Gamma voltage output circuit and liquid crystal display having same

Abstract
An exemplary gamma voltage output circuit (3) has an internal resistor string (31), which has a plurality of resistors and a plurality of nodes; at least one external resistor string (32, 33, 34), which has a plurality of resistors and a plurality of nodes; a plurality of switching circuit (35), each switching circuit having at least one input end (353, 354, 355) and at least one output end (356). The internal and the at least one external resistor strings connect in series between the power source AVDD and ground, respectively. Each node outputs a gamma voltage. The nodes of internal and the at least one external resistor strings respectively are connected to the output end and the input end, the resistors of the internal resistor string parallel connecting to corresponding resistors of the at least one external resistor string through the corresponding switching circuit.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an abbreviated diagram of a gamma voltage output circuit according to an exemplary embodiment of the present invention, which includes a switching circuit, a first resistors string, a second resistors string.



FIG. 2 is a abbreviated diagram of the switching circuit of the gamma voltage output circuit of FIG. 1.



FIG. 3 is an abbreviated diagram showing the parallel connection between the first resistors string and the second resistors string of the gamma voltage output circuit of FIG. 1.



FIG. 4 is an abbreviated equivalent circuitry of the parallel connection between the first resistors string and the second resistors string of the gamma voltage output circuit of FIG. 3.



FIG. 5 is a diagram showing the transmittance of the liquid crystal versus the applied driving voltage.



FIG. 6 is a diagram showing the transmittance of the liquid crystal versus the gray level.



FIG. 7 is a schematic diagram, showing a conventional gamma voltage output circuit.



FIG. 8 is a diagram, showing three gamma curves of transmittance of the liquid crystals versus the gray level, having gamma values of 1.0, 2.0, 3.0.



FIG. 9 is a schematic diagram, showing an another conventional gamma voltage output circuit.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Reference will now be made to the drawings to describe preferred and exemplary embodiments in detail.


Referring to FIG. 1, a gamma voltage output circuit of a liquid crystal display according to an embodiment of the present invention is shown. The liquid crystal display includes a printed circuit board (not shown), which has a driving IC (not shown) and a gamma voltage output circuit 3. The gamma voltage output circuit 3 includes a first resistor string 31, a second resistor string 32, a third resistor string 33 and a fourth resistor string 34, respectively connecting in series between the power source AVDD and ground, and a plurality of switching circuits 35. The first resistor string 31 is disposed in the driving IC, named as internal resistor strings, which includes sixty-five resistors R′0˜R′64 and sixty-four nodes, the sixty-four nodes corresponding to sixty-four gamma voltages V′1˜V′64. The second, third and fourth resistor strings 32, 33, 34 and the plurality of switching circuits 35 are formed out of the driving IC, named as external resistor string. The second resistor string 32 includes fifteen resistors R′0_1˜R′14_1 and fourteen nodes; the third resistor string 33 includes fifteen resistors R′0_2˜R′14_2 and fourteen nodes; and the fourth resistor string 34 includes fifteen resistors R′0_3˜R′14_3 and fourteen nodes. The number of the plurality of switching circuit 35 is fourteen.


The circuit configuration of each switching circuit 35 is shown in FIG. 2, which has an enabling signal input end (EN) 350, a first controlling signal input end (A0) 351, a second controlling signal input end (A1) 352, a first input end (S1) 353, a second input end (S2) 354, a third input end (S3) 353, and an output end (OUT) 356. The switching circuit 35 in the embodiment employs analog switch AD7502. The first input ends (S1) 353 of the fourteen switching circuits 35 respectively electrically connect with the fourteen nodes of the second resistor string 32. The second input ends (S2) 354 of the fourteen switching circuits 35 respectively electrically connect with the fourteen nodes of the third resistor string 33. The third input ends (S3) 355 of the fourteen switching circuits 35 respectively electrically connect with the fourteen nodes of the fourth resistor string 34. The output ends (OUT) 356 of the fourteen switching circuits 35 respectively electrically connect with fourteen nodes of the sixty-four nodes of the first resistor string 31. For different gamma voltage output circuits, the fourteen nodes can be chosen according to different needs. But, for a certain gamma voltage output circuit, the fourteen nodes are changeless.


In operation, when the driving IC sends a high level signal to the enabling signal input end (EN) 350 of the switching circuit 35, the switching circuit 35 starts to work. When the first and the second controlling signal input ends (A0, A1) 351, 352 respectively receive a low level signal, the first input end (S1) 353 electrically connects with the output end (OUT) 356. That is, the resistors of the first resistor string 31 parallel connect to the corresponding resistor of the second resistors string 32. The corresponding resistor of the second resistors string 32 can be chosen according to different needs. FIG. 3 provides one parallel connecting circuitry 41. In FIG. 3, the resistor R′0 parallel connects to the resistor R′0_1; the resistor R′1 parallel connects to the resistor R′1_1; the resistor R′2 parallel connects to the resistor R′2_1; the resistor R′63 parallel connects to the resistor R′13_1; the resistor R′34 parallel connects to the resistor R′14_1. In addition, each six continuous resistors of resistor R′3˜R′62 parallel connect to one resistor of R′3_1˜R′12_1, such as resistors R′(3+6n)˜R′(8+6n) (0≦n≦9) parallel connect to R′(3+n)_1. The sixty-four nodes of the first resistor string 31 respectively output gamma voltages V″1˜V″64.



FIG. 4 shows the equivalent scheme 51 of the parallel circuitry 41 of FIG. 3, the equivalent scheme 51 has sixty-five equivalent resistance R″0˜R″64 and sixty-four nodes. Each node output one gamma voltage. A serial voltages V″1˜V″64 of the equivalent scheme 51 correspond to one gamma curve.


When the driving IC sends a high level signal to the enabling signal input end (EN) 350 of the switching circuit 35, and the first and the second controlling signal input ends (A0, A1) 351, 352 of the switching circuit 35 respectively receive a high level signal and a low level signal, the second input end (S2) 354 electrically connects with the output end (OUT) 356. That is, the resistors of the first resistor string 31 parallel connect to the corresponding resistor of the third resistors string 33, similar to the second resistors string 32. when the driving IC sends a high level signal to the enabling signal input end (EN) 350 of the switching circuit 35, and the first and the second controlling signal input ends (A0, A1) 351, 352 of the switching circuit 35 respectively receive a low level signal and a high level signal, the second input end (S3) 355 electrically connects with the output end (OUT) 356. That is, the resistors of the first resistor string 31 parallel connect to the corresponding resistor of the fourth resistors string 34, similar to the second resistors string 32. When the driving IC sends a low level signal to the enabling signal input end (EN) 350 of the switching circuit 35, the switching circuit 35 turns off.


In the gamma voltage output circuit 3, the numbers of the second, third, fourth resistors strings 32, 33, 34 can also be others. And, the number of the plurality of switching circuits 35 can be determined according to the numbers of the second, third, fourth resistors strings 32, 33, 34.


Comparing to prior arts, the gamma voltage output circuit 3 does not need change the internal circuit configuration of the driving IC, which just add a quantity of resistors at an external peripheral region of the driving IC to realize gamma voltages adjusting according to different needs. Thus, a good displaying characteristics can be attained even in different external environments.


When the LCD needs to be operated in more different external environments, the number of the external resistors string needs to be added. However, the internal circuitry configuration does not need to be changed.


When the driving IC of the LCD is eight bit or ten bit, the number of the internal resistors string is two hundred fifty-six or one thousand twenty-four. However, the number of each external resistors string does not need to be changed or just change a small quantities, such as add to twenty or thirty.


It is believed that the present embodiments and their advantages will be understood from the foregoing description, and it will be apparent that various changes may be made thereto without departing from the spirit and scope of the invention or sacrificing all of its material advantages, the examples hereinbefore described merely being preferred or exemplary embodiments of the invention.

Claims
  • 1. A gamma voltage output circuit for a liquid crystal display, the gamma voltage output circuit comprising: an internal resistor string, comprising a plurality of resistors and a plurality of nodes;at least one external resistor string, comprising a plurality of resistors and a plurality of nodes;a plurality of switching circuit, each switching circuit comprising at least one input end and at least one output end;wherein the internal and the at least one external resistor strings connecting in series between the power source AVDD and ground, respectively, each node outputting a gamma voltage, the nodes of internal and the at least one external resistor strings respectively being connected to the at least one output end and the at least one input end, the resistors of the internal resistor string parallel connecting to corresponding resistors of the at least one external resistor string through the corresponding switching circuit.
  • 2. The gamma voltage output circuit as claimed in claim 1, wherein the at least one external resistor string comprises three external resistor strings, which are a first external resistor string, a second external resistor string and a third external resistor string, and each switching circuit comprises three input ends, which are a first input end, a second input end, and a third input end, in which the plurality of nodes of the first external resistor string respectively connects with the first input ends of the plurality of switching circuits, and the plurality of nodes of the second external resistor string respectively connects with the second input ends of the plurality of switching circuits, and the plurality of nodes of the third external resistor string respectively connects with the third input ends of the plurality of switching circuits.
  • 3. The gamma voltage output circuit as claimed in claim 2, wherein each switching circuit comprises an enabling signal input end, a first controlling signal input end, and a second controlling signal input end, when the enabling signal input end receives a high level signal, and the first and the second controlling signal input ends of the switching circuit respectively receive a low level signal, the first input end electrically connects with the output end.
  • 4. The gamma voltage output circuit as claimed in claim 3, wherein when the enabling signal input end receives a high level signal, and the first and the second controlling signal input ends of the switching circuit respectively receive a high level signal and a low level signal, the second input end electrically connects with the output end.
  • 5. The gamma voltage output circuit as claimed in claim 4, wherein when the enabling signal input end receives a high level signal, and the first and the second controlling signal input ends of the switching circuit respectively receive a low level signal and a high level signal, the third input end electrically connects with the output end.
  • 6. The gamma voltage output circuit as claimed in claim 5, wherein when the enabling signal input end receives a low level signal, the switching circuit stops to work.
  • 7. The gamma voltage output circuit as claimed in claim 6, wherein the switching circuit employs analog switch AD7502.
  • 8. The gamma voltage output circuit as claimed in claim 2, wherein the first, the second, and the third external resistor string have same number of resistors.
  • 9. The gamma voltage output circuit as claimed in claim 8, wherein the number of the resistors of the first, the second, and the third external resistor string is fifteen, respectively.
  • 10. The gamma voltage output circuit as claimed in claim 8, wherein the number of the resistors of the internal resistor string is larger than that of the first external resistor string.
  • 11. The gamma voltage output circuit as claimed in claim 8, wherein the number of the resistors of the internal resistor string is sixty-five.
  • 12. A liquid crystal display comprising: a printed circuit board, which has a driving IC (not shown) and a gamma voltage output circuit; the gamma voltage output circuit comprising:an internal resistor string, comprising a plurality of resistors and a plurality of nodes;at least one external resistor string, comprising a plurality of resistors and a plurality of nodes;a plurality of switching circuit, each switching circuit comprising at least one input end and at least one output end;wherein the internal and the at least one external resistor strings connecting in series between the power source AVDD and ground, respectively, each node outputting a gamma voltage, the nodes of internal and the at least one external resistor strings respectively being connected to the at least one output end and the at least one input end, the resistors of the internal resistor string parallel connecting to corresponding resistors of the at least one external resistor string through the corresponding switching circuit.
  • 13. The liquid crystal display as claimed in claim 12, wherein the at least one external resistor string comprises three external resistor strings, which are a first external resistor string, a second external resistor string and a third external resistor string, and each switching circuit comprises three input ends, which are a first input end, a second input end, and a third input end, in which the plurality of nodes of the first external resistor string respectively connects with the first input ends of the plurality of switching circuits, and the plurality of nodes of the second external resistor string respectively connects with the second input ends of the plurality of switching circuits, and the plurality of nodes of the third external resistor string respectively connects with the third input ends of the plurality of switching circuits.
  • 14. The liquid crystal display as claimed in claim 13, wherein each switching circuit comprises an enabling signal input end, a first controlling signal input end, and a second controlling signal input end, when the enabling signal input end receives a high level signal, and the first and the second controlling signal input ends of the switching circuit respectively receive a low level signal, the first input end electrically connects with the output end.
  • 15. The liquid crystal display as claimed in claim 14, wherein when the enabling signal input end receives a high level signal, and the first and the second controlling signal input ends of the switching circuit respectively receive a high level signal and a low level signal, the second input end electrically connects with the output end.
  • 16. The liquid crystal display as claimed in claim 15, wherein when the enabling signal input end receives a high level signal, and the first and the second controlling signal input ends of the switching circuit respectively receive a low level signal and a high level signal, the third input end electrically connects with the output end.
  • 17. The liquid crystal display as claimed in claim 16, wherein when the enabling signal input end receives a low level signal, the switching circuit stops to work.
  • 18. The liquid crystal display as claimed in claim 17, wherein the switching circuit employs analog switch AD7502.
  • 19. The liquid crystal display as claimed in claim 13, wherein the first, the second, and the third external resistor string have same number of resistors.
  • 20. The liquid crystal display as claimed in claim 19, wherein the number of the resistors of the internal resistor string is larger than that of the first external resistor string.
Priority Claims (1)
Number Date Country Kind
095126674 Jul 2006 TW national