The present disclosure pertains generally to methods and apparatus for fluidically generating desired fluid spray patterns, primarily liquid patterns sprayed in droplets to reliably wet a target area. In a more particular aspect, the invention pertains to enhancements to fluidic oscillator nozzles, their use in spray assemblies (e.g., showerheads) configured to generate a plurality of predetermined aimed three-dimensional oscillating sprays of fluid droplets from a plurality of fluidic scanner nozzles, and methods of fabricating such assemblies.
Standard jet-type shower heads do not provide pleasing spray pattern, uniform droplet size, uniform droplet velocity, and temperature uniformity at very low flow rates (e.g., 2 gpm or less) for showering. Any fluidic showerhead can provide improvements over the prior art. Most fluidic showerheads have very few openings and are, therefore, judged inferior by consumers at stores where they cannot spray the showerhead before purchasing.
The Stouffer '835 scanner patent describes and illustrates (e.g., in
Fluidic oscillators can be assembled into a multi-spray generating nozzle assembly such as those illustrated in
The top housing portion 54 is generally cup-shaped, forming a housing cover portion having a top wall 90, which incorporates the centrally-located inlet 60, and a circumferential, downwardly-extending (as viewed in
The bottom, or front plate housing component 56 of the housing 52 includes a generally planar bottom wall 120 having a back (or top, as viewed in
Molded as a part of the front plate housing component 56 are a plurality of concave depressions 150, illustrated in perspective view in
Mounted within each depression 150, as illustrated in
The method of assembly of showerhead 50 involves positioning an insert 170 into each of the cylindrical upper portions 152 of depressions 150 in the front plate so that the bottom 178 of the insert engages the ledge 154, with the inserts being secured in place by the tight fit of the insert outer side wall 174, thereby forming a plurality, in this embodiment for purposes of illustration, eight fluidic oscillator interaction chambers and corresponding scanning spray outlets and outlet throats. A seal is placed in the groove 130 and the back and front portions 54 and 56 are positioned and aligned and are secured together by suitable fasteners, such as screws or bolts, to provide a fluid-tight enclosure. In operation, the shower head is secured to a suitable source of fluid under pressure, which flows into the interior plenum, or fluid manifold 74 of the housing, as indicated by arrows 72 and 80. The fluid circulates in the chamber and flows at substantially equal flow rates into the several inlet power nozzles 182, as illustrated by arrows 190. The fluid enters the fluidic interaction chambers 180 under pressure, circulates in the chamber to produce a fluidic oscillation, and is ejected through the corresponding outlet aperture 158 and throat 160 to generate from each outlet a scanning fluidic spray output which is delivered in a uniform cone angle, illustrated in
In the described embodiment of
Accordingly, it is an object of the present disclosure to overcome the above mentioned difficulties by providing a gapped scanner nozzle assembly. The gapped scanner nozzle assembly of the present invention may be used to assemble a multiple spray generating scanner fluidic showerhead which provides all of the benefits of a fluidic showerhead, with additional advantages. The gapped scanner nozzle assembly, if configured as a scanner fluidic showerhead, may contain many spray orifices or openings (more fluidics), in an assembly which is easy and inexpensive to assemble.
The gapped scanner nozzle assembly includes an inlet lumen hemisphere defining member and an outlet orifice hemisphere defining member which is configured to receive and axially align with the inlet defining member in a congruent relationship. The gapped scanner assembly works surprisingly well when there is an axial or longitudinal gap between the hemisphere halves and the gap defines a cylindrical sidewall having a selected axial length. In one embodiment, the cylindrical sidewall includes a wider inside diameter than the inside diameters of either (a) the inlet lumen hemisphere defining member or (b) outlet orifice hemisphere defining member. In another embodiment, the cylindrical sidewall includes an inside diameter that is generally congruent to the inside diameter of either (a) the inlet lumen hemisphere defining member or (b) outlet orifice hemisphere defining member. The gapped scanner nozzle assembly defines a lumen or vortex inducing chamber between the backing (power nozzle) defining member and the front member.
The method of manufacture and configuration of the present invention provides an economical and very effective mechanism for incorporating scanner fluidic circuits in a multi-spray generating assembly. The gapped scanner nozzle assembly of the present invention need not be as expensive to make as prior fluidic showerheads because there can be fewer components which are assembled in a less tolerance-critical method as compared with prior fluidic showerheads.
In one embodiment, a fluidic scanner nozzle comprising an interaction chamber defined axially between an upstream end and a downstream end and having a longitudinal chamber axis. The upstream end having an inlet opening for receiving pressurized fluid and delivering the pressurized fluid into said interaction chamber along said chamber axis. The downstream end having an outlet orifice for issuing a generally conical outlet spray of liquid droplets from said chamber into ambient environment. An axial gap positioned between said upstream end and said downstream end. The upstream end may be an inlet member that defines an inner cavity having a hemisphere shape and the downstream end may be an outlet member that defines an inner cavity having a hemisphere shape wherein the inner cavity of the inlet member is an upper hemisphere shape and the inner cavity of the outlet member is a lower hemisphere shape. The outlet member may be configured to receive and be axially aligned with the inlet member in a congruent relationship to form said interaction chamber. The axial gap may be positioned between a portion of the inlet member and the outlet member. The axial gap may define a cylindrical sidewall segment aligned between an upper hemisphere shaped inner cavity and a lower hemisphere shaped inner cavity. The axial gap may include a selected axial length and an inside diameter that is wider than an inside diameter of either (a) the inlet member or (b) the outlet member. The axial gap may be a stepped axial gap positioned between a portion of the inlet member and the outlet member. Alternatively, the axial gap may be a continuous axial gap positioned between a portion of the inlet member and the outlet member. The axial gap within said interaction chamber may define a vortex inducing chamber between the inlet member and the outlet member.
In one embodiment provided is a fluidic scanner nozzle comprising an interaction chamber defined axially between an inlet member and an outlet member and having a longitudinal chamber axis. The inlet member including an upstream end having an inlet opening for receiving pressurized fluid and delivering the pressurized fluid into said interaction chamber along said chamber axis. The outlet member including a downstream end having an outlet orifice for issuing a generally conical outlet spray of liquid droplets from said chamber into ambient environment. An axial gap may be positioned between said upstream end and said downstream end. The inlet member and outlet member may be secured and sealed together to define said interaction chamber therebetween, said inlet member including a first open end longitudinally opposite said inlet opening and said outlet member including a second open end longitudinally opposite said outlet orifice, and wherein said first open end is inserted within said second open end. The inlet member defines an inner cavity having a hemisphere shape and said outlet member defines an inner cavity having a hemisphere shape wherein the inner cavity of the inlet member is an upper hemisphere shape and the inner cavity of the outlet member is a lower hemisphere shape. The outlet member may be configured to receive and be axially aligned with the inlet member in a congruent relationship to form said interaction chamber. The axial gap defines a cylindrical sidewall segment aligned between an upper hemisphere shaped inner cavity and a lower hemisphere shaped inner cavity. The axial gap includes a selected axial length and an inside diameter that is wider than an inside diameter of either (a) the inlet member or (b) the outlet member. The axial gap may be a stepped axial gap positioned between a portion of the inlet member and the outlet member. Alternatively, the axial gap may be a continuous axial gap positioned between a portion of the inlet member and the outlet member. The outlet member may further comprise a continuous face having a plurality of outlet members configured to be aligned with a plurality of inlet members within a housing wherein said housing is a shower head assembly.
The above and still further objects, features and advantages of the present invention will become apparent upon consideration of the following detailed description of specific embodiments thereof, particularly when taken in conjunction with the accompanying drawings, wherein like reference numerals in the various figures are utilized to designate like components.
The operation of the present disclosure may be better understood by reference to the following detailed description taken in connection with the following illustrations, wherein:
Reference will now be made in detail to exemplary embodiments, examples of which are illustrated in the accompanying drawings. It is to be understood that other embodiments may be utilized and structural and functional changes may be made. Moreover, features of the various embodiments may be combined or altered. As such, the following description is presented by way of illustration only and should not limit in any way the various alternatives and modifications that may be made to the illustrated embodiments.
As used herein, the words “example” and “exemplary” mean an instance, or illustration. The words “example” or “exemplary” do not indicate a key or preferred aspect or embodiment. The word “or” is intended to be inclusive rather an exclusive, unless context suggests otherwise. As an example, the phrase “A employs B or C,” includes any inclusive permutation (e.g., A employs B; A employs C; or A employs both B and C). As another matter, the articles “a” and “an” are generally intended to mean “one or more” unless context suggest otherwise.
Similar reference numerals are used throughout the figures. Therefore, in certain views, only selected elements are indicated even though the features of the system or assembly may be identical in all of the figures. In the same manner, while a particular aspect of the disclosure is illustrated in these figures, other aspects and arrangements are possible, as will be explained below.
In the described embodiment of
This study determined that the shape of the interaction chamber may be adjusted to improve tolerances related to manufacturability and assembly while maintaining performance of fluidic circuit as measured by flow rate and cone angle. The variability of a step geometry was identified to adjust both the flow rate and cone angle at identifiable relationships that will be discussed below.
Provided is an embodiment of a gapped scanner nozzle assembly 200 and its components parts. In one embodiment, referring now to
The gapped scanner nozzle assembly may include an inlet member 210 that defines an upper inner cavity and an outlet member 230 that defines a lower inner cavity. The inner cavity of the inlet member 210 may define an upper hemisphere shape and the inner cavity of the outlet member 230 may define a lower hemisphere shape. The outlet member 230 may be configured to receive and be axially aligned with the inlet member 210 in a congruent relationship. The gapped scanner assembly 200 may include an axial or longitudinal gap 250 between a portion of the inlet member 210 and the outlet member 230 wherein the axial gap may define a cylindrical sidewall segment aligned between an upper hemisphere shaped inner cavity and a lower hemisphere shaped inner cavity. The axial gap may have a selected axial length and a wider inside diameter than the inside diameters of either (a) the inlet lumen hemisphere defining member or (b) outlet orifice hemisphere defining member. The gapped scanner nozzle assembly 200 defines a lumen or vortex inducing chamber between the backing (power nozzle) defining member and the front member.
The fluidic scanner nozzle assembly may be considered a gapped fluidic nozzle assembly 200. This nozzle includes an interaction chamber 260 defined axially between an upstream end 212 and a downstream end 232 and having a longitudinal chamber axis 270. The upstream end having an inlet opening 214 for receiving pressurized fluid and delivering the pressurized fluid into said interaction chamber 260 along said chamber axis 270. The downstream end 232 having an outlet orifice 234 for issuing a generally conical outlet spray 220 of liquid droplets from the interaction chamber 260 into ambient environment.
The axial gap 250 may be positioned between said upstream end 212 and said downstream end 232. More particularly, the outlet member 230 is configured to receive and be axially aligned with the inlet member 210 in a congruent relationship to form said interaction chamber 260. Wherein the axial gap 250 is positioned between a portion of the inlet member 210 and the outlet member 230. In one embodiment, the axial gap 250 defines a cylindrical sidewall segment aligned between an upper hemisphere shaped inner cavity and a lower hemisphere shaped inner cavity. The axial gap 250 within said interaction chamber 260 defines a vortex or toroidal flow inducing chamber between the inlet member and the outlet member.
As illustrated by
The outlet member 230 may include a step portion 236. The step portion 236 may be an annular shoulder located within the cavity of the outlet member 230. Once the inlet member 210 is inserted within the outlet member 230, the shoulder 216 may abut against the second open end 238 such that the stepped axial gap 250 is formed between the first open end 218 and the step portion 236 of the outlet member 230.
The axial gap 250 may be of a generally cylindrical shape within the interaction chamber 260 and may includes a selected axial length between the first open end 218 and the step portion 236. Further, the axial gap may include an inside diameter that is wider than an inside diameter of either (a) the cavity of the inlet member or (b) the cavity of the outlet member.
As illustrated by
In one embodiment, either nozzle assembly 200, 200′ includes the inlet member 210 and outlet member 230 that may be positioned in a front plate so that the bottom of the inlet member 210 engages the ledge or top of the outlet member 230. Their may be a plurality of inlet members 210 inserted within a plurality of outlet members 230 incorporated within a shower head assembly. The inlet members 210 may be secured in place by the tight fit of the outer side wall, thereby forming a fluidic oscillator interaction chambers and corresponding scanning spray outlets and outlet throats. In operation, the shower head is secured to a suitable source of fluid under pressure. The fluid circulates in the chamber and flows at equal flow rates into the several inlet power nozzles 214 and enters the fluidic interaction chambers 260, 260′ under pressure, circulates in the chamber to produce a fluidic oscillation, and is ejected through the corresponding outlet aperture 234 to generate from each outlet a scanning fluidic spray output which is delivered in a uniform cone angle, illustrated in
This scanner nozzle member configuration is well suited for use in a multi-spray nozzle (e.g., showerhead) assembly and the method of the present invention which provides some significant advantages. The simplicity of the scanner nozzle member's geometry, which includes an essentially non-spherical interaction region with coaxial, opposed inlet lumen (power nozzle) and outlet orifice (throat)—and tolerance of a range of gap sidewall lengths allows for simplified construction of scanner fluidic arrays.
All of the scanner throats with the downstream half of the interaction regions (e.g., 230) can be molded in one piece of the showerhead. In this scenario, the power nozzle and upstream half of the interaction region (e.g., 210) are molded individually for each fluidic. The component count for the fluidics is equal to the number of fluidics plus one. This is simpler and more economical to manufacture than other known scanner nozzle assemblies and there are options for greater flexibility and economy making the components are much simpler to design, mold, and assemble, since the axial gap 250 can have a range of tolerable lengths and still provide acceptable performance.
Alternatively, the scanner throats with the downstream half of the interaction regions can be molded in one piece of the showerhead and all of the power nozzles and upstream half of the interaction regions can be molded in one other piece of the showerhead. In this scenario, component count for the fluidics is two, no matter how many fluidics are included. This scenario also allows each showerhead to be designed and built to whatever scanner fluidic geometry is best suited rather than using more or less standard components that are typical in prior fluidic showerheads.
To facilitate the alignment of a large number of fluidics in the assembly, one of the components may be molded out of a flexible material to allow it to conform to the other hard plastic component. To facilitate the alignment of a large number of fluidics in the assembly of the present invention and to allow aiming or bending of the fluidics into various aim angles, both of the components may be molded out of a flexible material to allow them to conform to each other and to a hard face or backing plate that holds prescribed aim angles. The economy inherent in the manufacturing process for making the scanner fluidics and the showerhead nozzle assembly—the non-spherical interaction region's coaxial, opposed inlet (power nozzle) and outlet (throat)—provide the option to economically mold the downstream halves of the interaction regions in the one piece of the showerhead assembly, as discussed above. Since the power nozzle and upstream half of the interaction region are molded individually for each fluidic, the assembly of the showerhead is simplified and the components are much simpler to design and mold.
Notably, the performance of the nozzle assembly 200 having a continuous axial gap relative to the nozzle assemblies having spherical shaped interaction regions disclosed by
Notably, the performance of the nozzle assembly 200 having a stepped axial gap 250 relative to the nozzle assemblies having spherical shaped interaction regions disclosed by
It was noted, that the nozzle with stepped axial gap diameter provides better fluid outlet flow stability than with the continuous axial gap. It displays higher frequency conical oscillation, a more uniform spray distribution, reduces risk of unwanted aims, and provides constant conical fluid flow diameter results in a lower frequency of the conical oscillation (“scanning”).
Having described preferred embodiments of a new and improved method, it is believed that other modifications, variations and changes will be suggested to those skilled in the art in view of the teachings set forth herein. It is therefore to be understood that all such variations, modifications and changes are believed to fall within the scope of the present invention.
Although the present embodiments have been illustrated in the accompanying drawings and described in the foregoing detailed description, it is to be understood that the gapped fluidic oscillator assemblies are not to be limited to just the embodiments disclosed, but that the systems and assemblies described herein are capable of numerous rearrangements, modifications and substitutions. The exemplary embodiment has been described with reference to the preferred embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. Accordingly, the present specification is intended to embrace all such alterations, modifications and variations that fall within the spirit and scope of the appended claims. Furthermore, to the extent that the term “includes” is used in either the detailed description or the claims, such term is intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.
This application is a continuation of International Application No. PCT/US2018/057962 entitled “GAPPED SCANNER NOZZLE ASSEMBLY AND METHOD,” filed on Oct. 29, 2018 which claims priority to and benefit of U.S. Provisional Application No. 62/578,079 filed on Oct. 27, 2017, which is hereby incorporated by reference in its entirety. This application is also a continuation-in-part of U.S. application Ser. No. 15/775,031 entitled “SCANNER NOZZLE ARRAY, SHOWERHEAD ASSEMBLY AND METHOD,” filed May 10, 2018 which is a 371 national phase entry application of PCT/US2016/063608 entitled “SCANNER NOZZLE ARRAY, SHOWERHEAD ASSEMBLY AND METHOD,” filed on Nov. 23, 2016 which claims priority to and benefit of U.S. Provisional Application No. 62/258,991 filed on Nov. 23, 2015. This application is also a continuation-in-part of U.S. application Ser. No. 16/094,221 entitled “FLUIDIC SCANNER NOZZLE AND SPRAY UNIT EMPLOYING SAME,” filed Oct. 17, 2018 which is a 371 national phase entry application of PCT/US2017/030813 entitled “FLUIDIC SCANNER NOZZLE AND SPRAY UNIT EMPLOYING SAME,” filed on May 3, 2017 which claims priority to and benefit of U.S. Provisional Application No. 62/330,930 filed on May, 3, 2016. This application is also related to commonly owned U.S. Pat. Nos. 6,938,835; 6,948,244; 7,111,800; 7,677,480; and 8,205,812; which disclose prior scanner fluidic oscillator, multiple fluidic enclosures, and methods of integrating fluidic geometry (exit geometry) into the housing of a fluidic device. The entire disclosures of all of the foregoing are hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62578079 | Oct 2017 | US | |
62258991 | Nov 2015 | US | |
62330930 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2018/057962 | Oct 2018 | US |
Child | 16176285 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15775031 | May 2018 | US |
Child | PCT/US2018/057962 | US | |
Parent | 16094221 | US | |
Child | 15775031 | US |