This invention relates generally to apparel, and in particular, to a garment with a venting structure and a method of using the venting structure.
Typically, people wear garments to provide protection from the elements. Depending on the environmental conditions, people wear different garments to keep warm, even during the start of exercise. As the user's body heats up during an activity, at some point the user will become uncomfortable in the garment and will need to cool down.
Typically, the user will wear several layers of garments and will remove a layer when necessary to cool down. Such removal can be difficult during the exercise, particularly, depending on the exercise. Moreover, the user usually has to carry or otherwise dispose of the removed garment. Alternatively, some known garments include an opening through which air can flow into and/or out of the garment.
Thus, a need exists for a garment that includes a venting structure that can be easily adjusted to control the flow of air into and/or out of the garment.
A garment comprises a shell that has a vent structure that includes an opening in the shell. The opening is configured to allow the flow of air into and out of the shell. In one embodiment, the garment includes a controlling or blocking mechanism that can be moved relative to the opening to control the flow of air through the opening. In one embodiment, the controlling mechanism includes a panel or layer of material that can be moved relative to the shell.
The controlling mechanism can also include a movement mechanism that is coupled to the panel and can be manipulated to move the panel relative to the shell. In one embodiment, the controlling mechanism includes a movement mechanism to move the panel in a first direction and another movement mechanism to move the panel in a second direction. In one embodiment, the panel is selectively disposable in several positions, including a position in which the opening is blocked and a position in which a portion of the opening is not blocked by the panel.
A garment comprises a shell that has a vent structure that includes an opening in the shell. The opening is configured to allow the flow of air into and out of the shell. In one embodiment, the garment includes a controlling or blocking mechanism that can be moved relative to the opening to control the flow of air through the opening. In one embodiment, the controlling mechanism includes a panel or layer of material that can be moved relative to the shell.
The controlling mechanism can also include a movement mechanism that is coupled to the panel and can be manipulated to move the panel relative to the shell. In one embodiment, the controlling mechanism includes a movement mechanism to move the panel in a first direction and another movement mechanism to move the panel in a second direction. In one embodiment, the panel is selectively disposable in several positions, including a position in which the opening is blocked and a position in which a portion of the opening is not blocked by the panel.
The term “vent structure” is intended to encompass any type of opening through which air can flow. The terms “vent structure,” “vent opening” and “air flow opening” are used interchangeably herein. Some of the openings or vent structures described herein include an air permeable layer of material that is substantially co-extensive with the opening. One example of an air permeable material is mesh. Another example of an air permeable material is a material that has fewer, larger holes than mesh. Both exemplary materials can be referred to alternatively as porous materials.
The terms “movable panel,” “movable layer,” “panel” and “layer” are sometimes used interchangeably and are intended to encompass any type of material that can be disposed proximate to an opening and moved relative to the opening. A panel may include one or more layers of material. The terms “controlling mechanism” and “blocking mechanism” are used interchangeably herein.
A block diagram of a garment according to an embodiment of the invention is illustrated in
As illustrated in
In one embodiment, the controlling mechanism 15 includes a panel or layer 16 that is movable relative to the opening 12. The user can selectively dispose the panel 16 relative to the opening 12 to control how much of the opening 12 is not blocked by the panel 16. For example, the panel 16 can be disposed in several positions relative to the opening 12 to block all, none or a portion of the opening 12.
In this embodiment, the controlling mechanism 15 includes a movement mechanism 18. The movement mechanism 18 is coupled to the panel 16 and can be manipulated to move the panel 16 relative to the opening 12. For example, the user can manipulate the movement mechanism 18 to move the panel 16 so that the panel 16 covers or blocks the opening 12 and reduces the amount of air entering or exiting the garment 10 through the opening 12. Similarly, the panel 16 can be moved so that it does not block a portion of the opening 12, thereby allowing air to flow through the unblocked portion of the opening 12.
Depending on the location of the opening 12, air will flow into or out of the garment 10 through the opening 12. For example, if the garment 10 is a jacket, an opening on the front surface of the jacket will allow air to flow into the jacket to cool the user. Similarly, if an opening is disposed on the rear surface of the jacket, for example, warm air that is inside the jacket will flow out of the opening to cool the user.
The panel 16 can have any size or construction and can be made of any material that blocks at least some of the environmental elements that would otherwise enter the garment 10 through the opening 12. For example, the panel can be one or more layers of fabric membranes coupled together. Alternatively, the panel can be a semi-rigid material, such as a flexible piece of plastic.
A block diagram of an alternative embodiment of a garment is illustrated in
As illustrated in
In one embodiment, the controlling mechanism 25 includes a panel or layer 26 that is movable relative to opening 22. The user can selectively dispose the panel 26 relative to the opening 22 to control how much of the opening 22 is not blocked by the panel 26. For example, the panel 26 can be disposed in several positions relative to the opening 22 to block all, none or a portion of the opening 22. Similarly, the controlling mechanism 35 includes a panel 28 that is movable relative to opening 24.
In this embodiment, controlling mechanism 25 includes a movement mechanism 30 that is coupled to panel 26. Movement mechanism 30 can be manipulated to move the panel 26 to block none or some portion of the opening 22. Similarly, controlling mechanism 35 includes a movement mechanism 32 that is coupled to panel 28 and can be manipulated to block all, none or some portion of the opening 24. Movement mechanisms 30 and 32 can be operated simultaneously or at different times.
In one implementation, the garment 20 is a jacket with opening 22 in the front portion of the jacket and opening 24 in the rear portion of the jacket. If the user wants air to flow into the front opening 22, then the user can manipulate movement mechanism 30 to move panel 26 so that it does not block the entire opening 22. If the user wants warm air in the garment 20 to flow out through rear opening 24, the user can manipulate movement mechanism 32 to move panel 28 so it does not block the entire opening 24.
A block diagram of an alternative embodiment of a garment is illustrated in
The garment 40 includes a controlling mechanism 45. The amount of air that flows through openings 42 and 44 can be controlled by the user via controlling mechanism 45. In this embodiment, the controlling mechanism 45 includes panels or layers 46 and 48, which are associated with openings 42 and 44, respectively. The panels 46 and 48 can be moved relative to the openings 42 and 44, respectively, to control how much of the openings 42 and 44 are not blocked. For example, the panels 46 and 48 can be disposed in several positions relative to the openings 42 and 44 to block all, none or a portion of the openings 42 and 44.
In this embodiment, the controlling mechanism 45 includes a movement mechanism 50 that is coupled to panels 46 and 48. In this embodiment, manipulation of the movement mechanism 50 causes panels 46 and 48 to move simultaneously with respect to openings 42 and 44.
An embodiment of a garment is illustrated in
The front portion 110 includes a vent structure or opening 114 that has a material 116, such as mesh, that covers the opening 114 and that has a different air permeability characteristic than the other portion of the shell 102. The air permeable material 116 includes several openings or holes that allow air to flow through the opening 114 into the shell 102. Similarly, the rear portion 112 includes a vent structure or opening 118 that has an air permeable material 120 similar to material 116 that covers the opening 118. The material 120 includes several openings or holes that allow air to flow through the opening 118 into the shell 102.
The garment 100 includes a collar 122 and a closure mechanism 124 associated with the collar 122 to allow a user to put on the garment 100. In one embodiment, the closure mechanism 124 is a zipper.
Referring to
The inner surface 134 of the outer layer 130 and the outer surface 142 of the inner layer 140 define therebetween a chamber or zone 150. In this embodiment, the garment 100 includes a controlling mechanism 155 that is disposable proximate to the opening 118. The controlling mechanism 155 includes a panel 160 that is disposed in the chamber 150 between the outer layer 130 and the inner layer 140. The panel 160 includes an outer surface 162, inner surface 164, upper end 166 and lower end 168. The panel 160 is selectively disposable relative to opening 118 so that all, a portion or none of the opening 118 is blocked by the layer 160. The air flow from the environment through the opening 118 and into the garment 100 is represented by the arrow A in
Referring to
In this embodiment, the outer layer 130 includes a first region 131 constructed of a material with a relatively low air permeability (such as a substantially non-porous material) and includes a second region 133 associated with opening 118 that has a material disposed therein with a higher air permeability material than the material of the first region 131.
In alternative embodiments, the layer 160 can be moved in any direction relative to the opening 118 to vary the amount of the opening 118 that is blocked by the panel 160. For example, the panel 160 can be moved upwardly and downwardly. Alternatively, the panel 160 can be moved side to side. Moreover, the panel 160 can be moved diagonally relative to the opening 118.
Referring to
An alternative embodiment of a garment is illustrated in
In this embodiment, the inner layer 220 includes a first region 221 constructed of a material with a relatively low air permeability (such as a substantially non-porous material) and includes a second region 223 associated with an opening 222 that has a material 224 disposed therein with a higher air permeability material than the material of the first region 221. The opening 222 in the inner layer 220 and the opening 212 in the outer layer 210 are substantially aligned so that air can flow through the openings 212 and 222.
The garment 200 includes a controlling mechanism 225 that has a panel 230 (see
An alternative embodiment of a garment is illustrated in
In this embodiment, the garment 250 includes a guide structure 270. The guide structure 270 includes a pair of guides 272 and 274 that define channels 276 and 278, respectively. The guides 272 and 274 are disposed on opposite sides of the opening 262. The guides can be made of any material that has sufficient rigidity to guide the panel along the opening.
The garment 250 includes a controlling mechanism 280 that has a panel 282 with side portions 284 and 286. The guides 272 and 274 are spaced apart so that the side portions 284 and 286 of the panel 282 can slide into channels 276 and 278, respectively. The guide structure 270 maintains the panel 282 proximate to the outer layer 260 and in particular, the opening 262. The controlling mechanism 280 may include an actuator (not shown) that can be used to move the panel 282.
An alternative embodiment of a garment is illustrated in
As illustrated in
The controlling mechanism 325 includes several movement mechanisms 350 and 360 that are coupled to the panel 330. Movement mechanism 350 is coupled to the upper end 332 of the panel 330, and movement mechanism 360 is coupled to the lower end 334 of the panel 330.
When the movement mechanism 350 is moved along the direction of arrow “B” in
In this embodiment, movement mechanism 350 includes actuators 352 and 354. Actuators 352 and 354 can be any type of elongate member, such as a pull cord, string, rope, tape, ribbon, etc. Actuators 352 and 354 include pulls 356 and 358, respectively, coupled to their distal ends (see
Similarly, movement mechanism 360 includes actuators 362 and 364. Actuators 362 and 364 can be any type of elongate member, similar to actuators 352 and 354. Actuators 362 and 364 include pulls 366 and 368, respectively, coupled to their distal ends, which facilitate the grasping of the actuators 362 and 364 by the user.
As illustrated in
Similarly, the shell 302 includes holes or openings 320 and 322 in the rear portion 312 (see
An alternative embodiment of a garment is illustrated in
As illustrated in
Movement mechanisms 450 and 460 are coupled to panel 430 to move the panel 430 in two directions opposite to each other. Similarly, movement mechanisms 470 and 480 are coupled to panel 440 to move the panel 440 in two directions opposite to each other. Movement mechanisms 450, 460, 470 and 480 include actuators 452 and 454, 462 and 464, 472 and 474, and 482 and 484, respectively. In one embodiment, each of the actuators passes from the interior to the exterior of the shell through a respective opening in the shell 402 and may include a pull at its distal end.
When a user pulls downwardly on actuators 452 and 454, rear panel 430 moves along the direction of arrow “H” (see
When a user pulls downwardly on actuators 472 and 474, front panel 440 moves along the direction of arrow “G.” When the user pulls downwardly on actuators 482 and 484, the front panel 440 moves upwardly along the direction of arrow “F.” The user can pull actuators 482 and 484 so that a portion or all of the opening 414 is blocked. The amount of opening 414 that is not blocked or covered by panel 440 is determined by how far the user pulls actuators 472 and 474 downwardly.
The garment 400 includes guides 486 and 488 that are engaged by actuators 482 and 484, respectively. The guides 486 and 488 enable both movement mechanisms 450 and 460 associated with panel 440 to be disposed on the front side of the garment 400.
An embodiment of a controlling mechanism is illustrated in
In an alternative embodiment, the panel 505 can include a material, such as Teflon®, disposed about all or a portion of the perimeter to reduce the friction generated between the panel 505 and components of the shell as the panel 505 moves.
Referring to
Referring to
Movement mechanism 540 includes actuators 542 and 544 that are coupled to the panel 505 proximate corners 516 and 518, respectively. In the construction of this embodiment, an end of each of the actuators 532, 534, 542 and 544 is placed underneath the binding 520, which is then coupled to the body portion 510 to couple the actuators. The actuators 532 and 534, and 536 and 538 are coupled to the first and second perimeter portions 513 and 515 of the panel 505, respectively.
In alternative embodiments, the panel can include a single layer of material. Alternatively, multiple pieces of material can be stitched together instead of using binding. Also, the actuators of the movement mechanisms can be coupled to the movable layer at any locations and using any known coupling technique or method.
An alternative embodiment of a controlling mechanism is illustrated in
In this embodiment, movement mechanism 570 includes a common actuator or actuator portion 572 and two coupling actuators or actuator portions 574 and 576. Similarly, movement mechanism 580 includes a common actuator or actuator portion 582 and two coupling actuators or actuator portions 584 and 586. The user can pull selectively on portion 572 or portion 582 to move the panel 550 in the desired direction relative to an opening in the garment.
An alternative embodiment of a controlling mechanism is illustrated in
The controlling mechanism 600 includes an actuator 620 that can be inserted through holes 612 and 616. The actuator 620 can be coupled to the body portion 610 using any known technique, such as an adhesive, sewing, taping, etc.
The controlling mechanism 600 also includes an actuator 630 that can be inserted through holes 614 and 618. The actuator 630 can be coupled to the body portion 610 in a similar manner as actuator 620. Coupling of the actuators 620 and 630 to body portion 610 prevents the body portion 610 from moving relative to the actuators 620 and 630.
An embodiment of a guide according to the invention is illustrated in
An alternative embodiment of a garment is illustrated in
The torso region 704 includes a front panel 720, a rear panel 722 (see
The air permeability characteristic of a particular material indicates how much air flows through the material. The user may desire materials of different air permeability in different locations of the garment, depending on the desired air flow and cooling characteristics. In one embodiment, the air permeability of the side panels 724 and 726 constructed from mesh is less than that of the material 752 used in opening 750 in the rear portion 712.
The garment 700 includes front flaps 754 and 756 that are not coupled at their lower ends to the torso region 704 of the garment 700. Beneath each flap 754 and 756 is an air permeable material (see reference 762 in the cut-away portion of
Referring to
Sleeve 706 includes panels 730, 732 and 735, which are constructed from known nylon material. Sleeve 706 includes an air permeable material panel 734 that is coupled to panels 730, 732 and 735. Finally, the sleeve 706 includes an absorbent panel 736 that is made of a hydrophilic material. The distal end of the sleeve 706 has a binding 738 around the cuff portion that couples the ends of the relevant panels together.
Similarly, sleeve 708 includes panels 740, 742 and 745, an air permeable material panel 744 and an absorbent panel 746. The distal end of the sleeve 708 has a binding 748 around the cuff portion that couples the ends of the relevant panels together.
Sleeve 708 includes an opening 758 that is in communication with an internal pocket (not shown) in panel 740 of the sleeve 708. The pocket can be a mesh material that is coupled to an inner surface of the outer layer proximate to opening 758. In one embodiment, an expanding mechanism can be disposed proximate to opening 758 so that when a closure mechanism, such as a zipper, is opened, the expanding mechanism causes the pocket to open. In an alternative embodiment, the opening and pocket can be located on any panel of either sleeve. In one embodiment, the garment 700 can also include piping 755 and 757 (see
The garment 700 includes a controlling mechanism that has a front movement mechanism and a rear movement mechanism. Each of the movement mechanisms are coupled to an internal panel (not shown). The front movement mechanism includes actuator 770 and actuator 780. In this embodiment, actuator 770 includes a pull 772 that has an internal magnet 774 (shown in phantom). The torso region 704 includes a metallic component 776 coupled to the shell 702. The coupling of the magnet 774 and the metallic component 776 secures the pull 772 to the outer surface of the garment 700, thereby reducing any movement of the actuator 770 and pull 772 during activities.
The garment 700 includes movement mechanisms that are coupled to an internal movable layer (not shown). Actuator 780 includes a pull 782 that has an internal magnet (not shown). The torso region 704 also includes a metallic component 782. The coupling of the magnet and the metallic component 782 secures the pull 782 to the outer surface of the garment 700, thereby reducing any movement of the actuator 780 and pull 782 during activities. The garment 700 also includes actuators 790 and 792 which are disposed on the rear portion 712 of the torso region 704. In an alternative embodiment, the locations of the magnet and metallic component can be reversed. Alternatively, the pull and the garment can each include a magnet.
An embodiment of a sleeve according to the invention is illustrated in
Sleeve 800 includes panels 810, 820, 830 and 840. Panels 810 and 820, for example, are made of a windproof, nylon material, and can be coupled together by sewing. Piping 870 is subsequently coupled to the seam of the panels 810 and 820.
Panel 830, for example, is made of an air permeable material and panel 840 is an absorbent panel. Panel 840 can be constructed from a suede material. The distal end of the sleeve 800 has a binding 850 around the cuff portion that couples the ends of the relevant panels together.
As illustrated in
Referring to
Panel 830 includes edges 834 and 836, an opening 832 and a covered region 838. Opening 832 is configured to receive the thumb of the user and can have any shape or configuration. Edge 834 is coupled to edge 824 and edge 814 using any known technique. Similarly, edge 836 is coupled edge 812.
Panel 840 of the sleeve 800 is disposed on the covered region 838 of panel 830. Panel 840 includes a distal end 842 and a recess 844 that is aligned with opening 832 when panel 840 is disposed on the covered region 838 of panel 830. Panels 840 and 830 can be coupled by sewing, an adhesive, etc. In an alternative embodiment, the absorbent panel may not include any opening or recess.
An embodiment of a pull according to the invention is illustrated in
In one implementation, the body portion 902 may include a portion 940 that is a different color from the remainder of the body portion 902. For example, portion 940 can be red and the remainder of the body portion 902 can be black.
An alternative embodiment of a controlling mechanism is illustrated in
In this embodiment, the movement mechanism 1000 includes an actuator 1010 that is coupled to a portion of the movable panel 1050. While actuator 1010 is illustrated as being coupled to a corner of the panel 1050, in other embodiment, the actuator can be coupled to the panel at any location.
The actuator 1010 includes a first end 1012 that is coupled to the panel 1050 and a second end 1014 to which a pull 1020 is coupled. The second end 1014 of the actuator 1010 is disposed outside of the garment. The actuator 1010 is an elongate member that is substantially inelastic.
The movement mechanism 1000 also includes a retractor 1030 that is coupled to the shell of a garment and coupled to the actuator 1010. The retractor 1030 biases the actuator 1010 inwardly with respect to the shell when actuator 1010 is extended by a user.
The retractor 1030 includes a first end 1032 that is coupled to an inner location of the shell. For example, the retractor 1030 can be coupled to the inner layer and at any location using any known technique. The retractor 1030 includes a second end 1034 that is coupled to the actuator 1010.
In one embodiment, the second end 1034 can be heat shrunk or otherwise welded or melted onto the actuator 1010 (see reference 1040 in
In
As illustrated in
An alternative embodiment of a garment is illustrated in
The garment 1100 includes a torso region that has an opening 1110 formed therein. The opening 1110 includes an air permeable material 1112, such as mesh, disposed therein.
As previously illustrated and discussed, a garment can have multiple holes or opening on the torso region to accommodate several actuators that can be manipulated to move one or more panels. In this embodiment, hole pairs 1124, 1126 and 1128 are disposed on the torso region.
In this embodiment, the torso region includes flaps 1114 and 1116 that are formed by folding over extra material and forming a cover over holes 1124 and 1126. Thus, the flaps 1114 and 1116 cover the corresponding holes, thereby hiding them from sight.
An exemplary actuator 1120 is shown. Although not shown, actuators are provided for all of the holes 1124, 1126 and 1128. Another exemplary actuator 1122 is illustrated in
In this embodiment, the shell 1102 includes an outer layer 1130 and an inner layer 1132. The lower end of the outer layer 1130 is folded under and coupled to the inner surface of the inner layer 1132 by sewing or stitching as shown. A channel 1134 is formed by the outer layer 1130 and a cord 1140 is disposed therein.
Referring to
An alternative embodiment of a garment is illustrated in
A user can turn the garment 1200 inside out and fold it up so that the garment 1200 can be inserted into the pouch 1208. The pouch 1208 is sized so that it can receive the entire garment 1200. This configuration allows for easy transportation and even washing of the garment 1200.
An alternative embodiment of a garment is illustrated in
The garment 1500 includes an outer layer 1512 that includes air permeable panels 1530 and 1532, such as mesh, that extend along the torso region 1504 and a portion of the sleeves 1506 and 1508. Sleeves 1506 and 1508 include absorbent panels 1503 and 1505, respectively. The garment 1500 includes a rear inner layer 1514 that is formed of an air permeable material, such as mesh. The garment 1500 also includes a textured material 1518 along the collar that provides comfort to the user. A closure mechanism 1519, such as a zipper, is associated with the collar.
The garment 1500 includes a binding 1520 that is sewn along the distal ends of the sleeves 1506 and 1508, and a binding 1522 that is sewn along the perimeter of the thumb opening in each sleeve.
Referring to
Referring to
Referring to
Referring to
Garment 1500 includes a movable panel or layer 1560 that can be selectively positioned relative to the opening 1540. In this embodiment, garment 1500 includes a controlling mechanism that has a movement mechanism 1570 that can be manipulated to move the panel 1560. Movement mechanism 1570 includes actuators 1572 and 1574 that extend from the interior to the exterior of the garment 1500 through holes 1534 and 1536. One end of each actuator 1572 and 1574 is coupled to the panel 1560. When a user pulls downwardly on the actuators 1572 and 1574, the panel 1560 moves downwardly.
The movement mechanism 1570 includes retractors 1580 and 1582 that bias or pull the actuators 1572 and 1574 inwardly. One end of retractor 1580 is coupled to the garment 1500 and the other end 1584 of retractor 1580 is coupled to the actuator 1572. Similarly, one end of retractor 1582 is coupled to the garment 1500 and the other end 1586 is coupled to actuator 1574.
The garment 1500 also includes a movement mechanism 1575 that is coupled to the panel 1560. Movement mechanism 1575 includes actuators 1576 and 1578 that extend upwardly over the user's shoulders and down the front of the garment 1500. When the user pulls on actuators 1576 and 1578, the movable layer 1560 moves upwardly along the rear of the garment 1500.
The garment 1500 includes guide structures 1590 and 1592 that are disposed in the shoulder region of the garment 1500. The guide structures 1590 and 1592 slidably receive and direct the actuators 1576 and 1578, respectively. The guide structures 1590 and 1592 increase the tension on the actuators 1576 and 1578, thereby retaining or holding the actuators 1576 and 1578 in place relative to the shell. As the actuators 1576 and 1578 are held in place, the panel does not move relative to the shell until the user manipulates the actuators.
An exemplary guide structure is illustrated in
In alternative embodiments, any type of friction generating structure that has an opening, such as a washer or o-ring, that is configured to provide tension on an actuator.
An alternative embodiment of a garment is illustrated in
Referring to
As illustrated in
Turning to
In this embodiment, the garment 1600 includes a front opening 1614 and a rear opening 1615. Movable panels 1640 and 1642 are associated with openings 1614 and 1615, respectively. Each panel can be moved by a user to cover all, none or only a portion of the corresponding opening.
The garment 1600 includes a controlling mechanism with two movement mechanisms 1650 and 1660 that can be manipulated to move panel 1640. Movement mechanism 1650 can be used to move the panel 1640 downwardly to expose some or all of the opening 1614. Movement mechanism 1660 can be used to move the panel 1640 upwardly to cover some or all of the opening 1614.
Movement mechanism 1650 includes actuators 1651 and 1652, which extend outwardly from the shell 1602 through holes 1626 and 1628. Actuators 1651 and 1652 are coupled to the panel 1640. Each of the retractors 1653 and 1654 are coupled at one end to the shell 1600 and coupled to the actuators 1651 and 1652 at ends 1655 and 1656, respectively. When the user pulls downwardly on the actuators 1651 and 1652, the retractors 1653 and 1654 are stretched. When the user releases the actuators, the retractors 1653 and 1654 return to their unbiased configurations inside of the shell 1602.
Movement mechanism 1660 includes actuators 1661 and 1662, which extend outwardly from the shell 1602 through holes 1624 and 1630 (see
Movement mechanism 1670 includes actuators 1671 and 1672, which extend outwardly from the shell 1602 through holes 1636 and 1638, which are located on the front of the garment 1600 (see
Movement mechanism 1680 includes actuators 1681 and 1682, which extend outwardly from the shell 1602 through holes 1632 and 1634 (see
As illustrated in
An alternative embodiment of a guide structure is illustrated in
Similarly, the guide structure 1690 illustrated in
An alternative embodiment of a garment is illustrated in
The garment 1700 includes openings 1712 and 1714 disposed on the front of the garment 1700. Openings 1712 and 1714 contain air permeable materials 1716 and 1718, respectively, therein. The garment 1700 includes a closure mechanism 1720 that extends between the openings 1712 and 1714. The split arrangement of the openings 1712 and 1714 in the upper torso region facilitates the use of a front closure mechanism.
Referring to
An alternative embodiment of a controlling mechanism is illustrated in
In this embodiment, the panel 1810 includes several creases or folds 1816 that form pleats 1818 and facilitate the collapsing of the body 1810 as illustrated in
The panel 1810 can be disposed proximate to a vent structure in a garment. The panel 1810 is selectively disposable in multiple configurations relative to the vent structure. While in a first or deployed configuration 1802 (see
A return mechanism (not shown) can be used to move the panel 1810 from its collapsed configuration 1804 to its deployed configuration 1802. One exemplary return mechanism is an actuator. Another exemplary return mechanism is a resilient member, such as a spring, that can be actuated to move the panel 1810 to its deployed configuration 1802. In that embodiment, as the panel 1810 is pulled from configuration 1802 to configuration 1804, the spring is loaded and awaits a subsequent release.
An alternative embodiment of a controlling mechanism is illustrated in
The panel 1910 can be disposed proximate to a vent structure in a garment. The panel 1910 is selectively disposable in a first or deployed configuration 1902 (see
An alternative embodiment of a controlling mechanism is illustrated in
In a first or deployed configuration or position 2002, the panel 2010 is disposed so that it reduces the air flow through a vent structure or an opening in a garment. As a user pulls on actuator 2020 along the direction of arrow “M,” the panel 2010 rotates from configuration 2002 to a second or non-blocking configuration or position 2004 (shown in phantom). In configuration 2004, the panel 2010 is offset or unaligned from the opening in the garment. A return mechanism (not shown) can be used to move the actuator from configuration 2004 to configuration 2002. A user can move the panel 2010 to any intermediate position or configuration in which a portion of the opening in the garment is blocks, thereby reducing the flow of air into the garment.
An alternative embodiment of a shell is illustrated in
A guide region 2140 is formed between the seams 2130 and 2132. The guide region 2140 defines a channel 2142 into which a movable panel (not shown) can be inserted and moved. The configuration of the channel 2142 can be varied depending on the desired tightness and friction. The panel slides along the guide region 2140, thereby creating friction. The friction between the panel and the outer and inner layers 2110 and 2120 can be sufficient to retain the panel in place relative to an opening in the outer layer 2110. For example, if a high amount of friction is desired, then the material of the inner layer 2120 in the guide region 2140 is pulled taught and then coupled to the outer layer 2110.
In an alternative embodiment, the garment can include a pocket or pouch disposed on the inner surface of the rear portion of the shell. The pocket can be located in the lower portion with only the zipper accessible from outside the shell.
While the invention has been described in detail and with references to specific embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
0308244 | Fishel | Nov 1884 | A |
1261448 | Siegel | Apr 1918 | A |
2114514 | York | Apr 1938 | A |
D115983 | Bailey | Aug 1939 | S |
2292348 | Bailey | Aug 1942 | A |
2391535 | Zelano | Dec 1945 | A |
2415996 | Eilenberg | Feb 1947 | A |
2543317 | Hammond | Feb 1951 | A |
2661474 | Tate | Dec 1953 | A |
2713168 | Bagnato | Jul 1955 | A |
2715226 | Weiner | Aug 1955 | A |
3045243 | Lash et al. | Jul 1962 | A |
3153793 | Lepore | Oct 1964 | A |
3691564 | La Marre et al. | Sep 1972 | A |
3761962 | Myers | Oct 1973 | A |
3969772 | Pravaz | Jul 1976 | A |
4185327 | Markve | Jan 1980 | A |
4513451 | Brown | Apr 1985 | A |
4608715 | Miller et al. | Sep 1986 | A |
4619004 | Won | Oct 1986 | A |
4722099 | Kratz | Feb 1988 | A |
4731883 | Foster | Mar 1988 | A |
4783858 | Chevalier | Nov 1988 | A |
5101514 | Eklund | Apr 1992 | A |
5105477 | Golde | Apr 1992 | A |
5105478 | Pyc | Apr 1992 | A |
5507042 | van der Slessen | Apr 1996 | A |
5642526 | Thompson | Jul 1997 | A |
5704064 | van der Sleesen | Jan 1998 | A |
5727256 | Rudman | Mar 1998 | A |
5752277 | van der Sleesen | May 1998 | A |
5845336 | Golde | Dec 1998 | A |
5946724 | Erickson | Sep 1999 | A |
6070274 | van der Sleesen | Jun 2000 | A |
6085353 | van der Sleesen | Jul 2000 | A |
6163883 | Hong | Dec 2000 | A |
6263510 | Bay et al. | Jul 2001 | B1 |
6339843 | Grilliot et al. | Jan 2002 | B1 |
6339845 | Burns et al. | Jan 2002 | B1 |
6668385 | Gathings, Jr. | Dec 2003 | B2 |
6795976 | van der Sleesen | Sep 2004 | B1 |
6868557 | van der Sleesen | Mar 2005 | B1 |
6883178 | van der Sleesen | Apr 2005 | B2 |
6907619 | Gathings, Jr. | Jun 2005 | B2 |
20030033656 | Jaeger | Feb 2003 | A1 |
20030140404 | Golde | Jul 2003 | A1 |
20030177616 | Petravic et al. | Sep 2003 | A1 |
20040055069 | Fayle et al. | Mar 2004 | A1 |
20040133962 | Baumel | Jul 2004 | A1 |
20040158910 | Bay | Aug 2004 | A1 |
20040237168 | Braun | Dec 2004 | A1 |
Number | Date | Country |
---|---|---|
667304 | Nov 1938 | DE |
872331 | Mar 1953 | DE |
2634984 | Feb 1990 | FR |
2643793 | Sep 1990 | FR |
16900 | Oct 1911 | GB |
111325 | Nov 1917 | GB |
157529 | Jan 1921 | GB |
570150 | Jun 1945 | GB |
9624263 | Aug 1996 | WO |
9942010 | Aug 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20060041990 A1 | Mar 2006 | US |