Gap control via overmold teeth and hard stops

Information

  • Patent Grant
  • 11490954
  • Patent Number
    11,490,954
  • Date Filed
    Friday, June 19, 2020
    3 years ago
  • Date Issued
    Tuesday, November 8, 2022
    a year ago
Abstract
A forceps includes an end effector assembly having a stop and a plurality of overmold teeth within at least one jaw member. One (or both) of the jaw members is moveable relative to the other between a spaced-apart position and an approximated position for grasping tissue therebetween. One (or both) of the jaw members includes a stop molded within an insulative housing, and an insulator plate with the overmold teeth formed from plastic. The overmold teeth extend through openings within a sealing plate and protrude past the tissue sealing surface of the sealing plate. The stop primarily controls the gap distance between opposing jaw members by bearing most of an applied load and the overmold teeth assist in controlling the gap distance by bearing the remaining applied load.
Description
INTRODUCTION

The present disclosure relates to surgical instruments and, more particularly, to a surgical instrument for controlling gap distance between jaw members using hard stops and overmold teeth.


INTRODUCTION

Electrosurgical instruments, e.g., electrosurgical forceps, utilize both mechanical clamping action and electrical energy to effect hemostasis by heating tissue to coagulate and/or cauterize tissue. Certain surgical procedures require more than simply cauterizing tissue and rely on the unique combination of clamping pressure, precise electrosurgical energy control and gap distance (i.e., distance between opposing jaw members when closed about tissue) to “seal” tissue.


One method of controlling the gap distance, uses one or more ceramic dots on one or both jaw members. The ceramic dots are deposited atop one or both jaw members. The ceramic dots may be vapor deposited onto sealing plates. The ceramic dots project from the tissue engaging surface of one or both jaw members and the ceramic dots form a corresponding series of nonconductive stop members for controlling the separation distance between opposing jaw members when closed about tissue. Most ceramics are stable at elevated temperatures and usually exhibit low thermal and electrical conductivities. In addition, ceramic materials have high melting points and are resistant to oxidation, corrosion, or other forms of degradation to which metals are usually more prone. However, ceramic dots add substantial cost to the manufacture of the jaw members.


SUMMARY

As used herein, the term “distal” refers to the portion that is being described which is further from a user, while the term “proximal” refers to the portion that is being described which is closer to a user.


In accordance with one aspect of the present disclosure, a forceps includes an end effector assembly having a stop and a plurality of overmold teeth within at least one jaw member. One (or both) of the jaw members may be moveable relative to the other between a spaced-apart position and an approximated position for grasping tissue therebetween. One (or both) of the jaw members includes a stop molded within an insulative housing, and an insulator plate with the overmold teeth formed from plastic. The overmold teeth extend through openings within a sealing plate and protrude past the tissue sealing surface of the sealing plate. The stop primarily controls the gap distance between opposing jaw members by bearing most of an applied load and the overmold teeth assist in controlling the gap distance by bearing the remaining applied load.


According to an aspect of the present disclosure, an end effector assembly includes a pair of opposing jaw members configured to primarily control a gap distance between opposing jaw members. At least one of the jaw members includes an insulative base including a hard stop. The hard stop is configured to primarily control a gap distance between the opposing jaw members. At least one of the jaw members also includes a support base coupled to the insulative housing and an insulative plate coupled to the support base and formed with a plurality of overmold teeth and a sealing plate mounted to the insulative plate. The sealing plate includes a plurality of openings formed therein. The plurality of overmold teeth extend through the corresponding plurality of openings on the sealing plate and are configured to assist in controlling the gap distance between opposing jaw members.


According to aspects of the present disclosure, the hard stop may be remotely disposed relative to the sealing plate.


According to other aspects of the present disclosure, the plurality of overmold teeth may be configured to contact the corresponding plurality of overmold teeth on the opposing jaw member. Alternatively, the plurality of overmold teeth may be configured to contact the sealing plate on the opposing jaw member. The plurality of overmold teeth may also be located along a blade slot defined in the seal plate to facilitate grasping of tissue during tissue division.


According to a further aspect of the present disclosure, the hard stop may be configured to primarily control the gap distance by bearing most of the applied load as the end effector assembly grasps tissue.


According to another aspect of the present disclosure, the hard stop may be engaged when jaw members flex under the applied load.


According to yet another aspect of the present disclosure, a method of forming a jaw member of an end effector includes the steps of forming a support base and forming an insulative plate with a plurality of overmold teeth. The method further includes the steps of forming a sealing plate with a plurality of openings and mounting the insulative base to the support base. The method further includes the step of mounting the sealing plate onto the insulative plate with the plurality of overmold teeth extending through the plurality of openings on the sealing plate. The method further includes the step of overmolding an insulative housing with a hard stop around the support base to form the jaw member. When the end effector is closed around tissue the hard stop is configured to bear the majority of an applied load and the overmold teeth bear a smaller remaining portion of the applied load


The method may further include that the insulative plate may be formed by injection molding. The method may also include that the hard stop may be remotely disposed relative to the sealing plate.


According to another aspect of the present disclosure, an end effector assembly includes a pair of opposing jaw members. At least one of the jaw members includes an insulative housing including a hard stop formed from a plastic material. The hard stop may be configured to bear the majority of an applied load as the end effector assembly is closed around tissue. At least one of the jaw members further includes a support base coupled to the insulative housing and an insulative plate molded from the plastic material with a plurality of overmold teeth and a sealing plate mounted to the insulative plate. The sealing plate includes a plurality of openings formed therein. The plurality of overmold teeth extend through the corresponding plurality of openings on the sealing plate past a tissue sealing surface of the sealing plate. The plurality of overmold teeth may be configured to ensure that the opposing jaw members are an appropriate gap distance apart.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the present disclosure are described herein with reference to the drawings wherein:



FIG. 1 is a front, perspective view of an endoscopic surgical instrument configured for use in accordance with the present disclosure;



FIG. 2 is a front, perspective view of an open surgical instrument configured for use in accordance with the present disclosure;



FIG. 3 is a front, perspective view of one embodiment of a jaw member configured for use with the surgical instrument of FIG. 1 or 2;



FIG. 4 is a side, perspective view of an end effector assembly configured for use with the surgical instrument of FIG. 1 or 2;



FIG. 5 is cross-sectional view of an end effector assembly configured for use with the surgical instrument of FIG. 1 or 2;



FIGS. 6A and 6B are exploded views of the opposing jaw members of FIG. 4;



FIGS. 7A-7C are front, perspective views of different embodiments of an end effector assembly configured for use with the surgical instrument of FIG. 1 or 2; and



FIG. 8 is a flowchart of a method for forming a jaw member according to the present disclosure.





DETAILED DESCRIPTION

Embodiments of the present disclosure are described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical elements.


Referring now to FIGS. 1 and 2, FIG. 1 depicts a forceps 10 for use in connection with endoscopic surgical procedures and FIG. 2 depicts an open forceps 10′ contemplated for use in connection with traditional open surgical procedures. For the purposes herein, either an endoscopic instrument, e.g., forceps 10, or an open instrument, e.g., forceps 10′, may be utilized in accordance with the present disclosure. Obviously, different electrical and mechanical connections and considerations apply to each particular type of instrument; however, the novel aspects with respect to the end effector assembly and the operating characteristics thereof remain generally consistent with respect to both the open and endoscopic configurations.


Turning now to FIG. 1, an endoscopic forceps 10 is provided defining a longitudinal axis “X-X” and including a housing 20, a handle assembly 30, a rotating assembly 70, a trigger assembly 80, an actuator 90, and an end effector assembly 100. Forceps 10 further includes a shaft 12 having a distal end 14 configured to mechanically engage end effector assembly 100 and a proximal end 16 that mechanically engages housing 20. Housing 20 contains the internal working components of the forceps 10 which are not described herein but which may be found in commonly-owned U.S. Pat. No. 7,156,846, the entire contents of which are hereby incorporated by reference herein.


End effector assembly 100 is shown attached at the distal end 14 of shaft 12 and includes a pair of opposing jaw members 110 and 120. Jaw members 110, 120 are moveable between a spaced-apart position and an approximated position for grasping tissue therebetween. End effector assembly 100 is designed as a unilateral assembly, e.g., where jaw member 120 is fixed relative to shaft 12 and jaw member 110 is moveable about pivot 103 relative to shaft 12 and fixed jaw member 120. However, end effector assembly 100 may alternatively be configured as a bilateral assembly, e.g., where both jaw member 110 and jaw member 120 are moveable about a pivot 103 relative to one another and to shaft 12.


With continued reference to FIG. 1, forceps 10 also includes electrosurgical cable 610 that connects forceps 10 to a generator (not shown) or other suitable power source, although forceps 10 may alternatively be configured as a battery powered instrument. Cable 610 includes a wire (or wires) (not explicitly shown) extending therethrough that has sufficient length to extend through shaft 12 in order to provide electrical energy to at least one of the jaw members 110 and 120 of end effector assembly 100. Trigger 82 of trigger assembly 80 may be selectively depressed to advance a knife (not shown) between jaw members 110, 120 to cut tissue grasped therebetween. Actuator 90, on the other hand, is selectively activatable to supply electrosurgical energy to one (or both) of jaw members 110, 120, as will be described in greater detail below.


With continued reference to FIG. 1, handle assembly 30 includes fixed handle 50 and a moveable handle 40. Fixed handle 50 is integrally associated with housing 20 and handle 40 is moveable relative to fixed handle 50. Rotating assembly 70 is rotatable in either direction about a longitudinal axis “X-X” to rotate end effector 100 about longitudinal axis “X-X.” Moveable handle 40 of handle assembly 30 is ultimately connected to a drive assembly (not shown) that, together, mechanically cooperate to impart movement of jaw members 110 and 120 between the spaced-apart position and the approximated position to grasp tissue disposed between jaw members 110, 120. As shown in FIG. 1, moveable handle 40 is initially spaced-apart from fixed handle 50 and, correspondingly, jaw members 110, 120 are in the spaced-apart position. Moveable handle 40 is depressible from this initial position to a depressed position corresponding to the approximated position of jaw members 110, 120.


Referring now to FIG. 2, an open forceps 10′ is shown including two elongated shafts 12a and 12b, each having a proximal end 16a and 16b, and a distal end 14a and 14b, respectively. Similar to forceps 10 (FIG. 1), forceps 10′ is configured for use with end effector assembly 100. More specifically, end effector assembly 100 is attached to distal ends 14a and 14b of shafts 12a and 12b, respectively. As mentioned above, end effector assembly 100 includes a pair of opposing jaw members 110 and 120 that are pivotably connected about a pivot 103. Each shaft 12a and 12b includes a handle 17a and 17b disposed at the proximal end 16a and 16b thereof. Each handle 17a and 17b defines a finger hole 18a and 18b therethrough for receiving a finger of the user. As can be appreciated, finger holes 18a and 18b facilitate movement of the shafts 12a and 12b relative to one another that, in turn, pivots jaw members 110 and 120 from an open position, wherein the jaw members 110 and 120 are disposed in spaced-apart relation relative to one another, to a closed position, wherein the jaw members 110 and 120 cooperate to grasp tissue therebetween.


A ratchet 30′ may be included for selectively locking the jaw members 110 and 120 relative to one another at various positions during pivoting. Ratchet 30′ may include graduations or other visual markings that enable the user to easily and quickly ascertain and control the amount of closure force desired between the jaw members 110 and 120.


With continued reference to FIG. 2, one of the shafts, e.g., shaft 12b, includes a proximal shaft connector 19 that is configured to connect the forceps 10′ to a source of electrosurgical energy such as an electrosurgical generator (not shown). Proximal shaft connector 19 secures an electrosurgical cable 610′ to forceps 10′ such that the user may selectively apply electrosurgical energy to jaw member 110 and/or jaw member 120 of end effector assembly 100.


Referring now to FIGS. 3-5, one embodiment of jaw members 210 and 220 is provided in accordance with the present disclosure. FIG. 3 shows a front perspective view of jaw member 220. Jaw member 220 includes an insulative housing 227, support base 230, insulative plate 222, and sealing plate 240. Molded within the insulative housing 227 is a hard stop 225 configured to limit the gap distance when jaw members 220 and 210 (see FIG. 4) are closed around tissue. Additionally, overmold teeth 235a-235e assist in limiting the gap distance “G” (See FIG. 4) when jaw members 210 and 220 are closed around tissue.


One or more overmold teeth 235a-235e on jaw member 220 contact one or more respective opposing overmold teeth 285a-285e (see FIG. 4) on jaw member 210 as the jaw members 210, 220 are closed due to a tip-bias. Then as the jaw members 210, 220 flex one or more hard stops 225, and/or 275 are engaged. When the hard stops 225 and/or 275 are engaged, hard stops 225 and/or 275 bear most of the load. By having the one or more overmold teeth 235a-235e, 285a-285e contact first ensures that the jaw members are at the appropriate gap distance “G” (see FIG. 4). In other words, the tip-bias ensures that the jaw members 210, 220 are properly closing.


Alternatively, hard stop 225 and/or 275 may be configured to control the initial gap distance between jaw members 210 and 220 and to bear most of the load as the tissue is compressed between jaw members 210 and 220 while overmold teeth 235a-235e control the gap distance while jaw members 210 and 220 flex as they seal tissue.


As the jaw members 210, 220 clamp together around tissue, hard stop 225 and/or hard stop 275 (See FIG. 6A) and overmold teeth 235a-235e and/or 285a-285e maintain the gap distance “G” with the hard stop 225 and/or 275 bearing most of the applied load. The gap distance is about 0.001 inches to about 0.005 inches.


Hard stop 225 may be disposed at a remote location or away from the high temperatures of seal plate 240 (e.g., closer to proximal end 221 of jaw member 220) to reduce deflection of hard stop 225 under loading. By hard stops 225 and/or 275 being removed from the high temperatures of the seal plates 240, 312, the hard stops 225 and/or 275 can bear a majority of the applied load when a user grasps tissue with end effector 200 without the unnecessary risk of melting or deflection.


The overmold teeth 235a-235e and/or 285a-285e may be used to assist the user in gripping tissue during grasping. The overmold teeth 235a-235e and/or 285a-285e are relatively small in size to reduce the effect of the overmold teeth 235a-235e and/or 285a-285e on tissue sealing performance. For example the overmold teeth may range from about 0.020 inches to about 0.050 inches in diameter. However, the size of the teeth can vary based on the size of the jaw members. Initially, one or more overmold teeth 235a-235e and/or 285a-285e may be used to check that jaw members 210, 220 are closing to the gap distance “G”. Then, as the jaw members 210, 220 flex then hard stops 225 and/or 275 make contact and bear most of the load. Alternatively, the overmold teeth 235a-235e and/or 285a-285e may be used to secondarily control the gap distance “G” as the jaw members 220, 210 flex. For example, when the jaw members flex 220, 210 under a particular loading condition, only one overmold tooth 235a may make contact with a corresponding opposing overmold tooth 285a. Alternatively, when the jaw members 220, 210 are under a different loading condition, more overmold teeth 235a-235e on jaw member 220 may make contact with corresponding overmold teeth 285a-285e on jaw member 210, however not all overmold teeth 235a-235e and/or 285a-285e need to contact each other to maintain proper gap distance “G”.


Turning to FIGS. 6A and 6B, the opposing jaw members 210 and 220 include support bases 319 and 230 that extend distally from flanges 313 and 221, respectively. The support bases 319 and 230 are configured to support insulative plates 322 and 222, which, in turn, support electrically conductive sealing plates 312 and 240 thereon. Sealing plates 312 and 240 may be affixed atop the insulative plates 322 and 222, respectively, and support bases 319 and 230, respectively, in any suitable manner including snap-fit, over-molding, stamping, ultrasonically welded, etc. The support bases 319 and 230, insulative plates 322 and 222, and sealing plates 312 and 240 are encapsulated by the outer insulative housings 316 and 227 by way of a subsequent overmolding process. The jaw members 210 and 220 are connected via an ultrasonic weld or other suitable joining process to electrical jaw leads 325a and 325b, respectively.


The jaw members 210 and 220 also include proximal flanges 313 and 221 extending proximally from the support bases 319 and 230, respectively, each of which includes an elongated angled cam slot 317 and 327, respectively, defined therethrough. The electrically conductive sealing plates 312 and 240 and the insulator plates 322 and 222 include respective longitudinally-oriented knife slots 315a, 315a′ and 315b, 315b′, respectively, defined therethrough for reciprocation of the knife blade (not shown). Jaw member 220 further includes one or more overmold teeth 235a-235e disposed on the inner facing surface of insulative plate 222 to define a gap between opposing jaw members 210 and 220 during sealing and/or cutting of tissue. The overmold teeth 235a-235e are molded within insulative plate 222 when the insulative plate 222 is molded. Types of plastic material that may be used are Amodel®, Trogamid®, PEKK, G-PEAK, PEEK, Thermotuff™, Ultem®, etc., all of which may be mineral and/or fiber reinforced.


The overmold teeth 235a-235e may be located along blade slot 315b′. The overmold teeth 235a-235e extend through openings 237a-237e within seal plate 240 and are slightly higher in elevation than seal plate 240 to prevent seal plates 312 and 240 from touching and creating a short between the seal plates 312, 240. Additionally, when the overmold teeth 235a-235e are located along blade slot 315b′, the overmold teeth 235a-235e help grip tissue closer to where the division takes place and may produce a more reliable cut even when a blade (not shown) is not as sharp. Additionally, if insulator plate 322 includes one or more overmold teeth 285a-285e, then overmold teeth 285a-285e extend through openings 287a-287e within seal plate 312 and are slightly higher in elevation than seal plate 312 to prevent seal plates 312 and 240 from touching. Overmold teeth 285a-285e are formed in the same manner used to create overmold teeth 235a-235e. Additionally, if overmold teeth 285a-285e are spaced apart along blade slot 315a′, then overmold teeth 285a-285e assist in gripping tissue closer to where the division takes place.


Referring to FIGS. 7A-7C, the overmold teeth 235a-235e and/or 285a-285e may be located in any location along insulative plates 222, 322 and either insulative plate 222 or 322 may include one or more overmold teeth 235a-235e and/or 285a-285e. FIG. 7A shows one embodiment of an end effector assembly 700 where the overmold teeth 235a-235e on jaw member 220 contact the mating row of overmold teeth 285a-285e on jaw member 210. With end effector 700, the overmold teeth 235a-235e and/or 285a-285e are almost always contacting plastic. FIG. 7B shows an alternative embodiment with end effector assembly 710, with overmold teeth 265a-265g on alternating sides blade slot 315b (See FIG. 6B). With end effector 710, each tooth of the overmold teeth 265a-265g may contact directly against seal plate 312 because of the symmetry with overmold teeth (not shown) on jaw member 210. However, if overmold teeth 265a-265g are of opposite symmetry to overmold teeth (not shown) on jaw member 210, then each tooth may contact an opposite overmold tooth, i.e. contact plastic and not a sealing plate 240, 312. Additionally, if only one jaw member 210 or 220 has overmold teeth 235a-235e or 285a-285e, then one or more teeth of the overmold teeth 235a-235e or 285a-285e contact the opposite seal plate 240, 312.



FIG. 7C shows an alternative end effector assembly 720. End effector assembly 720 includes a row of overmold teeth 295a-295g along a first side 725 of blade slot 315b on jaw member 220 and a row of overmold teeth 297a-297g along a second side 727 of blade slot 315a on jaw member 210. When end effector assembly 720 is closed around tissue, overmold teeth 295a-295g and 297a-297g contact directly against seal plate 312, 240 on respective opposing jaw members 210, 220. Alternatively, end effector 720 may be configured with a row of overmold teeth 295a-295g along a first side 725 of blade slot 315b on jaw member 220 and a row of overmold teeth 297a-297g along a first side 726 of blade slot 315a on jaw member 210. In this alternative embodiment, the overmold teeth 295a-295g and 297a-297g directly oppose each other and are almost always contacting plastic.



FIG. 8 is a flow diagram of process 800 for forming a jaw member 210, 220. The process 800 starts at step 805, and at step 810 the support base 230, 319 is formed. The support base 230, 319 may be formed of a plastic material by an injection molding process. Next, at step 820, an insulative plate 222, 322 with a plurality of overmold teeth 235a-235e, 285a-285e is formed of a plastic material by an injection molding process. Then at step 830, the sealing plate 240, 312 is formed from a conductive material with a plurality of openings 237a-237e, 287a-287e. Next at step 840, the insulative plate 222, 312 is mounted to the support base 230, 319. Then at step 850, the sealing plate 240, 312 is mounted to the insulative plate 222, 312 with the plurality overmold teeth 235a-235e, 285a-285e extending through the plurality of openings 237a-237e, 287a-287e, respectively. The sealing plate 240, 312 may be affixed atop the insulative plate 222, 312 in any known manner in the art, snap-fit, overmolding, stamping, ultrasonically welded, etc. The process 800 ends at step 865 after the insulative housing 227, 316 is formed around support base 230, 319 at step 860. When the insulative housing 227, 316 is formed hard stop 225, 275 is also formed of a plastic material. One method for forming the insulative housing 227, 316 is by an overmolding process.


From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. A forceps for use in a surgical procedure, the forceps comprising: a shaft having a proximal portion and a distal portion; andfirst and second jaw members disposed at the distal portion of the shaft, the first jaw member including: a sealing plate defining an opening therethrough;an overmold tooth extending through the opening and beyond the sealing plate towards the second jaw member; anda hard stop extending from the first jaw member beyond the sealing plate towards the second jaw member further than the overmold tooth, the hard stop configured to control a gap distance between the first and second jaw members.
  • 2. The forceps according to claim 1, wherein the hard stop is disposed adjacent to an end of the sealing plate.
  • 3. The forceps according to claim 1, wherein the sealing plate includes a longitudinally extending blade slot defined therein.
  • 4. The forceps according to claim 1, wherein the first jaw member includes: a support base; andan insulative material disposed between the support base and the sealing plate.
  • 5. The forceps according to claim 4, wherein the overmold tooth extends from the insulative material through the opening and beyond the sealing plate towards the second jaw member.
  • 6. The forceps according to claim 4, further comprising an insulative housing mounted to the support base and encapsulating at least a portion of each of the support base, the insulative material, and the sealing plate.
  • 7. A method of forming an end effector of a surgical forceps, comprising: assembling a sealing plate on a first jaw member, the sealing plate defining an opening therethrough;forming an overmold tooth extending through the opening beyond the sealing plate towards a second jaw member; andsecuring a hard stop relative to the sealing plate such that the hard stop extends beyond the sealing plate further than the overmold tooth and is configured to control a gap distance between the first and second jaw members.
  • 8. The method according to claim 7, further comprising: assembling a support base with an insulative material and the sealing plate such that the insulative material is disposed between the support base and the sealing plate.
  • 9. The method according to claim 7, further comprising mounting an insulative housing to the support base.
  • 10. The method according to claim 9, wherein mounting the insulative housing the support base includes molding the insulative housing around at least a portion of the insulative material.
  • 11. The method according to claim 9, wherein mounting the insulative housing the support base includes molding the insulative housing around a least a portion of the sealing plate.
  • 12. An end effector for a surgical forceps, the end effector comprising: a sealing plate disposed on a first jaw member and defining an opening therethrough;an overmold tooth extending through the opening and beyond the sealing plate towards a second jaw member; anda hard stop extending beyond the sealing plate towards the second jaw member further than the overmold tooth, the hard stop configured to control a gap distance between the first and second jaw members.
  • 13. The end effector according to claim 12, wherein the hard stop is disposed adjacent to an end of the sealing plate.
  • 14. The end effector according to claim 12, wherein the sealing plate includes a longitudinally extending blade slot defined therein.
  • 15. The end effector according to claim 12, further comprising: a support base disposed on the first jaw member; andan insulative material disposed on the first jaw member between the support base and the sealing plate.
  • 16. The end effector according to claim 15, wherein the overmold tooth extends from the insulative material through the opening and beyond the sealing plate towards the second jaw member.
  • 17. The end effector according to claim 15, further comprising an insulative housing mounted to the support base and encapsulating at least a portion of each of the support base, the insulative material, and the sealing plate.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/927,629, filed on Mar. 21, 2018, now U.S. Pat. No. 10,702,332, which is a continuation of U.S. patent application Ser. No. 15/296,118, filed on Oct. 18, 2016, now U.S. Pat. No. 9,931,159, which is a continuation of U.S. patent application Ser. No. 14/718,748, filed on May 21, 2015, now U.S. Pat. No. 9,468,490, which is a continuation of U.S. patent application Ser. No. 14/578,953, filed on Dec. 22, 2014, now U.S. Pat. No. 9,192,434, which is a continuation of U.S. patent application Ser. No. 13/835,004, filed on Mar. 15, 2013, now U.S. Pat. No. 8,939,975, which claims the benefit of the filing date of provisional U.S. Patent Application No. 61/672,347, filed on Jul. 17, 2012, the entire contents of each of which are incorporated herein by reference.

US Referenced Citations (178)
Number Name Date Kind
D249549 Pike Sep 1978 S
D263020 Rau, III Feb 1982 S
D295893 Sharkany et al. May 1988 S
D295894 Sharkany et al. May 1988 S
D298353 Manno Nov 1988 S
D299413 DeCarolis Jan 1989 S
D343453 Noda Jan 1994 S
D348930 Olson Jul 1994 S
D349341 Lichtman et al. Aug 1994 S
D354564 Medema Jan 1995 S
D358887 Feinberg May 1995 S
D384413 Zlock et al. Sep 1997 S
5700261 Brinkerhoff Dec 1997 A
H1745 Paraschac Aug 1998 H
D402028 Grimm et al. Dec 1998 S
D408018 McNaughton Apr 1999 S
5891142 Eggers et al. Apr 1999 A
D416089 Barton et al. Nov 1999 S
6030384 Nezhat Feb 2000 A
6030808 Darnell, Jr. et al. Feb 2000 A
D424694 Tetzlaff et al. May 2000 S
D425201 Tetzlaff et al. May 2000 S
H1904 Yates et al. Oct 2000 H
D449886 Tetzlaff et al. Oct 2001 S
D453923 Olson Feb 2002 S
D454951 Bon Mar 2002 S
D457958 Dycus et al. May 2002 S
D457959 Tetzlaff et al. May 2002 S
H2037 Yates et al. Jul 2002 H
D465281 Lang Nov 2002 S
D466209 Bon Nov 2002 S
6648883 Francischelli et al. Nov 2003 B2
6663627 Francischelli et al. Dec 2003 B2
6723092 Brown et al. Apr 2004 B2
D493888 Reschke Aug 2004 S
D496997 Dycus et al. Oct 2004 S
D499181 Dycus et al. Nov 2004 S
D502994 Blake, III Mar 2005 S
6926716 Baker et al. Aug 2005 B2
D509297 Wells Sep 2005 S
7029470 Francischelli et al. Apr 2006 B2
D525361 Hushka Jul 2006 S
7083619 Truckai et al. Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7094235 Francischelli Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
D531311 Guerra et al. Oct 2006 S
7131971 Dycus et al. Nov 2006 B2
D533274 Visconti et al. Dec 2006 S
D533942 Kerr et al. Dec 2006 S
D535027 James et al. Jan 2007 S
7169146 Truckai et al. Jan 2007 B2
D538932 Malik Mar 2007 S
7186253 Truckai et al. Mar 2007 B2
7189233 Truckai et al. Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
D541611 Aglassinge May 2007 S
D541938 Kerr et al. May 2007 S
D545432 Watanabe Jun 2007 S
D547154 Lee Jul 2007 S
7250048 Francischelli et al. Jul 2007 B2
7255697 Dycus et al. Aug 2007 B2
D564662 Moses et al. Mar 2008 S
D567943 Moses et al. Apr 2008 S
7354440 Truckal et al. Apr 2008 B2
7367972 Francischelli et al. May 2008 B2
7381209 Truckai et al. Jun 2008 B2
D575395 Hushka Aug 2008 S
D575401 Hixson et al. Aug 2008 S
D582038 Swoyer et al. Dec 2008 S
7632269 Truckai et al. Dec 2009 B2
D617900 Kingsley et al. Jun 2010 S
D617901 Unger et al. Jun 2010 S
D617902 Twomey et al. Jun 2010 S
D617903 Unger et al. Jun 2010 S
D618798 Olson et al. Jun 2010 S
7731717 Odom et al. Jun 2010 B2
7744562 Jahns et al. Jun 2010 B2
D621503 Otten et al. Aug 2010 S
7776036 Schechter et al. Aug 2010 B2
7794461 Eder et al. Sep 2010 B2
7799026 Schechter et al. Sep 2010 B2
7803156 Eder et al. Sep 2010 B2
D627462 Kingsley Nov 2010 S
D628289 Romero Nov 2010 S
D628290 Romero Nov 2010 S
7824399 Francischelli et al. Nov 2010 B2
D630324 Reschke Jan 2011 S
7955331 Truckai et al. Jun 2011 B2
D649249 Guerra Nov 2011 S
D649643 Allen, IV et al. Nov 2011 S
D661394 Romero et al. Jun 2012 S
8535312 Horner Sep 2013 B2
8679140 Butcher Mar 2014 B2
RE44834 Dumbauld et al. Apr 2014 E
8747434 Larson et al. Jun 2014 B2
8752264 Ackley et al. Jun 2014 B2
8887373 Brandt et al. Nov 2014 B2
8920461 Unger et al. Dec 2014 B2
8939975 Twomey et al. Jan 2015 B2
8961513 Allen, IV et al. Feb 2015 B2
8961514 Garrison Feb 2015 B2
8968298 Twomey Mar 2015 B2
8968311 Allen, IV et al. Mar 2015 B2
8968313 Larson Mar 2015 B2
8968360 Garrison et al. Mar 2015 B2
9011435 Brandt et al. Apr 2015 B2
9011436 Garrison Apr 2015 B2
9023039 Kerr May 2015 B2
9034009 Twomey et al. May 2015 B2
9039691 Moua et al. May 2015 B2
9072524 Heard et al. Jul 2015 B2
9113882 Twomey et al. Aug 2015 B2
9113889 Reschke Aug 2015 B2
9113897 Deborski et al. Aug 2015 B2
9113901 Allen, IV et al. Aug 2015 B2
9113904 Kerr et al. Aug 2015 B2
9161769 Stoddard et al. Oct 2015 B2
9161812 Kerr Oct 2015 B2
9168052 Garrison et al. Oct 2015 B2
9192421 Garrison Nov 2015 B2
9192432 Larson et al. Nov 2015 B2
9192434 Twomey et al. Nov 2015 B2
9265569 Hart et al. Feb 2016 B2
9265573 Kerr Feb 2016 B2
9375258 Kendrick Jun 2016 B2
9375282 Nau, Jr. et al. Jun 2016 B2
9468490 Twomey et al. Oct 2016 B2
9545262 Kerr et al. Jan 2017 B2
9693816 Orszulak Jul 2017 B2
9713493 Waaler et al. Jul 2017 B2
9820765 Allen, IV et al. Nov 2017 B2
9918771 Regadas Mar 2018 B2
9931159 Twomey et al. Apr 2018 B2
10702332 Twomey et al. Jul 2020 B2
20020188294 Couture et al. Dec 2002 A1
20070106297 Dumbauld et al. May 2007 A1
20070156139 Schechter et al. Jul 2007 A1
20070270795 Francischelli et al. Nov 2007 A1
20080147062 Truckai et al. Jun 2008 A1
20080319442 Unger et al. Dec 2008 A1
20090082767 Unger et al. Mar 2009 A1
20100069903 Allen, IV et al. Mar 2010 A1
20100076432 Horner Mar 2010 A1
20100179540 Marczyk et al. Jul 2010 A1
20100179545 Twomey et al. Jul 2010 A1
20110004208 Truckai et al. Jan 2011 A1
20110270245 Horner et al. Nov 2011 A1
20110270251 Horner et al. Nov 2011 A1
20120083786 Artale et al. Apr 2012 A1
20130185922 Twomey et al. Jul 2013 A1
20130190755 Deborski Jul 2013 A1
20130197503 Orszulak Aug 2013 A1
20130218199 Kerr et al. Aug 2013 A1
20130219691 Reschke Aug 2013 A1
20130226178 Brandt et al. Aug 2013 A1
20130226226 Garrison Aug 2013 A1
20130253489 Nau, Jr. et al. Sep 2013 A1
20130255063 Hart et al. Oct 2013 A1
20130274736 Garrison Oct 2013 A1
20130289561 Waaler et al. Oct 2013 A1
20130296848 Allen, IV Nov 2013 A1
20130296922 Allen, IV et al. Nov 2013 A1
20130296923 Twomey et al. Nov 2013 A1
20130304058 Kendrick Nov 2013 A1
20130304059 Allen, IV et al. Nov 2013 A1
20130304066 Kerr et al. Nov 2013 A1
20130325057 Larson Dec 2013 A1
20130345706 Garrison Dec 2013 A1
20140005663 Heard et al. Jan 2014 A1
20140005666 Moua et al. Jan 2014 A1
20140025052 Nau, Jr. et al. Jan 2014 A1
20140025060 Kerr Jan 2014 A1
20140025067 Kerr et al. Jan 2014 A1
20140025070 Kerr et al. Jan 2014 A1
20140031821 Garrison Jan 2014 A1
20140031860 Stoddard et al. Jan 2014 A1
20150112337 Twomey et al. Apr 2015 A1
Foreign Referenced Citations (93)
Number Date Country
201299462 Sep 2009 CN
202313713 Jul 2012 CN
2415263 Oct 1975 DE
02514501 Oct 1976 DE
2627679 Jan 1977 DE
03423356 Jun 1986 DE
03612646 Apr 1987 DE
8712328 Feb 1988 DE
04303882 Feb 1995 DE
04403252 Aug 1995 DE
19515914 Jul 1996 DE
19506363 Aug 1996 DE
29616210 Nov 1996 DE
19608716 Apr 1997 DE
19751106 May 1998 DE
19738457 Mar 1999 DE
19751108 May 1999 DE
19946527 Jul 2001 DE
20121161 Apr 2002 DE
10045375 Oct 2002 DE
202007009165 Aug 2007 DE
202007009317 Aug 2007 DE
202007009318 Aug 2007 DE
10031773 Nov 2007 DE
202007016233 Jan 2008 DE
102004026179 Jan 2009 DE
102008018406 Jul 2009 DE
202012100833 Apr 2012 DE
1159926 Mar 2003 EP
1486177 Dec 2004 EP
1769767 Apr 2007 EP
1810625 Jul 2007 EP
2174612 Apr 2010 EP
2377480 Oct 2011 EP
2382937 Nov 2011 EP
2436330 Apr 2012 EP
2974685 Jan 2016 EP
61501068 May 1986 JP
H055106 Jan 1993 JP
H0540112 Feb 1993 JP
H06502328 Mar 1994 JP
H06121797 May 1994 JP
H06285078 Oct 1994 JP
H06343644 Dec 1994 JP
H06511401 Dec 1994 JP
H07265328 Oct 1995 JP
H0856955 Mar 1996 JP
H08252263 Oct 1996 JP
H08289895 Nov 1996 JP
H08317934 Dec 1996 JP
H08317936 Dec 1996 JP
H09538 Jan 1997 JP
H0910223 Jan 1997 JP
H09122138 May 1997 JP
H10195 Jan 1998 JP
H1024051 Jan 1998 JP
H10155798 Jun 1998 JP
H1147150 Feb 1999 JP
H1170124 Mar 1999 JP
H11169381 Jun 1999 JP
H11192238 Jul 1999 JP
H11244298 Sep 1999 JP
2000102545 Apr 2000 JP
2000342599 Dec 2000 JP
2000350732 Dec 2000 JP
2001008944 Jan 2001 JP
2001029356 Feb 2001 JP
2001128990 May 2001 JP
2001190564 Jul 2001 JP
2001003400 Nov 2001 JP
2002136525 May 2002 JP
2002528166 Sep 2002 JP
2003116871 Apr 2003 JP
2003175052 Jun 2003 JP
2003245285 Sep 2003 JP
2004517668 Jun 2004 JP
2004528869 Sep 2004 JP
2005152663 Jun 2005 JP
2005253789 Sep 2005 JP
2006015078 Jan 2006 JP
2006501939 Jan 2006 JP
2006095316 Apr 2006 JP
2011125195 Jun 2011 JP
6030945 Nov 2016 JP
401367 Oct 1973 SU
0036986 Jun 2000 WO
0059392 Oct 2000 WO
0115614 Mar 2001 WO
0154604 Aug 2001 WO
0245589 Jun 2002 WO
2006021269 Mar 2006 WO
2005110264 Apr 2006 WO
2008040483 Apr 2008 WO
Non-Patent Literature Citations (54)
Entry
McLellan et al. “Vessel Sealing for Hemostasis During Gynecologic Surgery” Sales/Product Literature 1999.
European Search Report dated Dec. 9, 2015, corresponding to European Application No. 15181833.3; 9 pages.
E. David Crawford “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery”, 2000.
Extended European Search Report dated Oct. 11, 2013 for EP 13 17 6829.
U.S. Appl. No. 09/177,950, filed Oct. 23, 1998, Randel A. Frazier.
U.S. Appl. No. 09/387,883, filed Sep. 1, 1999, Dale F. Schmaltz.
U.S. Appl. No. 09/591,328, filed Jun. 9, 2000, Thomas P. Ryan.
U.S. Appl. No. 12/336,970, filed Dec. 17, 2008, Paul R. Sremeich.
U.S. Appl. No. 13/731,674, filed Dec. 31, 2012, Siebrecht.
Michael Choti, “Abdominoperineal Resection with the LigaSure Vessel Sealing System and LigaSure Atlas 20 cm Open Instrument” Innovations That Work, Jun. 2003.
Chung et al., “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure” Diseases of the Colon & Rectum vol. 46, No. 1 Jan. 2003.
Tinkcler L.F., “Combined Diathermy and Suction Forceps”, Feb. 6, 1967 (Feb. 6, 1965), British Medical Journal Feb. 6, 1976, vol. 1, nr. 5431 p. 361, ISSN: 0007-1447.
Caarbonell et al., “Comparison of the Gyrus PlasmaKinetic Sealer and the Valleylab LigaSure Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center,Charlotte,NC; Date: Aug. 2003.
Peterson et al., “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001).
“Electrosurgery: A Historical Overview” Innovations in Electrosurgery; Sales-Product Literature; Dec. 31, 2000.
Johnson et al. “Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales/Product Literature; Jan. 2004.
E. David Crawford, “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales/Product Literature 2000.
Johnson et al. “Evaluation of the LigaSure Vessel Sealing System in Hemorrhoidectormy” American College of Surgeons (ACS) Clinicla Congress Poster (2000).
Muller et al. “Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System” Innovations That Work; Sep. 1999.
Kennedy et al. “High-burst-strength, feedback-controlled bipolar vessel sealing” Surgical Endoscopy (1998) 12:876-878.
Burdette et al. “In Vivo Probe Measurement Technique for Determining Dielectric Properties at VHF Through Microwave Frequencies”, IEEE Transactions on Microwave Theory and Techniques, vol. MTT-28, No. 4, Apr. 1980 pp. 414-427.
Carus et al., “Initial Experience With the LigaSure Vessel Sealing System in Abdominal Surgery” Innovations That Work,Jun. 2002.
Heniford et al. “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999.
Heniford et al “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy (2000) 15:799-801.
Herman et al., “Laparoscopic Intestinal Resection With the LigaSure Vessel Sealing System: A Case Report”; Innovations That Work, Feb. 2002.
Koyle et al., “Laparoscopic Palomo Varicocele Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002.
W. Scott Helton, “LigaSure Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery”; Sales/Product Literature 1999.
LigaSure Vessel Sealing System, the Seal of Confidence in General, Gynecologic, Urologic, and Laparaoscopic Surgery; Sales/Product Literature; Apr. 2002.
Joseph Ortenberg “LigaSure System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002.
Sigel et al., “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831.
Sampayan et al, “Multilayer Ultra-High Gradient Insulator Technology” Discharges and Electrical Insulation in Vacuum, 1998. Netherlands Aug. 17-21, 1998; vol. 2, pp. 740-743.
Paul G. Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery, vol. 181, No. 3, Apr. 2001 pp. 236-237.
Benaron et al., “Optical Time-Of-Flight and Absorbance Imaging of Biologic Media”, Science, American Association for the Advancement of Science, Washington, DC, vol. 259, Mar. 5, 1993, pp. 1463-1466.
Olsson et al. “Radical Cystectomy in Females”. Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001.
Palazzo et al. “Randomized clinical trial of Ligasure versus open haemorrhoidectomy” British Journal of Surgery 2002, 89, 154-157.
Levy et al. “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy” Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003.
“Reducing Needlestick Injuries in the Operating Room”; Sales/Product Literature 2001.
Bergdahl et al., “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” J. Neurosurg, vol. 75, Jul. 1991, pp. 148-151.
Strasberg et al. “A Phase I Study of the LigaSure Vessel Sealing System in Hepatic Surgery” Section of HPB Surger, Washington University School of Medicine, St. Louis MO, Presented at AHPBA, Feb. 2001.
Sayfan et al., “Sutureless Closed Hemorrhoidectomy: A New Technique” Annals of Surgery, vol. 234, No. 1, Jul. 2001, pp. 21-24.
Levy et al., “Update on Hysterectomy—New Technologies and Techniques” OBG Management, Feb. 2003.
Dulemba et al. “Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy” Sales/Product Literature; Jan. 2004.
Strasberg et al., “Use of a Bipolar Vessel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574.
Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001)71.9 pp. 538-540.
Rothenberg et al. “Use of the LigaSure Vessel Sealing System in Minimally Invasive Surgery in Children” Int'l Pediatric Endosurgery Group (IPEG) 2000.
Crawford et al. “Use of the LigaSure Vessel Sealing System in Urologic Cancer Surgery”; Grand Rounds in Urology 1999 vol. 1 Issue 4 pp. 10-17.
Craig Johnson, “Use of the LigaSure Vessel Sealing System in Bloodless Hemorrhoidectomy”; Innovations That Work, Mar. 2000.
Levy et al. “Use of a New Energy-based Vessel Ligation Device During Vaginal Hysterectomy”; Int'l Federation of Gynecology and Obstetrics (FIGO) World Congress 1999.
Barbara Levy, “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C.
E. David Crawford, “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales/Product Literature 2000.
Jarrett et al., “Use of the LigaSure Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy”; Sales/Product Literature 2000.
Crouch et al. “A Velocity-Dependent Model for Needle Insertion in Soft Tissue”; MICCAI 2005; LNCS 3750 pp. 624-632, Dated: 2005.
McLellan et al., “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, DC.
Summons to attend oral proceedings issued in corresponding Appl. No.: EP 15181833.3 dated Dec. 13, 2019 (10 pages).
Related Publications (1)
Number Date Country
20200315695 A1 Oct 2020 US
Provisional Applications (1)
Number Date Country
61672347 Jul 2012 US
Continuations (5)
Number Date Country
Parent 15927629 Mar 2018 US
Child 16905970 US
Parent 15296118 Oct 2016 US
Child 15927629 US
Parent 14718748 May 2015 US
Child 15296118 US
Parent 14578953 Dec 2014 US
Child 14718748 US
Parent 13835004 Mar 2013 US
Child 14578953 US