The present invention is directed to vehicles. More particularly, the invention provides gantry crane vehicles and methods thereof. Merely by way of example, the invention has been applied to installation and operation of photovoltaic arrays. But it would be recognized that the invention has a much broader range of applicability.
Photovoltaics convert sunlight into electricity, providing a desirable source of clean energy.
The installation of photovoltaic arrays often presents logistical challenges. Not only does the site for the photovoltaic array need to be properly prepared, but large quantities of materials also need to be transported to and within the site. For example, the site for the photovoltaic array may have existing vegetation that would interfere with the installation and operation of the photovoltaic array. This vegetation usually has to be cleared. The site may also have uneven terrain that usually requires extensive grading and earth moving. Once the site is prepared, it is then often necessary to build an extensive infrastructure on which the strings of PV modules 210 are to be affixed. The PV modules 210 are then moved into position, affixed to the structure, and interconnected so that power can be delivered to the power grid 120. Each of these operations can be time-consuming and expensive.
Once the photovoltaic array is in operation, additional infrastructure often is used to support, maintain, evaluate, and repair the array. In order to support the operation of the photovoltaic array, equipment and materials routinely need to be transported from one end of the array to another. For example, the test equipment is transported to a PV module that is under evaluation. In another example, the cleaning equipment is transported to remove debris and dirt from the PV module. In yet another example, an additional module is transported as replacement for the defective module. Depending upon the terrain, soils, and weather, simply getting equipment and materials from one end of the array to another often poses significant challenges, especially if the ground is muddy. As with the installation, these operational needs can also be time-consuming and expensive.
Hence, it is highly desirable to improve techniques for installation and operation of photovoltaic arrays.
The present invention is directed to vehicles. More particularly, the invention provides gantry crane vehicles and methods thereof. Merely by way of example, the invention has been applied to installation and operation of photovoltaic arrays. But it would be recognized that the invention has a much broader range of applicability.
According to one embodiment, a gantry crane vehicle for performing one or more tasks in a photovoltaic array includes one or more base plates, and one or more tracks above the one or more base plates. Additionally, the vehicle includes one or more gantry assemblies configured to slide along the one or more tracks, and one or more first support trusses configured to support the one or more tracks above the one or more base plates. Moreover, the vehicle includes one or more second support trusses connected to at least some of the one or more first support trusses, and one or more storage cabinets located on the one or more base plates. The one or more storage cabinets include one or more top surfaces and one or more side surfaces, and the one or more top surfaces are located below the one or more tracks. The one or more second support trusses are attached to the one or more side surfaces through one or more attachment components. Each of the one or more gantry assemblies includes a lift component and one or more frame components attached to the lift component. The lift component is configured to move the one or more frame components from a first position above one or more planes corresponding to the one or more base plates to a second position below the one or more planes corresponding the one or more base plates.
According to another embodiment, a gantry crane vehicle for performing one or more tasks in a photovoltaic array includes one or more base plates, and one or more tracks above the one or more base plates. Additionally, the vehicle includes one or more gantry assemblies configured to slide along the one or more tracks, and one or more first support trusses configured to support the one or more tracks above the one or more base plates. Moreover, the vehicle includes one or more second support trusses connected to at least some of the one or more first support trusses, and one or more storage cabinets located on the one or more base plates. The one or more storage cabinets include one or more top surfaces and one or more side surfaces, and the one or more top surfaces are located below the one or more tracks. Each of the one or more gantry assemblies includes a lift component and one or more frame components. The one or more frame components are attached to the lift component, and include a first frame component. The lift component is configured to move the one or more frame components from a first position above one or more planes corresponding to the one or more base plates to a second position below the one or more planes corresponding to the one or more base plates. The first frame component is configured to hold an object and roll the held object around an axis.
According to yet another embodiment, a gantry crane vehicle for performing one or more tasks in a photovoltaic array includes one or more base plates, and one or more tracks above the one or more base plates. Additionally, the vehicle includes one or more gantry assemblies configured to slide along the one or more tracks, and one or more first support trusses configured to support the one or more tracks above the one or more base plates. Moreover the vehicle includes one or more second support trusses connected to at least some of the one or more first support trusses, and one or more storage cabinets located on the one or more base plates. The one or more storage cabinets include one or more top surfaces and one or more side surfaces. The one or more top surfaces are located below the one or more tracks, and are separated from the one or more tracks by one or more distances respectively. The gantry crane vehicle is configured to change the one or more distances from one or more first distance magnitudes to one or more second distance magnitudes respectively, and the one or more second distance magnitudes are smaller than the one or more first distance magnitude respectively.
According to yet another embodiment, a gantry crane vehicle for performing one or more tasks in a photovoltaic array includes one or more base plates, and one or more tracks above the one or more base plates. Additionally, the vehicle includes one or more gantry assemblies configured to slide along the one or more tracks. Moreover, the vehicle includes one or more first support trusses attached to the one or more base plates and substantially perpendicular to the one or more base plates, one or more second support trusses connected to at least some of the one or more first support trusses, and one or more third support trusses each connected to at least some of the one or more first support trusses or at least some of the one or more second support trusses. Also, the vehicle includes one or more storage cabinets located on the one or more base plates. The one or more storage cabinets include one or more top surfaces and one or more side surfaces, and the one or more top surfaces are located below the one or more tracks. Each of the one or more gantry assemblies includes a lift component and one or more frame components attached to the lift component. The lift component is configured to move the one or more frame components from a first position above one or more planes corresponding to the one or more base plates to a second position below the one or more planes corresponding to the one or more base plates. Each of the one or more third support trusses includes a first side component, a second side component, and multiple middle components. Each of the multiple middle components is sandwiched between and in contact with the first side component and the second side component. The multiple middle components are separated from each other by one or more slots.
Depending upon the embodiment, one or more benefits may be achieved. These benefits and various additional objects, features, and advantages of the present invention can be fully appreciated with reference to the detailed description and accompanying drawings that follow.
The present invention is directed to vehicles. More particularly, the invention provides gantry crane vehicles and methods thereof. Merely by way of example, the invention has been applied to installation and operation of photovoltaic arrays. But it would be recognized that the invention has a much broader range of applicability.
A photovoltaic array can be organized around one or more rails. For example, at least one of the one or more rails is configured for the installation of one or more photovoltaic modules (e.g., PV modules). In another example, the one or more rails include one or more support surfaces configured to allow one or more vehicles to move about the photovoltaic array. In yet another example, the one or more vehicles perform one or more installation, operation, and/or maintenance tasks in the photovoltaic array.
As shown in
In yet another example, the one or more tracks 1903 extend to at least the edges of one of the one or more gantry systems 1940. In yet another example, the one or more gantry assemblies 1946 are mounted on the one or more tracks 1903 so that the one or more gantry assemblies 1946 are positionable anywhere (e.g., by sliding) along the one or more tracks 1903. In yet another example, each of the one or more gantry assemblies 1946 is equipped with at least a universal gripping attachment and/or a lifting mechanism. According to some embodiments, one or more tools are attached to the one or more gantry assemblies 1946. For example, the one or more tools are parts of the one or more gantry assemblies 1946. In another example, the one or more tools are used to perform one or more tasks needed during installation, operation, and/or maintenance of the photovoltaic array.
Also as shown in
In one embodiment, the one or more storage cabinets 1950 contain one or more power supplies and/or one or more cargo areas. In another embodiment, the one or more storage cabinets 1950 include one or more top surfaces 1952 and one or more side surfaces 1956. For example, the one or more top surfaces 1952 are located below the one or more tracks 1903 by one or more separation distances 1954 respectively. In another example, each of the one or more support trusses 1905 is connected to two support trusses 1910, and is attached to the side surface 1956 through one or more attachment components 1958.
In yet another embodiment, the one or more gantry assemblies 1946 each include a scissor lift component 1982 and frame components 1984 and 1986. For example, the frame component 1984 (e.g., a square frame) is connected to an end of the scissor lift component 1982. In another example, the frame component 1986 (e.g., an object-holding sub-frame) is mounted to the frame component 1984. In yet another example, the frame component 1986 includes one or more gripping and/or tool components.
As discussed above and further emphasized here,
According to one embodiment, the vehicle 1900 includes the one or more gantry systems 440. For example, the one or more gantry systems 440 include the one or more tracks 1903, the one or more gantry assemblies 1946, the one or more support trusses 1901, 1902, 1905, 1912, and 1914, and/or one or more support trusses 410. For example, the one or more support trusses 410 are shorter than the one or more support trusses 1910 respectively.
According to another embodiment, the vehicle 1900 further includes the one or more storage cabinets 1950, the one or more continuous tracks and/or caterpillar treads 1960, and the one or more base plates 1970. For example, the one or more storage cabinets 1950 include the one or more top surfaces 1952. In another example, the one or more top surfaces 1952 are located below the one or more tracks 1903 by one or more separation distances that are smaller than the one or more separation distances 1954 respectively. In yet another example, as shown in
According to one embodiment, the vehicle 1900 includes the one or more gantry systems 1940. For example, the one or more gantry systems 1940 include the one or more tracks 1903, the one or more gantry assemblies 1946, and/or the one or more support trusses 1901, 1902, 1905, 1910, 1912, and 1914. According to another embodiment, the vehicle 1900 further includes the one or more storage cabinets 1950, the one or more continuous tracks and/or caterpillar treads 1960, and the one or more base plates 1970. According to yet another embodiment, the one or more gantry assemblies 1946 each include the scissor lift component 1982 and the frame components 1984 and 1986. For example, the scissor lift component 1982 is configured to extend so that the frame components 1984 and 1986 reach below the one or more corresponding planes of the one or more base plates 1970.
According to one embodiment, the gantry assembly 1946 includes the scissor lift component 1982 and frame components 1984 and 1986. For example, the frame component 1984 is a square frame. In another example, the frame component 1986 is an object-holding sub-frame (e.g., a panel-holding sub-frame). In yet another example, the frame component 1986 includes one or more gripping and/or tool components. In yet another example, the frame component 1986 includes multiple suction cups 602 configured to hold a panel 600 (e.g., a solar panel). In yet another example, the panel 600 held by the frame component 1986 can be rolled around an axis 620 for placement.
According to another embodiment, the gantry assembly 1946 further includes an actuator 610. For example, the actuator 610 is configured to exert a moment on the panel-holding sub-frame 1986 so that the panel 600 held by the frame component 1986 can be rolled for placement. According to yet another embodiment, the lifting mechanism on each of the one or more gantry assemblies 1946 includes a tilt axis to shift at least a tool and/or a gripping mechanism from one position to another position. For example, the lifting mechanism on each of the one or more gantry assemblies 1946 includes a tilt axis to shift at least a tool and/or a gripping mechanism from a vertical or horizontal position to a position parallel with or perpendicular to the plane of one or more photovoltaic modules (e.g., PV modules) in the photovoltaic array.
In one embodiment, the one or more support trusses 1902 each include side segments 810 and 812, middle segments 820, 822 and 824, and end segments 830 and 832. For example, the middle segments 820, 822 and 824 are sandwiched between the side segments 810 and 812, and the middle segments 820, 822 and 824 are separated from each other by corresponding slots 860 and 862. In another embodiment, the end segments 830 and 832 are in contact with the ends of the side segments 810 and 812 respectively. For example, the end segment 830 is separated from the middle segment 820 by a slot 864, and the end segment 832 is separated from the middle segment 824 by a slot 868. In yet another embodiment, the side segment 810 includes extension sections 850 and 854 and a middle section 852 that is connected to the extension sections 850 and 854, and the side segment 812 includes extension sections 840 and 844 and a middle section 842 that is connected to the extension sections 840 and 844. For example, the middle segments 820, 822, and 824 are each in contact with the middle sections 842 and 852.
As discussed above and further emphasized here,
In one embodiment, the one or more support trusses 1902 each include the side segments 810 and 812, the middle segments 822 and 824, and the end segments 830 and 832. For example, the middle segments 822 and 824 are sandwiched between the side segments 810 and 812, and the middle segments 822 and 824 are separated from each other by the slot 862. In another embodiment, the end segments 830 and 832 are in contact with the ends of the side segments 810 and 812 respectively. For example, the end segment 830 is separated from the middle segment 822 by a slot 870, and the end segment 832 is separated from the middle segment 824 by the slot 868. In yet another embodiment, the side segment 810 includes the extension sections 850 and 854 and the middle section 852 that is connected to the extension sections 850 and 854, and the side segment 812 includes the extension sections 840 and 844 and the middle section 842 that is connected to the extension sections 840 and 844. For example, the middle segments 822 and 824 are each in contact with the middle sections 842 and 852.
In one embodiment, the support truss 1902 is fixed to the support truss 1910 using two bolts 910 and 912 and a contact plate 920. For example, the two bolts 910 and 912 extend into a slot of the support truss 1902 (e.g., the slot 864 or the slot 870) through the contact plate 920. In another embodiment, the support truss 1902 is fixed to the support truss 1903 by a clip assembly 950. For example, the clip assembly 950 includes two clip components 960 and 962, and a bolt 964. In another example, the clip component 962 is attached to the support truss 1903, and part of the support truss 1902 is pressed between the client components 960 and 962 by the bolt 964.
According to another embodiment, a gantry crane vehicle for performing one or more tasks in a photovoltaic array includes one or more base plates (e.g., the one or more components 1970), and one or more tracks (e.g., the one or more components 1903) above the one or more base plates. Additionally, the vehicle includes one or more gantry assemblies (e.g., the one or more components 1946) configured to slide along the one or more tracks, and one or more first support trusses (e.g., the one or more components 1901, 1902, 1910, 1912, and/or 1914) configured to support the one or more tracks above the one or more base plates. Moreover, the vehicle includes one or more second support trusses (e.g., the one or more components 1905) connected to at least some of the one or more first support trusses, and one or more storage cabinets (e.g., the one or more components 1950) located on the one or more base plates. The one or more storage cabinets (e.g., the one or more components 1950) include one or more top surfaces (e.g., the one or more components 1952) and one or more side surfaces (e.g., the one or more components 1956), and the one or more top surfaces (e.g., the one or more components 1952) are located below the one or more tracks. The one or more second support trusses (e.g., the one or more components 1905) are attached to the one or more side surfaces through one or more attachment components (e.g., the one or more components 1958). Each of the one or more gantry assemblies (e.g., the one or more components 1946) includes a lift component (e.g., the component 1982) and one or more frame components (e.g., the one or more components 1984 and/or 1986) attached to the lift component. The lift component is configured to move the one or more frame components from a first position above one or more planes corresponding to the one or more base plates to a second position below the one or more planes corresponding the one or more base plates. For example, the gantry crane vehicle is implemented according to at least
According to yet another embodiment, a gantry crane vehicle for performing one or more tasks in a photovoltaic array includes one or more base plates (e.g., the one or more components 1970), and one or more tracks (e.g., the one or more components 1903) above the one or more base plates. Additionally, the vehicle includes one or more gantry assemblies (e.g., the one or more components 1946) configured to slide along the one or more tracks, and one or more first support trusses (e.g., the one or more components 1901, 1902, 1910, 1912, and/or 1914) configured to support the one or more tracks above the one or more base plates. Moreover, the vehicle includes one or more second support trusses (e.g., the one or more components 1905) connected to at least some of the one or more first support trusses, and one or more storage cabinets (e.g., the one or more components 1950) located on the one or more base plates. The one or more storage cabinets (e.g., the one or more components 1950) include one or more top surfaces (e.g., the one or more components 1952) and one or more side surfaces (e.g., the one or more components 1956), and the one or more top surfaces (e.g., the one or more components 1952) are located below the one or more tracks. Each of the one or more gantry assemblies (e.g., the one or more components 1946) includes a lift component (e.g., the component 1982) and one or more frame components (e.g., the one or more components 1984 and/or 1986). The one or more frame components (e.g., the one or more components 1984 and/or 1986) are attached to the lift component, and include a first frame component (e.g., the component 1986). The lift component is configured to move the one or more frame components from a first position above one or more planes corresponding to the one or more base plates to a second position below the one or more planes corresponding to the one or more base plates. The first frame component (e.g., the component 1986) is configured to hold an object (e.g., the panel 600) and roll the held object around an axis (e.g., the axis 620). For example, the gantry crane vehicle is implemented according to at least
According to yet another embodiment, a gantry crane vehicle for performing one or more tasks in a photovoltaic array includes one or more base plates (e.g., the one or more components 1970), and one or more tracks (e.g., the one or more components 1903) above the one or more base plates. Additionally, the vehicle includes one or more gantry assemblies (e.g., the one or more components 1946) configured to slide along the one or more tracks, and one or more first support trusses (e.g., the one or more components 1901, 1902, 1910/410, 1912, and/or 1914) configured to support the one or more tracks above the one or more base plates. Moreover the vehicle includes one or more second support trusses (e.g., the one or more components 1905) connected to at least some of the one or more first support trusses, and one or more storage cabinets (e.g., the one or more components 1950) located on the one or more base plates. The one or more storage cabinets (e.g., the one or more components 1950) include one or more top surfaces (e.g., the one or more components 1952) and one or more side surfaces (e.g., the one or more components 1956). The one or more top surfaces (e.g., the one or more components 1952) are located below the one or more tracks, and are separated from the one or more tracks by one or more distances respectively. The gantry crane vehicle is configured to change the one or more distances from one or more first distance magnitudes to one or more second distance magnitudes respectively, and the one or more second distance magnitudes are smaller than the one or more first distance magnitude respectively. For example, the gantry crane vehicle is implemented according to at least
According to yet another embodiment, a gantry crane vehicle for performing one or more tasks in a photovoltaic array includes one or more base plates (e.g., the one or more components 1970), and one or more tracks (e.g., the one or more components 1903) above the one or more base plates. Additionally, the vehicle includes one or more gantry assemblies (e.g., the one or more components 1946) configured to slide along the one or more tracks. Moreover, the vehicle includes one or more first support trusses (e.g., the one or more components 1910) attached to the one or more base plates and substantially perpendicular to the one or more base plates, one or more second support trusses (e.g., the one or more components 1901) connected to at least some of the one or more first support trusses, and one or more third support trusses (e.g., the one or more components 1902) each connected to at least some of the one or more first support trusses or at least some of the one or more second support trusses. Also, the vehicle includes one or more storage cabinets (e.g., the one or more components 1950) located on the one or more base plates. The one or more storage cabinets (e.g., the one or more components 1950) include one or more top surfaces (e.g., the one or more components 1952) and one or more side surfaces (e.g., the one or more components 1956), and the one or more top surfaces (e.g., the one or more components 1952) are located below the one or more tracks. Each of the one or more gantry assemblies (e.g., the one or more components 1946) includes a lift component (e.g., the component 1982) and one or more frame components (e.g., the one or more components 1984 and/or 1986) attached to the lift component. The lift component is configured to move the one or more frame components from a first position above one or more planes corresponding to the one or more base plates to a second position below the one or more planes corresponding to the one or more base plates. Each of the one or more third support trusses (e.g., the one or more components 1902) includes a first side component (e.g., the component 810), a second side component (e.g., the component 812), and multiple middle components (e.g., the components 820, 822, and/or 824). Each of the multiple middle components is sandwiched between and in contact with the first side component and the second side component. The multiple middle components are separated from each other by one or more slots (e.g., the one or more slots 860 and/or 862). For example, the gantry crane vehicle is implemented according to at least
Although specific embodiments of the present invention have been described, it will be understood by those of skill in the art that there are other embodiments that are equivalent to the described embodiments. For example, various embodiments and/or examples of the present invention can be combined. Accordingly, it is to be understood that the invention is not to be limited by the specific illustrated embodiments, but only by the scope of the appended claims.
This application claims priority to U.S. Provisional Application No. 61/613,424, filed Mar. 20, 2012, commonly assigned and incorporated by reference herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3334217 | Bickler et al. | Aug 1967 | A |
3951506 | Bennett et al. | Apr 1976 | A |
4145021 | Gaechter et al. | Mar 1979 | A |
4219926 | Bloch et al. | Sep 1980 | A |
4279347 | Appleman | Jul 1981 | A |
4290416 | Maloney et al. | Sep 1981 | A |
4296270 | Kohler et al. | Oct 1981 | A |
4301322 | Amick et al. | Nov 1981 | A |
4301409 | Miller et al. | Nov 1981 | A |
4371139 | Clark | Feb 1983 | A |
4421943 | Withjack et al. | Dec 1983 | A |
4496063 | Ishii et al. | Jan 1985 | A |
4664270 | Voelz | May 1987 | A |
4667834 | Lanigan et al. | May 1987 | A |
4676713 | Voelpel | Jun 1987 | A |
4706825 | Johnson | Nov 1987 | A |
4876143 | Sugita et al. | Oct 1989 | A |
4877365 | Lanigan Jr. et al. | Oct 1989 | A |
4880346 | Brassette | Nov 1989 | A |
4995377 | Eiden | Feb 1991 | A |
5125608 | McMaster et al. | Jun 1992 | A |
5143556 | Matlin | Sep 1992 | A |
5152109 | Boers | Oct 1992 | A |
5228924 | Barker et al. | Jul 1993 | A |
5232519 | Glatfelter et al. | Aug 1993 | A |
5257891 | Baumann et al. | Nov 1993 | A |
5361704 | Bounds | Nov 1994 | A |
5460660 | Albright et al. | Oct 1995 | A |
5501744 | Albright et al. | Mar 1996 | A |
5505788 | Dinwoodie | Apr 1996 | A |
5568713 | Gagne et al. | Oct 1996 | A |
5593901 | Oswald et al. | Jan 1997 | A |
5715958 | Feider et al. | Feb 1998 | A |
5800631 | Yamada et al. | Sep 1998 | A |
5816769 | Bauer et al. | Oct 1998 | A |
5826734 | Baumann et al. | Oct 1998 | A |
6037578 | Grandjean et al. | Mar 2000 | A |
6058930 | Shingleton | May 2000 | A |
6111189 | Garvison et al. | Aug 2000 | A |
6201181 | Azzam et al. | Mar 2001 | B1 |
6233502 | Yim | May 2001 | B1 |
6495750 | Dinwoodie | Dec 2002 | B1 |
6639421 | Yoshino et al. | Oct 2003 | B1 |
6730841 | Heckeroth | May 2004 | B2 |
6809251 | Dinwoodie | Oct 2004 | B2 |
7086675 | Jacobs | Aug 2006 | B2 |
7252083 | Hayden | Aug 2007 | B2 |
7309850 | Sinton et al. | Dec 2007 | B2 |
7374137 | Staney | May 2008 | B2 |
7411408 | Shimotomai et al. | Aug 2008 | B2 |
7476832 | Vendig et al. | Jan 2009 | B2 |
7492120 | Benn et al. | Feb 2009 | B2 |
7531741 | Melton et al. | May 2009 | B1 |
7546929 | Wierzba et al. | Jun 2009 | B2 |
7712807 | Perlman et al. | May 2010 | B2 |
7799987 | Hines et al. | Sep 2010 | B1 |
7814899 | Port | Oct 2010 | B1 |
7888588 | Shingleton | Feb 2011 | B2 |
7898212 | Benn et al. | Mar 2011 | B2 |
7963578 | Wells et al. | Jun 2011 | B2 |
8006624 | Sin | Aug 2011 | B2 |
8203237 | Cowles | Jun 2012 | B1 |
8371076 | Jones et al. | Feb 2013 | B2 |
8407950 | Hartelius | Apr 2013 | B2 |
8464496 | Cusson et al. | Jun 2013 | B2 |
8492645 | Strahm | Jul 2013 | B1 |
8500918 | Meller et al. | Aug 2013 | B1 |
8550419 | Hausner et al. | Oct 2013 | B2 |
8573545 | Walquist et al. | Nov 2013 | B2 |
8578928 | Lumbreras | Nov 2013 | B2 |
8609977 | Jones et al. | Dec 2013 | B2 |
8635818 | Wildes | Jan 2014 | B2 |
8657991 | Potter et al. | Feb 2014 | B2 |
8752343 | Kuan et al. | Jun 2014 | B2 |
20030075211 | Makita et al. | Apr 2003 | A1 |
20050061360 | Horioka et al. | Mar 2005 | A1 |
20050268959 | Aschenbrenner et al. | Dec 2005 | A1 |
20060054162 | Romeo | Mar 2006 | A1 |
20060174931 | Mapes et al. | Aug 2006 | A1 |
20060290344 | Shimotomai et al. | Dec 2006 | A1 |
20070012352 | Wohlgemuth et al. | Jan 2007 | A1 |
20070215145 | Hayden | Sep 2007 | A1 |
20070283996 | Hachtmann et al. | Dec 2007 | A1 |
20080010915 | Liebendorfer | Jan 2008 | A1 |
20080023069 | Terada et al. | Jan 2008 | A1 |
20080053517 | Plaisted et al. | Mar 2008 | A1 |
20080087320 | Mapes et al. | Apr 2008 | A1 |
20080099063 | Armstrong et al. | May 2008 | A1 |
20080121273 | Plaisted et al. | May 2008 | A1 |
20080135084 | Scharlack | Jun 2008 | A1 |
20080156365 | Scholz et al. | Jul 2008 | A1 |
20080233429 | Oguma et al. | Sep 2008 | A1 |
20080271774 | Kalkanoglu et al. | Nov 2008 | A1 |
20080306700 | Kawam et al. | Dec 2008 | A1 |
20090014057 | Croft et al. | Jan 2009 | A1 |
20090032100 | Oak | Feb 2009 | A1 |
20090114261 | Stancel et al. | May 2009 | A1 |
20090139557 | Rose et al. | Jun 2009 | A1 |
20090173831 | Roseman | Jul 2009 | A1 |
20090191030 | Bluck et al. | Jul 2009 | A1 |
20090205270 | Shaw et al. | Aug 2009 | A1 |
20090223142 | Shingleton et al. | Sep 2009 | A1 |
20090260671 | Green et al. | Oct 2009 | A1 |
20090282755 | Abbott et al. | Nov 2009 | A1 |
20090293932 | Augenbraun et al. | Dec 2009 | A1 |
20090293941 | Luch | Dec 2009 | A1 |
20090308430 | Everett et al. | Dec 2009 | A1 |
20100031996 | Basol | Feb 2010 | A1 |
20100043781 | Jones et al. | Feb 2010 | A1 |
20100108118 | Luch | May 2010 | A1 |
20100127142 | Genschorek | May 2010 | A1 |
20100147286 | Xiang et al. | Jun 2010 | A1 |
20100175337 | Mascolo et al. | Jul 2010 | A1 |
20100175738 | Huss et al. | Jul 2010 | A1 |
20100206294 | Blair et al. | Aug 2010 | A1 |
20100252092 | Lenox et al. | Oct 2010 | A1 |
20100269888 | Johnston, Jr. | Oct 2010 | A1 |
20100275975 | Monschke et al. | Nov 2010 | A1 |
20100281791 | Intagliata et al. | Nov 2010 | A1 |
20100319277 | Suarez et al. | Dec 2010 | A1 |
20100325797 | Horne | Dec 2010 | A1 |
20110126378 | Ota | Jun 2011 | A1 |
20110126884 | Dritsas | Jun 2011 | A1 |
20110162691 | Hartelius | Jul 2011 | A1 |
20110173900 | Plaisted et al. | Jul 2011 | A1 |
20110183540 | Keenihan et al. | Jul 2011 | A1 |
20110194900 | French | Aug 2011 | A1 |
20110264306 | Bagge | Oct 2011 | A1 |
20110284057 | Swahn et al. | Nov 2011 | A1 |
20110309215 | Lu et al. | Dec 2011 | A1 |
20120027550 | Bellacicco et al. | Feb 2012 | A1 |
20120034799 | Hunt | Feb 2012 | A1 |
20120037214 | Sagayama | Feb 2012 | A1 |
20120056638 | Swahn | Mar 2012 | A1 |
20120067738 | Field | Mar 2012 | A1 |
20120090176 | Stancel et al. | Apr 2012 | A1 |
20120131866 | Batut | May 2012 | A1 |
20120132246 | Hunt et al. | May 2012 | A1 |
20120198682 | Potter et al. | Aug 2012 | A1 |
20120198779 | Tachino | Aug 2012 | A1 |
20120199266 | Potter et al. | Aug 2012 | A1 |
20130068275 | Swahn et al. | Mar 2013 | A1 |
20130133172 | Kiener et al. | May 2013 | A1 |
20130180568 | Hartelius | Jul 2013 | A1 |
20130206206 | Bjorneklett et al. | Aug 2013 | A1 |
20130305518 | Adriani et al. | Nov 2013 | A1 |
20130319962 | Park et al. | Dec 2013 | A1 |
20140033511 | Swahn et al. | Feb 2014 | A1 |
20140069483 | Wolter et al. | Mar 2014 | A1 |
20150069001 | French et al. | Mar 2015 | A1 |
20150144156 | French et al. | May 2015 | A1 |
Number | Date | Country |
---|---|---|
101858659 | Oct 2010 | CN |
202019322 | Oct 2011 | CN |
102009049926 | Apr 2011 | DE |
2505934 | Oct 2012 | EP |
2959555 | Nov 2011 | FR |
WO 2006117551 | Sep 2006 | WO |
WO 2010054274 | May 2010 | WO |
WO 2010145844 | Dec 2010 | WO |
WO 2012003585 | Jan 2012 | WO |
Entry |
---|
Chinese Patent Office, First Office Action for CN 201280023942.0, mailed Mar. 20, 2015. |
European Patent Office, Extended European Search Report for EP 12760313.2-1605 mailed Mar. 25, 2015 (6 pages). |
Patent Cooperation Treaty, International Search Report for PCT/US11/027700 mailed May 3, 2011 (2 pages). |
Patent Cooperation Treaty, Written Opinion of the International Searching Authority for PCT/US11/027700 mailed May 3, 2011 (4 pages). |
Patent Cooperation Treaty, International Search Report for PCT/US11/033722 mailed Jul. 28, 2011 (2 pages). |
Patent Cooperation Treaty, Written Opinion of the International Searching Authority for PCT/US11/033722 mailed Jul. 28, 2011 (9 pages). |
Patent Cooperation Treaty, International Search Report for PCT/US11/038094 mailed Sep. 2, 2011 (2 pages). |
Patent Cooperation Treaty, Written Opinion of the International Searching Authority for PCT/US11/038094 mailed Sep. 2, 2011 (12 pages). |
Patent Cooperation Treaty, International Search Report for PCT/US11/046175 mailed Dec. 9, 2011 (2 pages). |
Patent Cooperation Treaty, Written Opinion of the International Searching Authority for PCT/US11/046175 mailed Dec. 9, 2011 (8 pages). |
Patent Cooperation Treaty, International Search Report for PCT/US12/029345 mailed Oct. 10, 2012 (4 pages). |
Patent Cooperation Treaty, Written Opinion of the International Searching Authority for PCT/US12/029345 mailed Oct. 10, 2012 (8 pages). |
Patent Cooperation Treaty, International Search Report for PCT/US13/30416 mailed Jun. 17, 2013 (2 pages). |
Patent Cooperation Treaty, Written Opinion of the International Searching Authority for PCT/US13/30416 mailed Jun. 17, 2013 (6 pages). |
Patent Cooperation Treaty, International Search Report for PCT/US13/40500 mailed Sep. 4, 2013 (2 pages). |
Patent Cooperation Treaty, Written Opinion of the International Searching Authority for PCT/US13/40500 mailed Sep. 4, 2013 (9 pages). |
Patent Cooperation Treaty, International Search Report for PCT/US14/54916 mailed Dec. 24, 2014 (2 pages). |
Patent Cooperation Treaty, Written Opinion of the International Searching Authority for PCT/US14/54916 mailed Dec. 24, 2014 (9 pages). |
Patent Cooperation Treaty, International Search Report for PCT/US14/53787 mailed Jan. 12, 2015 (2 pages). |
Patent Cooperation Treaty, Written Opinion of the International Searching Authority for PCT/US14/53787 mailed Jan. 12, 2015 (7 pages). |
United States Patent and Trademark Office, Non final office action dated Nov. 8, 2012 for U.S. Appl. No. 13/043,286 (14 pages). |
United States Patent and Trademark Office, Non final office action dated Jan. 10, 2014 for U.S. Appl. No. 13/091,960 (21 pages). |
United States Patent and Trademark Office, Non final office action dated Nov. 19, 2014 for U.S. Appl. No. 13/091,960 (26 pages). |
United States Patent and Trademark Office, Final office action dated Aug. 26, 2015 for U.S. Appl. No. 13/091,960 (24 pages). |
United States Patent and Trademark Office, Non final office action dated Sep. 6, 2013 for U.S. Appl. No. 13/195,562 (15 pages). |
United States Patent and Trademark Office, Non final office action dated Mar. 24, 2014 for U.S. Appl. No. 13/195,562 (24 pages). |
United States Patent and Trademark Office, Final office action dated Oct. 7, 2014 for U.S. Appl. No. 13/195,562 (17 pages). |
United States Patent and Trademark Office, Non final office action dated May 7, 2015 for U.S. Appl. No. 13/195,562 (17 pages). |
United States Patent and Trademark Office, Non final office action dated Sep. 24, 2014 for U.S. Appl. No. 13/421,740 (15 pages). |
United States Patent and Trademark Office, Non final office action dated Aug. 8, 2013 for U.S. Appl. No. 13/421,740 (9 pages). |
United States Patent and Trademark Office, Final office action dated Mar. 24, 2014 for U.S. Appl. No. 13/421,740 (12 pages). |
United States Patent and Trademark Office, Final office action dated Apr. 29, 2015 for U.S. Appl. No. 13/421,740 (16 pages). |
Chinese Patent Office, First Office Action for CN 201380035248.5, mailed Oct. 20, 2015. |
United States Patent and Trademark Office, Non-final office action dated Jan. 12, 2016 for U.S. Appl. No. 13/091,960 (22 pages). |
United States Patent and Trademark Office, Final office action dated Nov. 20, 2015 for U.S. Appl. No. 13/421,740 (16 pages). |
United States Patent and Trademark Office, Non final office action dated Dec. 7, 2015 for U.S. Appl. No. 14/481,678 (7 pages). |
United States Patent and Trademark Office, Non final office action dated Dec. 31, 2015 for U.S. Appl. No. 14/050,237 (7 pages). |
United States Patent and Trademark Office, Notice of allowance dated Nov. 23, 2015 for U.S. Appl. No. 13/195,562 (17 pages). |
Number | Date | Country | |
---|---|---|---|
20130248478 A1 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
61613424 | Mar 2012 | US |