Aspects herein relate to garments with adaptive ventilation.
Traditional garments may achieve breathability and/or permeability by employing a mesh-type material to form “vents” in an article. However, the “vents” are generally always in an open configuration, which in some instances may be undesirable.
Examples of aspects herein are described in detail below with reference to the attached drawing figures, wherein:
The subject matter of the present invention is described with specificity herein to meet statutory requirements. However, the description itself is not intended to limit the scope of this disclosure. Rather, the inventors have contemplated that the claimed or disclosed subject matter might also be embodied in other ways, to include different steps or combinations of steps similar to the ones described in this document, in conjunction with other present or future technologies. Moreover, although the terms “step” and/or “block” might be used herein to connote different elements of methods employed, the terms should not be interpreted as implying any particular order among or between various steps herein disclosed unless and except when the order of individual steps is explicitly stated.
At a high level, aspects herein relate to articles with adaptive ventilation that allow increased airflow in and out of the article based on the presence or absence of a change-inducing stimulus. The change-inducing stimulus may be an external stimulus meaning that it is external to the fibers, yarns, filaments, or structure of the materials forming the article. The external stimulus may include, for example, heat (i.e., increasing temperature), moisture, wind pressure, light, and the like. The articles in accordance with aspects herein may include upper body garments, lower body garments, support garments such as bras, camisoles, tank tops, and the like, as well as undergarments such as panties and socks, articles of footwear (e.g., an upper of a shoe), bags, sleeping bags, and the like, where adaptive ventilation may be beneficial.
In one aspect, the articles may include garments such as upper body garments and lower body garments. In the case of an upper body garment, for example, the garment may comprise a torso portion defining a neckline opening, a waist opening, and left and right arm openings. Optionally, the garment may further comprise a pair of sleeves attached to the left and right arm openings. In one example of an aspect, the garment may comprise one or more adaptive ventilation garment portions comprising one or more flaps located on a back aspect of the torso portion of the upper body garment. The garment may additionally comprise one or more non-adaptive ventilation garment portions. Each flap may comprise an attachment edge which integrally extends from, for instance, a mesh backing layer where the backing layer, at least in part, helps to form the back aspect of the torso portion. In the case of a lower body garment, for example, the garment may comprise one or more adaptive ventilation garment portions on a front thigh area, a back thigh area, along the whole leg area, a back calf area, and the like. In example aspects, the flaps may transition from a closed state to an open state in the presence of an external stimulus thereby exposing the mesh backing layer and increasing the permeability of the adaptive ventilation garment portions.
Continuing, beside its attachment edge, each flap may also comprise a distal edge or free edge that is detached from the backing layer. Further, each flap may be defined by an intervening length extending between the attachment edge and the distal edge. The intervening length of each flap may define the length of the flap. As well, each flap may comprise a first face and a second face opposite the first face, with the first face facing the backing layer when each flap is in its non-stimulated or closed state.
The first face may be formed from a first yarn type and the second face may be formed from a second yarn type. In accordance with aspects herein, the first yarn type may comprise a yarn comprising a plurality of bi-component filaments, where each bi-component filament may be comprised of a first polymeric composition. The first polymeric composition of the bi-component filament may include, for example, a polymer sensitive to an external stimulus such as a polyamide polymer (sensitive to, in this case, moisture, moisture vapor, and/or water) and a polymer that is not sensitive to the external stimulus such as a terephthalate polymer (not sensitive to, in this case, moisture, moisture vapor, and/or water). The second yarn type present on the second face of each flap, on the other hand, may be comprised of a second polymeric composition that is different from the first polymeric composition of the first yarn type on the first face of each flap. For example, the second polymeric composition may be comprised of a polymer that is not sensitive to the external stimulus, such as a terephthalate polymer (not sensitive to, in this case, moisture).
In aspects, the bi-component filaments of the first yarn type exist in a “crimped” or shortened state in the absence of the external stimulus because, for example, the stimulus sensitive polymer may be in a contracted state, while the non-stimulus sensitive polymer may be in its regular state or regular length. Then, in the presence of the external stimulus, the crimped bi-component filament straightens as the stimulus sensitive polymer elongates and/or expands. The polymers in the bi-component filament may be arranged in a side-by-side relationship, meaning that they form the two sides of the filament along a lengthwise direction of the filament. Thus, a change of the stimulus sensitive polymer from a contracted state to a straightened state translates along the length of the yarn causing the first yarn type to uncrimp or lengthen in the presence of the external stimulus.
In one aspect, the ratio by weight between the stimulus sensitive polymer and the non-stimulus sensitive polymer may be about 50/50. In another aspect, the ratio by weight of one polymer to the other may not be 50/50, but rather, one polymer may comprise a higher percentage by weight compared to the other polymer. Any and all aspects, and any variation thereof, are in accordance with aspects herein.
In accordance with aspects herein, as mentioned, in the absence of the external stimulus, the first yarn type exists in a “crimped” or shortened state. In the presence of the external stimulus, such as moisture, however, the first yarn type transitions from a crimped state to an uncrimped state. In other words, the first yarn type lengthens in the presence of the external stimulus. With respect to the flap, as mentioned, the first face of the flap is formed from yarns comprising the bi-component filaments. Thus, in the presence of the external stimulus a longitudinal lengthening of the first face of the flap occurs (i.e., a lengthening as measured between the attachment edge and the distal edge of the flap). However, because the second face of the flap is formed from a non-stimulus sensitive polymeric composition, the second face of the flap does not lengthen in the presence of the external stimulus. The result of this is that longitudinal lengthening of the first face of the flap is constrained by the second face so the first face of the flap begins to curl around the free edge of the flap in the direction of the second face in the presence of the external stimulus causing the flap to open and expose the backing layer. The change caused in each flap by the presence of the external stimulus, in accordance with aspects herein, is reversible meaning that once the external stimulus is gone, each flap returns to its original state where the bi-component filaments of the first yarn type return to their crimped state, allowing each flap to close.
In one aspect, the first yarn type may be treated with a hydrophobic coating material such as a durable water-repellant (DWR) coating prior to incorporating the first yarn type into the adaptive ventilation textile. In another aspect, the adaptive ventilation textile, or the first face of each flap of the adaptive ventilation textile, may be coated with the hydrophobic coating after the knitting or weaving of the adaptive ventilation textile (i.e., in a post-processing step). The hydrophobic coating in accordance with aspects herein may be resistant to liquid water penetration but may be permeable to moisture that is in vapor form. As such, the adaptive ventilation textile having a hydrophobic coating treatment or incorporating a coated first yarn type, may be incorporated into garments such as rain coats, and the like that may likely be exposed to moisture in the form of liquid precipitation. In this aspect, because the one or more flaps of the adaptive ventilation textile would be less sensitive or not sensitive to liquid moisture, i.e, configured to repel liquid moisture (e.g., rain, snow, sprinklers, and the like), the flaps would remain in a closed state upon exposure to precipitation thereby helping to keep the wearer dry. However, because the DWR coating may still be permeable to moisture vapor from, for instance, wearer perspiration, the flaps may transition from a closed state to an open state when the wearer begins perspiring thereby helping to keep the wearer comfortable.
The backing layer from which the attachment edge of each flap extends may be comprised of a breathable/permeable textile having a plurality of openings that are either integrally formed by the knitting process used to form the backing layer and/or formed in a post-knitting step using, for instance, cutting methodologies known in the art (e.g., laser cutting, die cutting, and the like). For example, the backing layer may be comprised of a mesh type, a net type, or any other suitable pliable material having a plurality of openings for allowing air flow. Each flap that extends from the backing layer at its respective attachment edge may be configured to, as described above, open in the presence of an external stimulus and stay in a closed configuration in the absence of the external stimulus. In other words, each flap has a first angle of deflection formed between the backing layer and the first face of each flap in its closed state that is less than a second angle of deflection formed between the backing layer and the first face of each flap in its open state. The opening of the flap exposes the backing layer allowing for greater air circulation to an interior cavity of a garment incorporating the adaptive ventilation textile.
When multiple flaps are present, the attachment edges of the respective flaps may be in a generally parallel but offset alignment with each other. And, similarly, the distal edges of the respective flaps may also be in a generally parallel but offset alignment with each other. In aspects, the distal edge of one flap may be generally aligned with but not overlap the attachment edge of another flap when the flaps are in their closed state, where depending on the intervening length of each flap, the backing layer may be or may not be visible when the flaps are in their closed state. Alternatively, a portion of the distal edge of one flap may overlap a portion of the attachment edge of another flap, or in other words, the distal edge of one flap may extend over the attachment edge of the next flap thereby concealing the attachment edge of the next flap when the plurality of flaps are in their closed state. As well, it is to be noted that the backing layer may be concealed when the flap or multiple flaps are in their closed state and the backing layer becomes, in part, exposed when the flap or multiple flaps are in their open state, allowing for ventilation and higher air permeability in a garment comprising the adaptive ventilation textile.
The one or more flaps in accordance with aspects herein may be horizontally oriented (i.e., lengthwise parallel with respect to a waistline of the garment), vertically oriented (i.e., lengthwise orthogonal with respect to a waistline of the garment), or diagonally oriented (i.e., any angle between 0.1 and 89.9 degrees and any angle between 90.1 and 179.9 degrees with respect to a waistline of the garment).
Garments incorporating the adaptive ventilation textile described herein may comprise one or more adaptive ventilation textile portions and one or more base textile portions (e.g., non-adaptive ventilation textile portions). In this aspect, the adaptive ventilation textile portions may undergo a greater change in air permeability when transitioning from a dry state to a wet state as compared to, for instance, the non-adaptive ventilation textile portions. As such, the adaptive ventilation textile portions may be positioned on the garment to correspond to high heat and/or sweat producing areas of the human body where the increased air permeability in wet or high perspiration conditions may help to cool the wearer. The non-adaptive ventilation textile portions, on the other hand, may be positioned on the garment in areas of the wearer where an increased permeability may be less desirable. For instance, the non-adaptive ventilation textile portions may be placed in areas where increased warmth may be needed.
Accordingly, aspects herein are directed to a garment comprising a torso portion defining a neckline opening, a waist opening, a first arm opening, and a second arm opening. A back aspect of the torso portion of the garment comprises a flap that is located a predefined distance superior to the waist opening. The flap comprises an attachment edge, a distal edge, a first face, and a second face opposite the first face, where the first face is formed from a first yarn type and the second face is formed from a second yarn type. The first yarn type forming the first face is comprised of a plurality of bi-component filaments. The second yarn type is comprised of a polymeric composition that is different from the first yarn type on the first face.
Aspects herein are further directed to a garment comprising a first panel comprising a plurality of integrally formed flaps, each of the plurality of integrally formed flaps having a first face and a second face opposite the first face. The first face of each flap is formed from a first yarn type comprising one or more filaments, each filament comprising a filament composition, the filament composition comprising a first polymer and a second polymer different from the first polymer. The second face is formed from a second yarn type different from the first yarn type. Each of the integrally formed flaps in the plurality of integrally formed flaps are in a closed configuration in a first state of the first yarn type, and are in an open configuration in a second state of the first yarn type. The garment additionally comprises a second panel formed from a third yarn type.
Aspects herein are additionally directed to a garment comprising first material and second material, the second material comprising a plurality of integrally formed flaps, wherein the plurality of integrally formed flaps are in a closed configuration in a first state of the second material, and wherein the plurality of integrally formed flaps are in an open configuration in a second state of the second material. When the first material and the second material are in the first state, the first material comprises a first air permeability and the second material comprises a second air permeability, and when the first material and the second material are in the second state, the first material comprises a third air permeability and the second material comprises a fourth air permeability, wherein a percentage of change from the second air permeability to the fourth air permeability is greater than a percentage of change from the first air permeability to the third air permeability.
Positional terms as used herein to describe a garment such as “anterior,” “posterior,” “front,” “back,” “upper,” “lower,” “inner-facing surface,” “outer-facing surface,” “interior cavity,” “inner surface,” “outer surface,” and the like are with respect to the garment being worn as shown and described herein by a wearer standing in an upright position. The term “adaptive ventilation” in accordance with aspects herein is meant to encompass articles that have the ability to reversibly vary an amount of airflow in and out of an interior cavity of the article(s), in response to an external stimulus. The term “flap” as used herein refers to a structure having a free distal edge and an opposite attachment edge that integrally extends from a textile layer (e.g., a backing layer) where the flap automatically opens and closes in response to the presence or absence of an external stimulus thus, providing the adaptive ventilation characteristics to the article(s) in accordance with aspects herein. For example, the flap may comprise a first face facing the backing layer and a second face opposite to the first face. In a “closed” state of the flap, the flap may be in a substantially co-planar relationship with the backing layer, while in an “open” state, the flap may be in a substantially non-planar relationship with the backing layer. To describe this in a different way, when the flap is in a closed state that flap may have a first angle of deflection formed between the backing layer and the first face that is less than the deflection angle when the flap is in an open state.
As well, the term “integral” as used herein means a textile having at least one textile element (e.g., yarn, filament, and the like) that extends between different areas of a textile. For instance, with respect to the flap described herein, the term “integrally extends” may mean that the attachment edge of the flap is not sewn or otherwise adhered to the backing layer but rather, the yarns forming the flap are interlaced or interlooped with the yarns forming the backing layer at the attachment edge of the flap. The words “integrally formed opening,” as used herein are meant to describe that the openings in the backing layer are formed during the knitting or weaving process used for forming the backing layer. The word “engineered opening,” as used herein is meant to describe that the openings are formed after the knitting or weaving process used for forming the backing layer by, for example, laser cutting, die cutting, and the like.
Continuing, the term “terephthalate polymer” when describing, for example, a yarn, means a yarn having filaments or fibers formed from terephthalate polymers and includes, for example, polyethylene terephthalate (PET), poly 1,4 cyclohexylene-dimethylene terephthalate (PCDT), polybutylene terephthalate (PCT), and polytrimethylene terephthalate (PTT), and the like. The terephthalate polymer in accordance with aspects herein may be comprised of a cationic dyeable polyethylene terephthalate. A common trade name for PET is polyester. The term “polyamide polymer” when describing yarns, means a yarn having filaments formed from any long-chain synthetic polyamide. The polyamide polymer in accordance with aspects herein may include, for example, a polycaprolactam polymer. The common term for yarns comprising a polycaprolactam polymer is nylon 6.
The term “bi-component” as used herein means a filament or fiber having a polymeric composition comprised of two different types of polymers. A “yarn” as used herein comprises an assemblage of one or more fibers or filaments (multifilament yarns and/or monofilament yarns) where the fibers or filaments may comprise natural or synthetic fibers or filaments. The term “multifilament yarn” as used herein means a yarn having two or more filaments within a single yarn strand while the term “monofilament” as used herein means a yarn formed from a single filament. As used herein, the term “about” means within ±10% of a given value.
Turning now to
The attachment edges 112, 122, 132, and 142 of flaps 110, 120, 130 and 140, for example, are in a generally parallel alignment, and the distal edges 114, 124, 134, and 144 of the flaps 110, 120, 130 and 140 are also in a generally parallel alignment so that the textile 100 presents as a series of linearly extending rectangular flaps. Other shape configurations for the textile are contemplated herein. For example,
With continued respect to
As shown in
In other aspects, the backing layers 151, 153, and 155 may be formed from a combination of stimulus sensitive yarns and non-stimulus sensitive yarns, where the portions of the backing layers 151, 153, and 155 corresponding to the openings 152 may be integrally formed with stimulus sensitive yarns, while the non-opening portions 158 of the backing layer 150 may be integrally formed with non-stimulus sensitive yarns. As such, when one of the example textiles 102, 104, or 106, for example, is exposed to the external stimulus, the stimulus sensitive yarns that form the openings 152 will elongate, as will become more apparent with respect to
Turning back to
In one example aspect, the first face 146 of one or more flaps may be a different color than the second face 148 of the one or more flaps to create a visual change. The visual change in this instance may serve as a visual indicator of the presence of the external stimulus due to, for example, environmental condition changes or due to changes in the state of a wearer's body, such as when going from a rest state to a warm-up state to a high energy state, for example, during exercise. Moreover, the visual change may also act to distract competitors during, for instance, athletic competitions.
Moving on to
The flap 202 in turn comprises a first face 220 (inner face) configured to face the backing layer 210, at least in the closed state of the flap 202, and a second face 230 (outer face) configured to face away from the backing layer 210, at least in the closed state of the flap 202. In one aspect, and as shown in
As described above, the first face 220 of the flap 202 may be comprised of a stimulus sensitive yarn type formed from one or more bi-component filaments. Each of the bi-component filaments, as shown in the cross-sectional view 300 in
Continuing, the stimulus sensitive component 320 may be comprised of a polyamide polymer such as polycaprolactam commonly known as Nylon 6, which may be configured to undergo a physical change from a crimped state to an uncrimped state in response to a change inducing stimulus such as moisture. The non-stimulus sensitive component 310 may be comprised of a terephthalate polymer such as polyethylene terephthalate (PET). In aspects, the PET may comprise a cationic-dyeable PET (CD PET). Further, the CD PET may be modified in order to promote adhesion between the polyamide polymer and the modified CD PET polymer.
Continuing still, the bi-component filaments due to their polymeric composition and their structural composition, may have an underlying crimping property and thus, in the absence of moisture, exhibit crimping, which effectively shortens the length of the filament. When crimped, the stimulus sensitive component 320 may generally be on inner portions of the crimps, while the non-stimulus sensitive component 310 may generally be on outer portions of the crimps. When exposed to moisture, the moisture is absorbed by the stimulus sensitive component 320, causing the stimulus sensitive component 320 to temporarily “swell” or expand, while the non-stimulus sensitive component 310 will generally not undergo any physical change. Thus, the overall result from moisture absorption is the temporary and reversible lengthening of the bi-component filaments. Because the bi-component filaments generally extend the length of the yarn, the uncrimping and lengthening of the bi-component filaments translates to an uncrimping and lengthening of the yarn that incorporates the filaments. The bi-component filaments will return to their crimped state once moisture has evaporated or has been removed. The crimped state of the bi-component filament may be visualized as shown in
As briefly described above and as shown in
The increase in the size of the gaps in the openings 422 in the second state 440 may contribute to an increase in air permeability of the backing layer 420 when the backing layer 420 is exposed to an external stimulus such as moisture. Moreover, this feature works in concert with the transition of the flaps from a closed state to an open state in the presence of the external stimulus potentially leading to an overall increase in air permeability of the textiles described herein in the presence of, for instance, moisture. This, in turn, may promote evaporative cooling of a wearer of the textile which improves wearer comfort. This may also promote the evacuation of moisture vapor produced by the wearer during, for example, exercise, further facilitating wearer comfort.
Returning to
Next, when exposed to a degree of the external stimulus, for example, moisture from perspiration traveling from the wearer's skin through the backing layer 210 and onto the first face 220 of the flap 202, the stimulus sensitive component 320 (as shown in
As shown in
As briefly described above, adaptive ventilation textile portions in accordance with aspects herein, may comprise “short” flaps, “mid-length” flaps, or “long” flaps. As shown in
The application and utility of the adaptive ventilation textile portions comprising the flaps as disclosed in accordance with aspects herein, for articles of manufacture, can be visualized, for example, in garments 500, 600, and 700 shown in
In the example of a garment construction presented in
Continuing with
In aspects, the garment 500 may comprise an adaptive ventilation garment forming panel 512 that may be formed from an adaptive ventilation textile, such as the textile 100, having one or more flaps 520 that are capable of opening or closing in response to the external stimulus. The garment 500 may additionally comprise non-adaptive ventilation garment forming panels 514A and 514B that may be formed from a base textile (i.e., a non-adaptive ventilation textile) formed from non-stimulus sensitive yarns, such as, for example, PET yarns. In other words, the non-adaptive ventilation garment forming panels 514A and 514B, may be comprised of woven, knit, or nonwoven fabrics or textiles that generally do not undergo a physical change when exposed to the external stimulus triggering the physical change in the adaptive ventilation garment forming panel 512. Similarly, in the event that the garment 500 comprises sleeves, such as first and second sleeves 508A and 508B, the first and second sleeves 508A and 508B may comprise adaptive ventilation garment forming panels 510A and 510B, having one or more flaps 522A and 522B, respectively, and non-adaptive ventilation garment forming panels 516A, 518A, 516B, and 518B, respectively. It is also contemplated that the first and second sleeves 508A and 508B, may not comprise any adaptive ventilation garment forming panels, or in other words, the sleeves may be formed of only non-adaptive ventilation garment forming panels (not shown). The positioning, configuration, size, and location of the adaptive ventilation garment forming panels and the non-adaptive ventilation garment forming panels illustrated in
Further, in some aspects, the adaptive ventilation garment forming panels (e.g., 512, 510A, 510B) and the non-adaptive ventilation garment forming panels (e.g., 514A, 514B, 516A, 518A, 516B, and 518B) may be joined together by seams formed by stitching, bonding, adhering, or any other suitable method, for constructing the final garment. As well, in other aspects, the adaptive ventilation garment forming panels (e.g., 512, 510A, 510B) and the non-adaptive ventilation forming panels (e.g., 514A, 514B, 516A, 518A, 516B, and 518B) may be integrally formed together by any suitable method such as knitting, weaving, and the like (i.e., no seams needed to join the different panels together).
In aspects, the percent change in air permeability for the adaptive ventilation garment forming panel 512 when the flaps transition from a closed state to an open state in response to, for example, moisture, may be greater than a percent change in air permeability for the non-adaptive ventilation garment forming panels 514A and 514B, for example, which are formed from a base textile, or in other words, a non-adaptive ventilation textile. For example, when the garment 500 is exposed to an external stimulus, such as, for example, moisture from a wearer's body in the form of perspiration, the adaptive ventilation garment forming panels 512, 510A and 510B of the garment 500 and/or textile portions thereof, may exhibit a positive change in air permeability as measured using, for example, ASTM D737-Standard Test Method for Air Permeability of Textile Fabrics. This testing method is performed on both wet and dry specimens. In other words, the air permeability is measured on both wet and dry specimens. In aspects, the test method may be modified by decreasing the pressure differential to 20 Pa (versus 125 Pa in the ASTM D737 test) to prevent the wet textile from drying out too quickly and to more closely approximate the air flow and/or air pressure experienced by, for instance, a runner while running.
More particularly, when the adaptive ventilation garment forming panels 512, 510A, and 510B or textile portions thereof are exposed to an external stimulus such as water or moisture from perspiration, the adaptive ventilation garment forming panels 512, 510A, and 510B may have from about 20.0 to about 75.0%, from about 25.0 to about 73.0%, or from about 27.4 to about 70.2% positive change in air permeability when going from a dry state to a wet state, with the percent change being higher with a longer intervening length for the flaps 520. For example, the adaptive ventilation garment forming panels 512, 510A, and 510B or textile portions thereof, may exhibit an air permeability of from about 50 ft3/min to about 105 ft3/min when dry and an air permeability from about 80 ft3/min2 to about 130 ft3/min when wet, or from about 52 ft3/min to about 99 ft3/min when dry and an air permeability from about 85 ft3/min to about 127 ft3/min when wet, or from about 54 ft3/min to about 99 ft3/min when dry and an air permeability from about 87 ft3/min to about 126 ft3/min when wet.
When the non-adaptive ventilation garment forming panels 514A, 514B, 516A, 518A, 516B, and 518B or textile portions thereof are exposed to the external stimulus such as water or moisture from perspiration, the textiles may have from about −7.0% to about +10%, from about −5.0 to about +9.0%, or from about −4.0 to about +8.4% change in air permeability when going from a dry state to a wet state. In this instance, the non-adaptive ventilation garment forming panels 514A, 514B, 516A, 518A, 516B, and 518B or textile portions thereof may exhibit an air permeability from about 5 ft3/min to about 32 ft3/min when dry and an air permeability from about 5 ft3/min to about 34 ft3/min when wet, or from about 6 ft3/min to about 30 ft3/min when dry and an air permeability from about 6 ft3/min to about 33 ft3/min when wet, or from about 7 ft3/min to about 29.8 ft3/min when dry and an air permeability from about 7 ft3/min to about 32.3 ft3/min when wet.
Accordingly, garments such as garment 500, or garments 600 and 700 in accordance with aspects herein, are comprised of adaptive ventilation garment portions (e.g., the adaptive ventilation garment forming panels 512, 510A, and 510B) having a first air permeability under dry conditions and a second air permeability under wet conditions, and non-adaptive ventilation garment portions (e.g., the non-adaptive ventilation garment forming panels 514A, 514B, 516A, 518A, 516B, and 518B) having a third air permeability under dry conditions and a fourth air permeability under wet conditions, where a first percent change in air permeability from dry to wet conditions in the adaptive ventilation garment portions is greater than a second percent change in air permeability from dry to wet conditions in the non-adapative ventilation garment portions. In other words, the first percent change is greater than the second percent change.
Depending on the degree of moisture present, a first face 528 of the flaps 520 may become visible, while the portions of the flaps 520 that are not exposed to moisture, may visually present a second face 526. This difference may create a wave-like 3-D effect in the adaptive ventilation garment forming panel 512. As such, in order to make a more pronounced visual effect, the first face 528 of the one or more flaps 520, may be comprised of a color that is different than the second face 526 of the one or more flaps 520. Moreover, the backing layer 524 may be the same or a different color than the first face 528 and/or the second face 526, and may also be a different color than the base textile of the non-adaptive ventilation garment forming panels 514A and 514B.
The same may apply to the adaptive ventilation garment forming panels 510A and 510B, where the presence of moisture causes the backing layer 530A and 530B to be exposed. Further, depending on the level of moisture absorbed in certain regions of the garment 500, an inner face 534A and 534B of the one or more flaps 522A and 522B may be exposed, while in other portions of the garment 500, where there is no moisture, the one or more flaps 522A and 522B may remain closed such that only the outer face 532A and 532B of the flaps 522A and 522B remain visible. Since different areas of a wearer's body may perspire to different degrees, it is contemplated that different portions of a single flap 520 may open to different degrees along the length of the flap 520 depending on how much moisture is present. For example, a first portion of a flap 520 may absorb more perspiration from the wearer compared to a second portion of the same flap 520. Thus, the first portion of the flap 520 would open to a greater degree than the second portion of the same flap 520.
In the example of a garment construction presented in
Continuing with
In the example of a garment construction presented in
Continuing with
As described above with reference to
As well, the amount of ventilation or air movement between an inner cavity of the garment and the outer environment, when at least a portion of the flap is open, may be proportional to the number of flaps in a given area of the garment. For instance, the more flaps present in the garment within a given area, the more potential for air flow when at least portions of the flaps are in an open state.
Aspects of the present disclosure have been described with the intent to be illustrative rather than restrictive. Alternative aspects will become apparent to those skilled in the art that do not depart from its scope. A skilled artisan may develop alternative means of implementing the aforementioned improvements without departing from the scope of the present invention.
It will be understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations and are contemplated within the scope of the claims. Not all steps listed in the various figures need be carried out in the specific order described.
This U.S. application Ser. No. 16/275,593 entitled “Garment with Adaptive Ventilation,” and filed on Feb. 14, 2019 claims the benefit of priority of U.S. Prov. App. No. 62/678,679, entitled “Garment with Adaptive Ventilation,” and filed on May 31, 2018. The entirety of the aforementioned application is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2259560 | Glidden | Oct 1941 | A |
2607104 | Foster | Aug 1952 | A |
3213465 | Ludwikowski | Oct 1965 | A |
3228821 | Trope | Jan 1966 | A |
3296626 | Ludwikowski | Jan 1967 | A |
3706102 | Grenier | Dec 1972 | A |
3857753 | Hansen | Dec 1974 | A |
3969772 | Pravaz | Jul 1976 | A |
4451934 | Gioello | Jun 1984 | A |
5704064 | van der Sleesen | Jan 1998 | A |
6070274 | van der Sleesen | Jun 2000 | A |
6767850 | Tebbe | Jul 2004 | B1 |
7842628 | Yasui | Nov 2010 | B2 |
8336117 | Carter | Dec 2012 | B2 |
8850615 | Demarest | Oct 2014 | B2 |
9392825 | Pezzimenti | Jul 2016 | B2 |
9668531 | Nordstrom | Jun 2017 | B2 |
9700077 | Baron | Jul 2017 | B2 |
10111480 | Pezzimenti | Oct 2018 | B2 |
10238157 | Nordstrom | Mar 2019 | B2 |
10687572 | Baker | Jun 2020 | B2 |
10793981 | Ridley | Oct 2020 | B2 |
10814514 | Aihara | Oct 2020 | B2 |
10874154 | Aitch | Dec 2020 | B2 |
11019865 | Pezzimenti | Jun 2021 | B2 |
11076651 | Baron | Aug 2021 | B2 |
11122846 | Lao | Sep 2021 | B2 |
11154100 | Molyneux | Oct 2021 | B2 |
11192326 | Huang | Dec 2021 | B2 |
20050204449 | Baron | Sep 2005 | A1 |
20070161305 | Wangbunyen | Jul 2007 | A1 |
20070184238 | Hockaday | Aug 2007 | A1 |
20080274657 | Yashiro | Nov 2008 | A1 |
20100242151 | Mather | Sep 2010 | A1 |
20110052861 | Rock | Mar 2011 | A1 |
20120142266 | Niwa | Jun 2012 | A1 |
20130133353 | Araujo | May 2013 | A1 |
20140000004 | Baron | Jan 2014 | A1 |
20140310846 | Carter et al. | Oct 2014 | A1 |
20160339594 | Aihara | Nov 2016 | A1 |
20170035128 | Baron et al. | Feb 2017 | A1 |
20170273377 | Aihara | Sep 2017 | A1 |
20190061307 | Chen | Feb 2019 | A1 |
20190365001 | Perera | Dec 2019 | A1 |
20220132960 | Baron | May 2022 | A1 |
Number | Date | Country |
---|---|---|
2215203 | Dec 1995 | CN |
204617103 | Sep 2015 | CN |
205611824 | Oct 2016 | CN |
3449743 | Mar 2019 | EP |
552932 | Sep 2003 | TW |
2017096044 | Jun 2017 | WO |
Entry |
---|
International Search Report and Written Opinion dated Apr. 24, 2019 in International Patent Application No. PCT/US2019/019381, 16 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2019/019381, dated Dec. 10, 2020, 9 pages. |
Office Action received for European Patent Application No. 19710239.5 dated Mar. 7, 2023, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20190365000 A1 | Dec 2019 | US |
Number | Date | Country | |
---|---|---|---|
62678679 | May 2018 | US |