The present invention relates to the field of sources of high energy photons and more particularly, to the field of sources of gamma rays.
Routine energy and efficiency calibration of high-resolution HPGe (high purity Ge) detectors and other gamma ray detectors is limited to gamma ray energies of less than 2.6 MeV using normally available radioactive materials as the source of the gamma rays. Secondary radioactive standards that can be produced with a cyclotron extend the range to 3.5 MeV (56Co, t1/2=77 days) or 4.8 MeV (66Ga, t1/2=9.5 hr). These higher energy calibration standards are not readily accessible to most users and all radioactive sources require continuous safe storage since they are controlled radioactive materials.
The present invention is a gamma ray generator. An embodiment of the gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produce gamma rays.
An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.
The present invention is described with respect to particular exemplary embodiments thereof and reference is accordingly made to the drawings in which:
An embodiment of a gamma ray generator of the present invention is illustrated in
The gamma ray generator 100 is further illustrated in
An embodiment of the neutron generator 210 includes a flanged tube 216, a plasma generator 218, a beam accelerator 220, and a target plate 222. The flanged tube 216 is made of a dielectric material such as alumina (Al2O3). The plasma generator 218 is inserted into the flanged tube 216 and a flanged end of the plasma generator 218 is brazed to a flange of the tube 216. The beam accelerator 220 is coupled to an inside of the tube 216 near the plasma generator 218. Preferably, the beam accelerator 220 is a single gap beam accelerator. The target plate 222 is brazed to the other flange of the tube 216. Brazing of the plasma generator 218 and the target plate 222 to the flanged tube 216 forms a vacuum tube that houses the plasma generator 218, the beam accelerator 220, and the target plate 222.
The neutron generator 210 is further illustrated in
The ion beam impinges a target 340 of the target plate 222 that initially causes D ions to load the target 340. The target 340 may be a Ti target or some other suitable H absorbing target such as Sc or Zr. As the ion beam continues to impinge the target 340, the target 340 develops a neutron generating capability. Neutrons are generated in D-D reactions resulting from incoming D ions fusing with previously implanted target D atoms. The neutrons exit the target 340 in all directions. Preferably, the neutron generator produces approximately 105 to 106 n/s.
An alternative embodiment of the gamma ray generator 100 replaces the neutron generator 210 with a different neutron generator such as a neutron generator that includes an ion source that produces a plasma through RF induction discharge or microwave radiation. Neutron generators are well known in the art.
In an alternative embodiment of the neutron generator 210, the vacuum line 324 and the gas line 326 are combined into a single line where initially the single line is used to apply vacuum to the neutron generator and then to feed a sufficient amount of D to operate the neutron generator. In yet another embodiment of the neutron generator 210, the single line is sealed upon applying the vacuum and feeding the sufficient amount of D either by filling the volume with the sufficient amount of D gas or by utilizing a gas storage unit (i.e., a getter) that releases the gas when heated or pumping the gas when cooled.
In alternative operating modes of the neutron generator 210, the gas line 326 feeds T (tritium) or a combination of D and T into the plasma generator 218 in which case the neutron generator 210 produces neutrons in T-T reactions or a combination of D-D, D-T, and T-T reactions, respectively. These alternative operating modes are less preferred because T is radioactive requiring additional requirements for safe handling such as sealing the neutron generator and safe storage when not in use.
The neutron generator 210 is expected to have a D-D neutron yield on the order of 105 n/s when 100 μA of beam is accelerated to 40 kV using a 10% duty cycle. This means that total beam power with these parameters is anticipated to be 400 mW and this beam power could be sufficiently low that active cooling (e.g. water cooling) is not employed. Alternatively, active cooling may be included.
Referring to
The neutrons produced by the neutron generator 210 are thermalized by collisions with H in the moderator and captured by the neutron capture material, which produces gamma rays in all directions by prompt neutron capture. These gamma rays have a known energy spectrum and intensities in accordance with a particular choice of the neutron capture material. For example, neutrons that bombard a PVC moderator in which Cl is the neutron capture material produce gamma rays in the reaction 35Cl(n,γ)36Cl that have an energy spectrum and intensities as reported by R.B. Firestone et al. in, “Database of Prompt Gamma Rays from Slow Neutron Capture for Elemental Analysis,” IAEA STI/PUB/1263 (2007), (which is a general reference that covers data for all moderators), in Table 7.3 at pp 91-92, where intensities Iγ per 100 neutron captures are provided by 100·σγZ(Eγ)/σγZ in which σγZ(Eγ) is the partial elemental capture cross-section and σγZ is the elemental capture cross-section.
A compilation of particular energies Eγ in keV from the energy spectrum for 35Cl(n,γ)36Cl and corresponding intensities Iγ per 100 neutron captures is provided as a table in
It will be readily apparent to one skilled in the art that the moderator may be made from a wide selection of materials that provide a wide range of neutron capture materials. Depending upon the choice of neutron capture material, moderators can be produced which generate gamma rays having energies within the range of approximately 0 to 11 MeV.
Referring to
The neutron generator 210 and the gamma ray generator 100 as discussed herein are relatively safe in operation producing no more radiation than the sources it replaces and no radiation when not in use. For example, if the neutron generator 210 is operated to produce a neutron yield of 105 n/s without the moderator 208 or the outer shield 104 installed, the non-moderated neutron flux at 10 cm from the target would be approximately 80 n/cm2/s. This corresponds to a dose of 10 mrem/hr that is well within safe limits. Installing the moderator 208 would reduce this by an order of magnitude. The device only produces short lived radiation and requires no radiation concerns when stored (i.e., when the gamma ray generator 100 is not powered).
One application of the gamma ray generator 100 is as a calibration device for gamma ray detectors. For example, the gamma ray generator 100 can be used to calibrate a high-resolution HPGe (high purity Ge) detector by placing such a detector near an end 106 (
The foregoing detailed description of the present invention is provided for the purposes of illustration and is not intended to be exhaustive or to limit the invention to the embodiments disclosed. Accordingly, the scope of the present invention is defined by the appended claims.
This application claims priority to PCT Application PCT/US2009/059843, filed Oct. 7, 2009, which PCT application in turn claimed priority to Provisional U.S. Patent Application Serial No. 61/109,426 filed Oct. 29, 2008, and entitled Gamma Ray Generator, the text of which applications are incorporated by reference herein, as if fully set out in their entirety.
This invention was made with government support under Contract No. DE-AC02-05CH11231 awarded by the U.S. Department of Energy to the Regents of the University of California for the operation and management of the Lawrence Berkeley National Laboratory. The government has certain rights in this invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US09/59843 | 10/7/2009 | WO | 00 | 6/20/2011 |
Number | Date | Country | |
---|---|---|---|
61109426 | Oct 2008 | US |