing methods such as center of light may be included in the same or a separate integrated circuit. In one embodiment, an integrated circuit is used to perform the SAS and center of light methods for the timing functions and control.
As disclosed herein, this invention is not to be limited to the exact forms shown and described. Changes and modifications may be made by one skilled in the art within the scope of the following claims.
This application is a division and continuation-in-part under 35 U.S.C. 120 of Utility patent application Ser. No. 10/768,097, filed Feb. 2, 2004, to be issued as U.S. Pat. No. 7,456,808, with priority claimed under 35 U.S.C. 119(e) for Provisional Patent Applications 60/444,662, filed Feb. 4, 2003 and Ser. No. 60/446,243, filed Feb. 11, 2003.
Number | Name | Date | Kind |
---|---|---|---|
3499167 | Baker et al. | Mar 1970 | A |
3559190 | Bitzer et al. | Jan 1971 | A |
3603836 | Grier | Sep 1971 | A |
3801861 | Petty et al. | Apr 1974 | A |
3803449 | Schmersal | Apr 1974 | A |
4063131 | Miller | Dec 1977 | A |
4087805 | Miller | May 1978 | A |
4087807 | Miavecz | May 1978 | A |
4126807 | Wedding et al. | Nov 1978 | A |
4126809 | Wedding et al. | Nov 1978 | A |
4233623 | Pavliscak | Nov 1980 | A |
4320418 | Pavliscak | Mar 1982 | A |
4494038 | Wedding et al. | Jan 1985 | A |
4611203 | Criscimagna et al. | Sep 1986 | A |
4680645 | Dispoto et al. | Jul 1987 | A |
4683470 | Criscimagna et al. | Jul 1987 | A |
4890167 | Nakazato et al. | Dec 1989 | A |
5012163 | Alcorn et al. | Apr 1991 | A |
5045952 | Eschbach | Sep 1991 | A |
5386304 | Suzuki | Jan 1995 | A |
5410219 | Takei et al. | Apr 1995 | A |
5434672 | McGuire | Jul 1995 | A |
5436634 | Kanazawa | Jul 1995 | A |
5446344 | Kanazawa | Aug 1995 | A |
5541618 | Shinoda | Jul 1996 | A |
5546101 | Sugawara | Aug 1996 | A |
5606631 | Weiss et al. | Feb 1997 | A |
5623281 | Markandey et al. | Apr 1997 | A |
5661500 | Shinoda et al. | Aug 1997 | A |
5674553 | Shinoda et al. | Oct 1997 | A |
5724054 | Shinoda | Mar 1998 | A |
5736815 | Amemiya | Apr 1998 | A |
5745086 | Weber | Apr 1998 | A |
5793158 | Wedding, Sr. | Aug 1998 | A |
5828356 | Stoller | Oct 1998 | A |
5903245 | Shimizu et al. | May 1999 | A |
5914563 | Lee et al. | Jun 1999 | A |
6008793 | Shigeta | Dec 1999 | A |
6018329 | Kida et al. | Jan 2000 | A |
6025818 | Okano | Feb 2000 | A |
6034657 | Tokunaga et al. | Mar 2000 | A |
6040876 | Pettitt | Mar 2000 | A |
6052101 | Moon | Apr 2000 | A |
6088009 | Moon | Jul 2000 | A |
6097358 | Hirakawa et al. | Aug 2000 | A |
6097368 | Zhu et al. | Aug 2000 | A |
6157396 | Margulis et al. | Dec 2000 | A |
6198476 | Hong et al. | Mar 2001 | B1 |
6208081 | Eo et al. | Mar 2001 | B1 |
6215468 | Van Mourik | Apr 2001 | B1 |
6215913 | Clatanoff et al. | Apr 2001 | B1 |
6252574 | Hosoi et al. | Jun 2001 | B1 |
6262699 | Suzuki et al. | Jul 2001 | B1 |
6288693 | Song et al. | Sep 2001 | B1 |
6340960 | Song et al. | Jan 2002 | B1 |
6340994 | Margulis et al. | Jan 2002 | B1 |
6342898 | Pettitt | Jan 2002 | B1 |
6344841 | Moon | Feb 2002 | B1 |
6362800 | Moon | Mar 2002 | B1 |
6384802 | Moon | May 2002 | B1 |
6384803 | Kasahara et al. | May 2002 | B2 |
6388645 | Kasahara et al. | May 2002 | B2 |
6414657 | Kasahara et al. | Jul 2002 | B1 |
6433763 | Lim et al. | Aug 2002 | B1 |
6456340 | Margulis | Sep 2002 | B1 |
6466187 | Moon | Oct 2002 | B1 |
6473464 | Weitbruch et al. | Oct 2002 | B1 |
6476781 | Suzuki et al. | Nov 2002 | B1 |
6476875 | Correa et al. | Nov 2002 | B2 |
6492776 | Rutherford | Dec 2002 | B2 |
6495968 | Tokunaga | Dec 2002 | B2 |
6593903 | Nakamura et al. | Jul 2003 | B2 |
6646625 | Shigeta et al. | Nov 2003 | B1 |
6654028 | Yamakawa | Nov 2003 | B1 |
6661469 | Kawabata et al. | Dec 2003 | B1 |
6661470 | Kawakami et al. | Dec 2003 | B1 |
6707943 | Gicquel et al. | Mar 2004 | B2 |
6727959 | Eskin | Apr 2004 | B2 |
6771832 | Naito et al. | Aug 2004 | B1 |
6774873 | Hsu et al. | Aug 2004 | B2 |
6778182 | Yamakawa | Aug 2004 | B2 |
6836263 | Naka et al. | Dec 2004 | B2 |
6864631 | Wedding | Mar 2005 | B1 |
6897836 | Tokunaga | May 2005 | B2 |
6956583 | Lee | Oct 2005 | B2 |
6985126 | Hoppenbrouwers et al. | Jan 2006 | B2 |
7025252 | Kim | Apr 2006 | B2 |
7071954 | Takahashi | Jul 2006 | B2 |
7075243 | Park | Jul 2006 | B2 |
7075504 | Tokunaga et al. | Jul 2006 | B2 |
7075560 | Ohe et al. | Jul 2006 | B2 |
7088313 | Kang | Aug 2006 | B2 |
7088316 | Kao et al. | Aug 2006 | B2 |
7102696 | Kao et al. | Sep 2006 | B2 |
7122961 | Wedding | Oct 2006 | B1 |
7126563 | Lin et al. | Oct 2006 | B2 |
7157854 | Wedding | Jan 2007 | B1 |
7176628 | Wedding | Feb 2007 | B1 |
7180480 | Lee et al. | Feb 2007 | B2 |
7187348 | Iwami et al. | Mar 2007 | B2 |
7236147 | Morita et al. | Jun 2007 | B2 |
7247989 | Wedding | Jul 2007 | B1 |
7307602 | Wedding et al. | Dec 2007 | B1 |
7339554 | Hsu et al. | Mar 2008 | B2 |
7339706 | Ohta | Mar 2008 | B2 |
7355570 | Choi | Apr 2008 | B2 |
7365711 | Kim | Apr 2008 | B2 |
7375342 | Wedding | May 2008 | B1 |
7397445 | Baek | Jul 2008 | B2 |
7408530 | Yang | Aug 2008 | B2 |
7414598 | Lee | Aug 2008 | B2 |
7420571 | Lee et al. | Sep 2008 | B2 |
7420576 | Takeuchi et al. | Sep 2008 | B2 |
20020063807 | Margulis | May 2002 | A1 |
20020135548 | Moon | Sep 2002 | A1 |
20020175906 | Moon | Nov 2002 | A1 |
20040070590 | Lee et al. | Apr 2004 | A1 |
20040109088 | Lee et al. | Jun 2004 | A1 |
20040263538 | Ohta et al. | Dec 2004 | A1 |
20050225562 | Higgins et al. | Oct 2005 | A1 |
20050276502 | Elliott et al. | Dec 2005 | A1 |
20060001606 | Yim | Jan 2006 | A1 |
20060022906 | Kamiyamaguchi et al. | Feb 2006 | A1 |
20060125718 | Weitbruch et al. | Jun 2006 | A1 |
20070065008 | Kao et al. | Mar 2007 | A1 |
20070230813 | Yamamoto et al. | Oct 2007 | A1 |
20080018561 | Song et al. | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
0720139 | Jul 1997 | EP |
1 020 838 | Jul 2000 | EP |
1020838 | Jul 2000 | EP |
1022714 | Jul 2000 | EP |
WO 0030065 | May 2000 | WO |
Number | Date | Country | |
---|---|---|---|
60444662 | Feb 2003 | US | |
60446243 | Feb 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10768097 | US | |
Child | 12272596 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10768097 | Feb 2004 | US |
Child | 10768097 | US |