Traditional nonwoven textiles are generally not suitable for use in articles of apparel due to a lack of stretch and recovery properties, heavy weights, lack of drapability, a rough hand, and, in some instances where increased insulation is desired, lack of insulation properties. Moreover, nonwoven textiles can present challenges associated with constructing garments (e.g., upper-body garments), and in some examples, garments constructed using nonwoven textile can include an undesirable aesthetic, poor fit, require inefficient construction methods, and the like.
The present articles and methods for a garment with composite nonwoven textile are described in detail below with reference to these figures.
This detailed description is related to a garment with composite nonwoven textile that is associated with a desirable aesthetic, fit, functionality, and the like. For example, the garment can include an upper-body garment, such as a hoodie, with a fit that allows for relatively easy or free range of motion. In addition, the garment can include one or more various features that contribute to a desired aesthetic. For instance, in an example, the garment can include a seam construction that includes a relatively flat seam and that also provides an interesting aesthetic in which elements of the composite nonwoven construction can be seen. In at least some examples, a dual-layer hood assembly can include a seam construction that, for aesthetics and/or functionality, can allow the seam (e.g., between an inner nonwoven panel and an outer nonwoven panel) to be positioned on an inward facing surface of the hood. In some examples, the garment can include an elegant pocket construction that is associated with a clean aesthetic and reinforced pocket-opening edges and that is relatively easy to manufacture. These, as well as other examples of the present disclosure, are in contrast with typical garments constructed of nonwoven textiles, which often have undesirable aesthetics, poor fit, bulky seams, or other disadvantages.
Examples of this disclosure are associated with a composite nonwoven textile suitable for use in apparel and other articles and methods of making the same. In some examples, the composite nonwoven textile is recyclable and includes asymmetric layers (e.g., asymmetric webs of fiber that are entangled) that impart properties. In example aspects, the asymmetrical-faced composite nonwoven textile includes a first face formed, at least in part from a first entangled web of fibers and an opposite second face formed, at least in part from a second entangled web of fibers. When formed into an article of apparel, the first face forms an outer-facing surface of the article of apparel, and the second face forms an inner-facing surface of the article of apparel. The first entangled web of fibers may have features that make it suitable for exposure to an external environment when the asymmetrical-faced composite nonwoven textile is formed into the article of apparel. For example, the fibers that form the first entangled web may have a denier that is about two times greater than the denier of the fibers used to form the second entangled web such that the first entangled web may better withstand abrasion forces without breakage of the fibers.
Features of the second entangled web of fibers make it suitable for forming a skin-facing surface when the asymmetrical-faced composite nonwoven textile is formed into the article of apparel. For instance, the fibers that form the second entangled web may have a denier that is about half the denier of the fibers used to form the first entangled web because the second face may be less exposed to abrasion forces. Moreover, a smaller denier may produce a soft hand making it comfortable for skin or near skin contact. Moreover, the second entangled web may include silicone-coated fibers which also imparts a soft hand and improves drapability of the textile (i.e., makes the textile less stiff).
In further example aspects, the second face may include loops and/or fiber ends that extend away from the second face in a direction perpendicular to the surface plane of the second face to form a pile. For example, the loops and/or fiber ends may extend from about 1.5 mm to about 8.1 mm away from the second face. The pile helps to trap air heated by a wearer thereby improving the insulation properties of the nonwoven textile. The pile also provides additional comfort to the wearer.
In further aspects, the asymmetrical-faced composite nonwoven textile may also include different color properties associated with the first face and the second face. In one aspect, the color properties may be in the form of a heather effect that is more pronounced on the first face compared to the second face. The different color properties may impart a desirable aesthetic to an apparel item formed from the nonwoven textile and may also provide a visual marker to a wearer as to which side of the apparel item is outer-facing and which side is inner-facing. The different color properties may also make the apparel item suitable for reversible wear (i.e., wearing the apparel item “inside out”). The different color properties may, for instance, be imparted to the faces by selecting particular colors for fibers forming the different layers of the textile and/or by selecting entanglement parameters such that the colored fibers are selectively moved more to the first face as compared to the second face or vice versa.
The asymmetrical-faced composite nonwoven textile may further include an elastomeric layer positioned between the first and second entangled webs of fibers. The elastomeric layer imparts stretch and recovery properties to the composite nonwoven textile making it suitable for use in articles of apparel such as upper-body garments and lower-body garments. On its own, the elastomeric layer may lack sufficient tensile strength to withstand normal wearer and tear. Thus, the elastomeric layer is integrated into the composite nonwoven textile by extending fibers from the different webs through the elastomeric layer using an entanglement process to produce a cohesive structure.
In some example aspects, the composite nonwoven textile includes additional entangled webs (e.g., a third entangled web of fibers, a fourth entangled web of fibers, etc.) layered together with the elastomeric layer. The weights of the pre-entangled webs may be selected to achieve a lightweight composite nonwoven textile having a minimal thickness after entanglement. Moreover, selection of the number of entangled webs, fiber denier, type of fiber, length of fibers, and the like, produces a resulting composite nonwoven textile that provides enhanced insulation through trapping of air between the fibers forming the textile. Additionally, properties of the different webs and/or the number of webs used to form the composite nonwoven textile may be adjusted to achieve different desired end properties for the nonwoven textile including different desired end properties for each of the faces of the composite nonwoven textile. The result is a lightweight, asymmetrical-faced composite nonwoven textile with thermal properties, stretch and recovery, good drape, an interesting visual aesthetic, good resistance to abrasion, and a soft hand, making the composite nonwoven textile ideal for forming articles of apparel suitable for athletic wear.
The composite nonwoven textile contemplated herein may be finished in a variety of ways. For instance, the textile may be printed with one or more patterns, graphics, logos, and the like using selected printing techniques. In one example aspect, printing may be applied to one or more of the webs of fibers prior to entanglement such that the printed component is integrated into the nonwoven textile during entanglement. When the nonwoven textile is formed into an article of apparel, different techniques may be used to seam textile edges together. For example, textile edges may be overlapped, and an entanglement process may be used to entangle together fibers from the textile edges thereby forming a seam.
Aspects herein further contemplate that the asymmetrical-faced composite nonwoven textile is recyclable, and in some aspects, the textile may be fully recyclable. Thus, in aspects, the fibers selected to form the entangled webs may include recycled materials including recycled polyethylene terephthalate (PET) fibers, commonly known as polyester fibers. Additionally, materials selected to form the elastomeric layer may also be fully recyclable. Use of recycled fibers and materials reduces the carbon footprint of the composite nonwoven textile.
The asymmetrical-faced composite nonwoven textile is formed by positioning an elastomeric layer between two or more webs of fibers. The selection of properties for the different webs, such as number of webs, fiber denier, weight of the individual webs, fiber length, fiber color, and fiber coating, is based on desired end properties of the asymmetrical-faced composite nonwoven textile. Once the elastomeric layer is positioned between the two or more webs of fibers a mechanical entanglement process is performed. In one example aspect, the mechanical entanglement process is needlepunching. Different parameters associated with the needlepunching process such as needle selection, stitch density, penetration depth, direction of penetration, number of needle passes, and the like, are selected based on the desired end properties of the asymmetrical-faced composite nonwoven textile. For example, the parameters may be selected to produce a nonwoven textile that has a desired thickness, a desired degree of stretch and recovery, a desired weight, a desired drape or stiffness, and the like.
The selection of properties for the different webs in combination with the needling parameters may produce asymmetries in the nonwoven textile after wash and/or wear. In some aspects, the asymmetries produced by wash and/or wear may be a desirable attribute. For example, the second face of the nonwoven textile may pill to a greater extent than the first face of the nonwoven textile. When the nonwoven textile is incorporated into an article of apparel, this means that the inner-facing surface of the article of apparel may pill to a greater extent than the outer-facing surface of the article of apparel. The differential pilling may, in example aspects, be due to use of silicone-coated fibers for the second entangled web that forms, in part, the second face of the nonwoven textile. The silicone coating may increase the tendency of the fibers to migrate (i.e., there is less friction to keep the fibers entangled) such that the fiber ends become exposed on the second face where they may form pills. In example aspects, the presence of pills may be a desirable aesthetic and factors associated with the selection of the webs and/or entanglement parameters may be adjusted to increase the likelihood of pill formation. Further, having a greater number of pills on an inner-facing surface of an article of apparel formed from the composite nonwoven textile may contribute to wearer comfort similar to that experienced when donning an old sweatshirt. In example aspects, if the formation of pills is not a desired attribute, the composite nonwoven textile may undergo post-processing steps such as calendaring, embossing, and/or the application of coatings to the faces of the composite nonwoven textile to increase the resistance to pilling.
Additional manufacturing steps may be implemented to achieve additional desired properties for the resulting nonwoven textile. For example, a needlepunching process typically used to manufacture Dilour carpets may be utilized to form a pile on the second face, and not the first face, of the nonwoven textile. In this aspect, brushes are positioned adjacent to the second face of the nonwoven textile during the needlepunching process. Needles are used to push fibers and/or fiber loops from the webs into the brushes where they are held in place until the needlepunching process is complete. When the nonwoven textile is removed from the brushes, the fibers and/or fiber loops that were held by the brushes are oriented in a common direction that is perpendicular to the surface plane of the second face.
As used herein, the term “article of apparel” is intended to encompass articles worn by a wearer. As such, they may include upper-body garments (e.g., tops, t-shirts, pullovers, hoodies, jackets, coats, and the like), and lower-body garments (e.g., pants, shorts, tights, capris, unitards, and the like). Articles of apparel may also include hats, gloves, sleeves (arm sleeves, calf sleeves), articles of footwear such as uppers for shoes, and the like. The term “inner-facing surface” when referring to the article of apparel means the surface that is configured to face towards a body surface of a wearer, and the term “outer-facing surface” means the surface that is configured to face away from the body surface of the wearer and toward an external environment. The term “innermost-facing surface” means the surface closest to the body surface of the wearer with respect to other layers of the article of apparel, and the term “outermost-facing surface” means the surface that is positioned furthest away from the body surface of the wearer with respect to the other layers of the article of apparel.
As used herein, the term “nonwoven textile” refers to fibers that are held together by mechanical and/or chemical interactions without being in the form of a knit, woven, braided construction, or other structured construction. In a particular aspect, the nonwoven textile includes a collection of fibers that are mechanically manipulated to form a mat-like material. Stated differently nonwoven textiles are directly made from fibers. The nonwoven textile may include different webs of fibers formed into a cohesive structure, where the different webs of fibers may have a different or similar composition of fibers and/or different properties. The term “web of fibers” refers to a layer prior to undergoing a mechanical entanglement process with one or more other webs of fibers. The web of fibers includes fibers that have undergone a carding and lapping process that generally aligns the fibers in one or more common directions that extend along an x, y plane and that achieves a desired basis weight. The web of fibers may also undergo a light needling process or mechanical entanglement process that entangles the fibers of the web to a degree such that the web of fibers forms a cohesive structure that can be manipulated (e.g., rolled on to a roller, un-rolled from the roller, stacked, and the like). The web of fibers may also undergo one or more additional processing steps such as printing prior to being entangled with other webs of fibers to form the composite nonwoven textile. The term “entangled web of fibers” when referring to the composite nonwoven textile refers to a web of fibers after it has undergone mechanical entanglement with one or more other webs of fibers. As such, a web of entangled fibers may include fibers originally present in the web of fibers forming the layer as well as fibers that are present in other webs of fibers that have been moved through the entanglement process into the web of entangled fibers.
The mechanical entanglement process contemplated herein may include needle entanglement (commonly known as needlepunching) using barbed or structured needles (e.g., forked needles), or fluid entanglement. In aspects contemplated herein, needlepunching may be utilized based on the small denier of the fibers being used and the ability to fine tune different parameters associated with the needlepunching process. Needlepunching generally uses barbed or spiked needles to reposition a percentage of fibers from a generally horizontal orientation (an orientation extending along an x, y plane) to a generally vertical orientation (a z-direction orientation). Referring to the needlepunching process in general, the carded, lapped, and pre-needled webs may be stacked with other carded, lapped, and pre-needled webs and other layers such as an elastomeric layer and passed between a bed plate and a stripper plate positioned on opposing sides of the stacked web configuration. Barbed needles, which are fixed to a needle board, pass in and out through the stacked web configuration, and the stripper plate strips the fibers from the needles after the needles have moved in and out of the stacked web configuration. The distance between the stripper plate and the bed plate may be adjusted to control web compression during needling. The needle board repeatedly engages and disengages from the stacked web configuration as the stacked web configuration is moved in a machine direction along a conveyance system such that the length of the stacked web configuration is needled. Aspects herein contemplate using multiple needle boards sequentially positioned at different points along the conveyance system where different needle boards may engage the stacked web configuration from different faces of the stacked web configuration (e.g., an upper face and a lower face) as the stacked web configuration moves in the machine direction. Each engagement of a needle board with the stacked web configuration is known herein as a “pass.” Parameters associated with particular needle boards may be adjusted to achieve desired properties of the resulting needled nonwoven textile (e.g., basis weight, thickness, and the like). The different parameters may include stitch density (SD) which is the number of needles per cm2 (n/cm2) used during an entanglement pass and penetration depth (PD) which is how far the needle passes through the stacked web configuration before being pulled out of the stacked web configuration. Parameters associated with the needlepunching process in general may also be adjusted such as the spacing between the bed plate and the stripper plate and the speed of conveyance of the stacked web configuration.
Aspects herein contemplate using a barbed needle (a needle having a pre-set number of barbs arranged along a length of the needle) although other needle types are contemplated herein. The barbs on the needle “capture” fibers as the barb moves from a first face to an opposing second face of the stacked web configuration. The movement of the needle through the stacked web configuration effectively moves or pushes fibers captured by the barbs from a location near or at the first face to a location near or at the second face and further causes physical interactions with other fibers helping to “lock” the moved fibers into place through, for example, friction. It is also contemplated herein that the needles may pass through the stacked web configuration from the second face toward the first face. In example aspects, the number of barbs on the needle that interact with fibers may be based on the penetration depth of the needle. For example, all the barbs may interact with fibers when the penetration depth is a first amount, and fewer than all the barbs may interact with fibers as the penetration depth decreases. In further example aspects, the size of the barb may be adjusted based on the denier of fibers used in the web(s). For example, the barb size may be selected so as to engage with small denier (e.g. fine) fibers but not with large denier fibers so as to cause selective movement of the small denier fibers but not the large denier fibers. In another example, the barb size may be selected so as to engage with both small denier and large denier fibers so as to cause movements of both fibers through the webs.
After entanglement, the nonwoven textile may include a first face and an opposite second face which both face outward with respect to an interior of the nonwoven textile and comprise the outermost faces of the nonwoven textile. As such, when viewing the nonwoven textile, the first face and the second face are each fully visible. The first face and the second face may both extend along x, y planes that are generally parallel and offset from each other. For instance, the first face may be oriented in a first x, y plane and the second face may be oriented in a second x, y plane generally parallel to and offset from the first x, y plane.
The term “elastomeric layer” as used herein refers to a layer that has stretch and recovery properties (i.e., is elastically resilient) in at least one orientational axis, which includes both a layer having stretch and recovery in a single orientational axis and a layer having stretch and recovery in multiple orientational axes. Examples of an orientational axis include a length direction, a width direction, an x-direction, a y-direction, and any direction angularly offset from a length direction, a width direction, an x-direction, and a y-direction. The elastomeric layer may be formed from thermoplastic elastomers such as thermoplastic polyurethane (TPU), thermoplastic polyether ester elastomer (TPEE), combinations of TPU and TPEE and the like. The elastomeric layer may comprise a spunbond layer, a film, a web, and the like. In example aspects, the elastomeric layer may include a spunbond TPEE or a meltblown TPU. Nonwoven elastomeric materials such as a spunbond TPEE or a meltblown TPU allow for lower basis weights than elastomeric films. As well, they are generally more breathable and permeable due to the fibrous nature of the web versus a film, and they are generally more pliable (i.e., less stiff) than films. These factors (low basis weight, breathable and permeable, pliable) make them ideal for use in the example composite nonwoven textile described herein especially in the apparel context where these are desirable features.
When referring to fibers, the term denier or denier per fiber is a unit of measure for the linear mass density of the fiber and more particularly, it is the mass in grams per 9000 meters of the fiber. In one example aspect, the denier of a fiber may be measured using ASTM D1577-07. The diameter of a fiber may be calculated based on the fiber's denier and the fiber's density, and in general, the diameter of a fiber has a direct correlation to the denier of the fiber (i.e., a smaller denier fiber has a smaller diameter). Fibers contemplated herein may be formed of a number of different materials (e.g., cotton, nylon and the like) including polyethylene terephthalate (PET) commonly known as polyester. The PET fibers may include virgin PET fibers (fibers that have not been recycled), and recycled PET fibers. Recycled PET fibers include shredded PET fibers derived from shredded articles and re-extruded PET fibers (fibers that are re-extruded using recycled PET chips).
The term “silicone-coated fiber” as used herein may mean a fiber having a continuous silicone coating such that the silicone coating completely covers the fiber along its length. In one example, the fiber may form a core and the silicone may form a sheath surrounding the core. In other example aspects, the term “silicone-coated fiber” may mean a fiber that has an intermittent coating of silicone in at least some areas along the length of the fiber. For instance, the fiber may be sprayed with a silicone coating. In this aspect, if a particular web of fibers includes 100% by weight of silicone-coated fibers, it is contemplated herein that the fibers that form the web may have areas that do not include the silicone coating. It is contemplated herein that the silicone-coated fibers are incorporated into the webs of fibers that form the composite nonwoven textile. Said differently, the silicone coating on the fibers is not applied to the fibers after the composite nonwoven textile is formed using, for example, a silicone spray finish.
The term “color” or “color property” as used herein when referring to the nonwoven textile generally refers to an observable color of fibers that form the textile. Such aspects contemplate that a color may be any color that may be afforded to fibers using dyes, pigments, and/or colorants that are known in the art. As such, fibers may be configured to have a color including, but not limited to red, orange, yellow, green, blue, indigo, violet, white, black, and shades thereof. In one example aspect, the color may be imparted to the fiber when the fiber is formed (commonly known as dope dyeing). In dope dyeing, the color is added to the fiber as it is being extruded such that the color is integral to the fiber and is not added to the fiber in a post-formation step (e.g., through a piece dyeing step).
Aspects related to a color further contemplate determining if one color is different from another color. In these aspects, a color may comprise a numerical color value, which may be determined by using instruments that objectively measure and/or calculate color values of a color of an object by standardizing and/or quantifying factors that may affect a perception of a color. Such instruments include, but are not limited to spectroradiometers, spectrophotometers, and the like. Thus, aspects herein contemplate that a “color” of a textile provided by fibers may comprise a numerical color value that is measured and/or calculated using spectroradiometers and/or spectrophotometers. Moreover, numerical color values may be associated with a color space or color model, which is a specific organization of colors that provides color representations for numerical color values, and thus, each numerical color value corresponds to a singular color represented in the color space or color model.
In these aspects, a color may be determined to be different from another color if a numerical color value of each color differs. Such a determination may be made by measuring and/or calculating a numerical color value of, for instance, a first textile having a first color with a spectroradiometer or a spectrophotometer, measuring and/or calculating a numerical color value of a second textile having a second color with the same instrument (i.e., if a spectrophotometer was used to measure the numerical color value of the first color, then a spectrophotometer is used to measure the numerical color value of the second color), and comparing the numerical color value of the first color with the numerical color value of the second color. In another example, the determination may be made by measuring and/or calculating a numerical color value of a first area of a textile with a spectroradiometer or a spectrophotometer, measuring and/or calculating a numerical color value of a second area of the textile having a second color with the same instrument, and comparing the numerical color value of the first color with the numerical color value of the second color. If the numerical color values are not equal, then the first color or the first color property is different than the second color or the second color property, and vice versa.
Further, it is also contemplated that a visual distinction between two colors may correlate with a percentage difference between the numerical color values of the first color and the second color, and the visual distinction will be greater as the percentage difference between the color values increases. Moreover, a visual distinction may be based on a comparison between colors representations of the color values in a color space or model. For instance, when a first color has a numerical color value that corresponds to a represented color that is black or navy and a second color has a numerical color value that corresponds to a represented color that is red or yellow, a visual distinction between the first color and the second color is greater than a visual distinction between a first color with a represented color that is red and a second color with a represented color that is yellow.
The term “pill” or “pilling” as used herein refers to the formation of small balls of fibers or fibers ends on a facing side of the nonwoven textile. The pill may extend away from a surface plane of the face. Pills are generally formed during normal wash and wear due to forces (e.g., abrasion forces) that cause the fiber ends to migrate through the face of the nonwoven textile and entangle with other fiber ends. A textile's resistance to pilling may be measured using standardized tests such as Random Tumble and Martindale Pilling tests. The term “pile” as used herein generally refers to a raised surface or nap of a textile consisting of upright loops and/or terminal ends of fibers that extend from a face of the textile in a common direction.
Various measurements are provided herein with respect to the pre-entangled webs and the resulting composite nonwoven textile. Thickness of the resulting composite nonwoven may be measured using a precision thickness gauge. To measure thickness, for example, the textile may be positioned on a flat anvil and a pressure foot is pressed on to it from the upper surface under a standard fixed load. A dial indicator on the precision thickness gauge gives an indication of the thickness in mm. Basis weight is measured using ISO3801 testing standard and has the units grams per square meter (gsm). Textile stiffness, which generally corresponds to drape is measured using ASTMD4032 (2008) testing standard and has the units kilogram force (Kgf). Fabric growth and recovery is measured using ASTM2594 testing standard and is expressed as a percentage. The term “stretch” as used herein means a textile characteristic measured as an increase of a specified distance under a prescribed tension and is generally expressed as a percentage of the original benchmark distance (i.e., the resting length or width). The term “growth” as used herein means an increase in distance of a specified benchmark (i.e., the resting length or width) after extension to a prescribed tension for a time interval followed by the release of tension and is usually expressed as a percentage of the original benchmark distance. “Recovery” as used herein means the ability of a textile to return to its original benchmark distance (i.e., its resting length or width) and is expressed as a percentage of the original benchmark distance. Thermal resistance, which generally corresponds to insulation features, is measured using ISO11092 testing standard and has the units of RCT (M2*K/W).
Unless otherwise noted, all measurements provided herein are measured at standard ambient temperature and pressure (25 degrees Celsius or 298.15 K and 1 bar) with the nonwoven textile in a resting (un-stretched) state.
The first web of fibers 110 is formed of fibers, such as fibers 210 (depicted schematically) that may be oriented generally in a common direction, or two or more common directions, due to a carding and cross-lapping process. In example aspects, the fibers 210 may include PET fibers (recycled or virgin) although other virgin and recycled fiber types are contemplated herein (e.g., polyamide, cotton, and the like). In one example aspect, the fibers 210 may include 100% by weight of recycled fibers such as 100% by weight of recycled PET fibers. However, in other aspects, the fibers 210 may include 100% by weight virgin fibers, or other combinations of virgin and recycled fibers, as desired. The staple length of the fibers 210 may range from about 40 mm to about 60 mm, from about 45 mm to about 55 mm, or about 51 mm. Use of this fiber length provides optimal entanglement. For instance, when below 40 mm, the fibers may not have sufficient length to become entangled, and when above 60 mm, the fibers may actually become un-entangled when the needle is withdrawn from the nonwoven textile during entanglement. In example aspects, the fibers 210 may comprise a uniform length such as when the fibers are formed from virgin extruded PET or re-extruded PET and cut to a defined length. In other aspects, the fibers 210 may include a variation of staple length such as when the fibers 210 are derived from a shredded fiber source. Any and all aspects, and any variation thereof, are contemplated as being within aspects herein.
The fibers 210 may include a denier of greater than or equal to about 1.2 D, or from about 1.2 D to about 3.5 D, from about 1.2 D to about 1.7 D, from about 1.3 D to about 1.6 D, or about 1.5 D. Utilizing a denier within this range makes the fibers 210 less susceptible to breakage which, in turn, enhances the durability and abrasion resistance of the first face of the composite nonwoven textile 120. Moreover, selecting a denier within this range while still achieving the basis weight of the first web of fibers 110 provides good, uniform coverage of the first face which helps enhance the durability features of the first face. Selecting a denier of greater than, for instance 3.5 D while still maintaining the basis weight for the first web of fibers 110 may not provide uniform coverage for the first face.
In example aspects, the fibers 210 used to form the first web of fibers 110 may include a first color property. The first color property may be imparted to the fibers 210 during, for example, the extrusion process when the fibers 210 are being formed such that the fibers 210 are dope dyed. In one example aspect, the color property may be white although other colors are contemplated herein. Forming the composite nonwoven textile 120 using dope dyed fibers eliminates post-processing dyeing steps which further helps to reduce the carbon footprint of the nonwoven textile 120. For example, it is contemplated herein that the composite nonwoven textile 120 is not piece dyed.
In example aspects, the second web of fibers 112 may be formed of two types of fibers, such as fibers 310 (depicted schematically) and fibers 312 (depicted schematically) that may be oriented generally in a common direction, or two or more common directions, due to a carding and cross-lapping process. In example aspects, the fibers 310 may include PET fibers (recycled or virgin) although other virgin and recycled fiber types are contemplated herein (e.g., polyamide, cotton, and the like). In one example aspect, the fibers 310 may include 100% by weight of recycled fibers such as 100% by weight of recycled PET fibers. However, in other aspects, the fibers 310 and/or 312 may include 100% by weight virgin fibers, or other combinations of virgin and recycled fibers, as desired.
The fibers 312 are shown in dashed line to indicate that they have different features than the fibers 310. For example, the fibers 312 include silicone-coated fibers. The fibers 312 may be coated with silicone prior to incorporating the fibers 312 into the second web of fibers 112. In example aspects, the second web of fibers 312 may include about 10% to about 100% by weight of the fibers 312, about 40% by weight of the fibers 310 and about 60% by weight of the fibers 312, about 45% by weight of the fibers 310 and about 55% by weight of the fibers 312, about 50% by weight of the fibers 310 and about 50% by weight of the fibers 312, about 55% by weight of the fibers 310 and about 45% by weight of the fibers 312, or about 60% by weight of the fibers 310 and about 40% by weight of the fibers 312. When stating that the second web of fibers 112 may include about 100% by weight of the fibers 312, it is contemplated herein that the fibers 312 may be intermittently coated with silicone along their length. Utilizing the fibers 312 in the ranges above provides a good hand feel to the second face formed by the second web of fibers 112. It also provides a good drape to the composite nonwoven textile 120. Stated differently, the resulting nonwoven textile 120 is not as stiff as traditional nonwovens used in the cleaning space and the personal hygiene space. Further, utilizing the fibers 310 and the fibers 312 in the ranges above may reduce the amount of needle force needed to entangle the web of fibers described herein since the silicone-coated fibers may move more easily during the entanglement process. When incorporating silicone-coated fibers below the ranges described above, the second face may feel dry and uncomfortable during wear. Conversely, when incorporating silicone-coated fibers above the ranges described above, the second face may feel slick which also may be unpleasant to a wearer. Moreover, using silicone-coated fibers above the ranges described above may make the carding process difficult since the card wires may not be able to frictionally engage with the fibers to achieve a uniform carded web. In addition, using silicone-coated fibers above the ranges described above may also fail to create adequate entanglement between the fibers since frictional forces are reduced due to the silicone thus impacting the structural integrity of the composite nonwoven textile 120.
Utilizing the silicone-coated fibers 312 eliminates the need for adding a silicone finish to the composite nonwoven textile 120 in a post-processing step. As known in the textile space, it is common practice to add silicone softener finishes to knitted or woven products in a post-processing step. By eliminating this step, the carbon footprint of the composite nonwoven textile 120 is further reduced.
The staple length of each of the fibers 310 and 312 may range from about 40 mm to about 60 mm, from about 45 mm to about 55 mm, or about 51 mm. Similar to the fibers 210, this length may provide for optimal entanglement. In example aspects, the fibers 310 and/or 312 may comprise a uniform length such as when the fibers are formed from virgin extruded PET or re-extruded PET and cut to a defined length. In other aspects, the fibers 310 and/or 312 may include a variation of staple length such as when the fibers 310 and/or 312 are derived from a shredded fiber source. Any and all aspects, and any variation thereof, are contemplated as being within aspects herein.
Each of the fibers 310 and 312 may include a denier of less than or equal to about 1 D. For example, the denier may be about 0.1 D, about 0.2 D, about 0.3 D, about 0.4 D, about 0.5 D, about 0.6 D, about 0.7 D, about 0.8 D, or about 0.9 D. In example aspects, the denier of the fibers 310 and 312 may be from about 0.6 D to about 1 D, from about 0.7 D to about 0.9 D, or about 0.8 D. Utilizing a denier within this range helps to provide a soft feel or hand to the second face formed from the second web of fibers 112. Moreover, selecting a denier within this range while still achieving the basis weight of the second web of fibers 112 provides good coverage of the second face.
In example aspects, each of the fibers 310 and 312 used to form the second web of fibers 112 may include a color property which may be the same or different. In example aspects, both of the fibers 310 and 312 include the first color property of the fibers 210. Similar to the fibers 210, each of the fibers 310 and 312 may be dope dyed further reducing the need for post-processing dyeing steps for the resulting composite nonwoven textile.
The third web of fibers 114 is formed of fibers, such as fibers 410 (depicted schematically) that may be oriented generally in a common direction, or two or more common directions, due to a carding and cross-lapping process. In example aspects, the fibers 410 may include PET fibers (recycled or virgin) although other virgin and recycled fiber types are contemplated herein (e.g., polyamide, cotton, and the like). In one example aspect, the fibers 410 may include 100% by weight of recycled fibers such as 100% by weight of recycled PET fibers. However, in other aspects, the fibers 410 may include 100% by weight virgin fibers, or other combinations of virgin and recycled fibers, as desired. Similar to the fibers 210, 310 and 312, the staple length of the fibers 410 may range from about 40 mm to about 60 mm, from about 45 mm to about 55 mm, or about 51 mm. In example aspects, the fibers 410 may comprise a uniform length such as when the fibers are formed from virgin extruded PET or re-extruded PET and cut to a defined length. In other aspects, the fibers 410 may include a variation of staple length such as when the fibers 410 are derived from a shredded fiber source. Any and all aspects, and any variation thereof, are contemplated as being within aspects herein.
The fibers 410 may include a denier of greater than or equal to about 1.2 D, from about 1.2 D to about 3.5 D, from about 1.3 D to about 1.6 D, or about 1.5 D. Utilizing a denier within this range makes the fibers 410 less susceptible to breakage which, in turn, enhances the durability and abrasion resistance of the composite nonwoven textile 120. Since the third web of fibers 114, when used, is positioned between the first web of fibers 110 and the second web of fibers 112, having a soft hand is not as important as, for example, the second web of fibers 112. Selecting a denier within this range while still achieving the basis weight of the third web of fibers 114 enhances the overall coverage and/or opacity of the composite nonwoven textile 120.
In example aspects, the fibers 410 used to form the third web of fibers 114 may include a second color property different from the first color property. This is depicted in
The stacked configuration 612 may pass through one or more needle boards as indicated by example Pass 614 and example Pass 616. The needles used in the needle boards of the manufacturing process 600 may be selected to optimally interact with the specific denier of the fibers used in the first, second, and third web of fibers 110, 112, and 114. They also may be selected to include a desired number of barbs to achieve a desired degree of entanglement.
In example aspects, Pass 614 and Pass 616 may occur from different sides of the stacked configuration 612. For example, Pass 614 occurs from the first web of fibers 110 in a direction toward the second web of fibers 112 and functionally has the effect of moving and entangling the fibers 210 from the first web of fibers 110 into the third web of fibers 114 and into the second web of fibers 112 and further moving and entangling the fibers 410 from the third web of fibers 114 into the second web of fibers 112. Pass 616, which may occur before, after, or simultaneously with Pass 614, is from the second web of fibers 112 toward the first web of fibers 110. Thus, Pass 616 moves the fibers 310 and 312 through the elastomeric layer 116 and into the third web of fibers 114 and into the first web of fibers 110. Although only two passes are illustrated, it is contemplated herein that multiple passes may be utilized such as three passes, four passes, five passes, and the like from different sides of the stacked configuration 612 to achieve desired end properties for the composite nonwoven textile 120.
Entanglement parameters such as needle selection, number of passes, direction of passes, stitch density per pass, and penetration depth may be selected to achieve desired end properties of the composite nonwoven textile 120.
In example aspects, after passing through needle boards, such as Pass 614 and Pass 616, the entanglement process is complete and the composite nonwoven textile 120 is formed. This is schematically illustrated by the dashed line 624. After Pass 614 and Pass 616, in example aspects, the composite nonwoven textile 120 may have grown in the machine direction (i.e., the length direction) and in the cross-machine direction (i.e., the width direction). This concept is known as machine drafting. For example, growth in the cross-machine direction may occur because as the needle passes through the webs of fibers 110, 112, and 114, it creates a void which is filled with fibers which may cause a gradual increase in width dependent upon the stitch density. Growth in the machine direction generally depends on the rate of conveyance and the penetration depth. The stacked configuration 612 continues to move during the entanglement process so an increase in penetration depth may cause a deflection of the fibers based on the dwell time of the needle (i.e., the conveyance rate). This stretches the composite nonwoven textile 120 in the machine direction.
In further example aspects, the composite nonwoven textile 120 exhibits a greater resistance to stretch in the length direction compared to the width direction (i.e., the textile 120 exhibits an anisotropic stretch property). This difference may be due to the machine drafting as discussed above. For instance, the growth in the machine direction may place the fibers forming the first, second, and third webs 110, 112, and 114 under tension resulting in a greater stretch resistance in the machine direction. This anisotropic stretch feature may impact how pattern pieces are cut and positioned on an article of apparel. For example, with respect to an article of apparel such as an upper-body garment, a greater degree of stretch is generally desired in the horizontal direction (e.g., from a first sleeve opening to a second sleeve opening) compared to the vertical direction (e.g., from a neck opening to a waist opening). Thus a pattern piece for the upper-body garment would be cut and positioned such that the width of the textile 120 would extend in the horizontal direction and the length of the textile 120 would extend in the vertical direction. Said differently, the cross-machine direction of the textile 120 would extend in the horizontal direction and the machine direction of the textile 120 would extend vertically.
In example aspects, after entanglement, the composite nonwoven textile 120 is rolled to form a rolled good 626 which can later be used for forming articles of apparel. It is also contemplated herein that the composite nonwoven textile 120 may undergo processing steps instead of being rolled to form the rolled good 626 or prior to being rolled to form the rolled good 626. For example, the composite nonwoven textile 120 may be conveyed to a patterning station where different pattern shapes may be cut from the nonwoven textile 120. The composite nonwoven textile 120 may also be conveyed to a printing station where various prints are applied to faces of the nonwoven textile 120. In additional examples, the nonwoven textile 120 may be ironed to further smooth the first and second faces of the textile 120. The nonwoven textile 120 may also be subject to calendaring, embossing, or different coatings to increase resistance to pilling when this attribute is desired. Any and all aspects, and any variation thereof, are contemplated as being within aspects herein.
In general, based on the properties selected for each of the first web of fibers 110, the second web of fibers 112, and the third web of fibers 114 (basis weight, fiber denier, staple length, silicone coating, type of fiber, and the like), the properties selected for the elastomeric layer 116 (type of thermoplastic elastomer, construction (film, spunbond, web, and the like)), and selection of the entanglement parameters, the composite nonwoven textile 120 includes desired properties. For example, the composite nonwoven textile 120 may have a final thickness of from about 1.8 mm to about 2.7 mm, from about 1.9 mm to about 2.6 mm, or from about 2 mm to about 2.5 mm. The composite nonwoven textile 120 may have a basis weight from about 40 gsm to about 450 gsm, from about 100 gsm to about 350 gsm, from about 150 gsm to about 190 gsm, or about 180 gsm. The final basis weight may be impacted by the number of layers (fiber webs) used in the construction, fiber loss due to stripping, machine draft, and the like. In example aspects, the composite nonwoven textile 120 may have a thermal resistance from about 50 RCT to about 95 RCT, from about 55 RCT to about 90 RCT, from about 60 RCT to about 85 RCT, or about 65 RCT to about 80 RCT. Thus, as seen, the composite nonwoven textile 120 may exhibit insulation properties associated with typical knit fleeces but have a lower basis weight and/or thickness.
Due to the elastomeric layer 116, the composite nonwoven textile 120 may have minimal growth properties and good recovery properties. Using the ASTMD2594 testing standard, the composite nonwoven textile 120 may have a growth in the length direction (i.e., the machine direction) of less than or equal to about 5%, less than or equal to about 4%, less than or equal to about 3%, less than or equal to about 2%, less than or equal to about 1%, less than or equal to about 0.1%, or less than or equal to 0%. The composite nonwoven textile 120 may have a growth in the width direction (i.e., the cross machine direction) of less than or equal to about 10%, less than or equal to about 9%, less than or equal to about 8%, less than or equal to about 7%, less than or equal to about 6%, less than or equal to about 5%, less than or equal to about 4%, less than or equal to about 3%, less than or equal to about 2%, less than or equal to about 1%, less than or equal to about 0.1%, or less than or equal to 0%. Using the ASTMD2594 testing standard, the composite nonwoven textile 120 may have a recovery of within about 10% of its resting length and width, within about 9% of its resting length and width, within about 8% of its resting length and width, within about 7% of its resting length and width, within about 6% of its resting length and width, within about 5% of its resting length and width, within about 4% of its resting length and width, within about 3% of its resting length and width, within about 2% of its resting length and width, or within about 1% of its resting length and width. The stiffness of the composite nonwoven textile 120, which relates to the drapability of the textile 120, is less than or equal to about 0.4 Kgf, less than or equal to about 0.3 Kgf, less than or equal to about 0.2 Kgf, or less than or equal to about 0.1 Kgf.
The features described above (basis weight, thickness, thermal resistance, growth and recovery, and stiffness) may, in some example aspects, make the composite nonwoven textile 120 suitable for a lightweight, thermal article of apparel for use in cool to cold weather conditions (e.g., a pullover, a hoodie, sweat pants, and the like). In other aspects, the features described above may make the composite nonwoven textile 120 suitable for uses in other articles where asymmetric faces are desired such as an upper for an article of footwear.
As shown in both
The composite nonwoven textile 120 shown in
Although the different entangled webs 712, 714 and 718 are shown as distinct layers in
As further shown in
Moving from left to right, the fiber 210 from the first entangled web of fibers 712 is shown entangled with the fibers 310 and/or 312 from the second entangled web of fibers 718, and the fiber 210 from the first entangled web of fibers 712 is shown entangled with the fiber 410 from the third entangled web of fibers 714. The fiber 410 from the third entangled web of fibers 714 is shown entangled with the fibers 310 and/or 312 from the second entangled web of fibers 718, and the fiber 410 from the third entangled web of fibers 714 is shown entangled with the fiber 210 from the first entangled web of fibers 712. The fibers 310 and/or 312 from the second entangled web of fibers 718 is shown entangled with the fiber 210 from the first entangled web of fibers 712, and the fibers 310 and/or 312 is shown entangled with the fiber 410 from the third entangled web of fibers 714. As shown, one or more of the fibers 210, 310, 312, and 410 extend through the elastomeric layer 116. Some of the fibers in
The stacked configuration 1218 passes one or more needle boards as indicated at example Pass 1220 and example Pass 1222. Pass 1228, also known as a Dilour pass, occurs subsequent to Pass 1220 and Pass 1222. In example aspects, one or more special needles may be used for Pass 1228. For example, one or more of the needles, or all of the needles, may include a forked tip that captures a fiber along its length as the needle traverses the stacked configuration 1218 to form a loop. Pass 1228 occurs from the direction of the first web of fibers 1210 toward the second web of fibers 1212. A set of brushes 1230 is positioned adjacent to a face of the second web of fibers 1212. As shown in the magnified view, as fibers from the first, second, and third web of fibers 1210, 1212, and 1214 are pushed through the face of the second web of fibers 1212 by the needles 1231, the terminal ends of the fibers, such as fiber 1232, and/or the apexes of loops of fibers, such as loop 1234, are pushed into the set of brushes 1230 where they are held during Pass 1228. As the stacked configuration 1218 continues to move in a machine direction, the fibers retained by the set of brushes 1230 are pulled off of the brushes 1230. After being pulled off of the set of brushes 1230, the fibers and fiber loops held by the set of brushes 1230 have a common orientation in a z-direction with respect to a surface plane of, for example, the second web of fibers 1212. As discussed more with respect to
To ensure that an adequate number of fibers and/or fiber loops are pushed into the set of brushes 1230 in order to produce a sufficient pile having an even coverage on the face of the resulting composite nonwoven textile, the stitch density of Pass 1228 may be greater than the stitch density of the previous passes. For example, the stitch density of Pass 1228 may be from about 300 n/cm2 to about 1200 n/cm2, from about 400 n/cm2 to about 800 n/cm2, from about 500 n/cm2 to about 700 n/cm2, or about 600 n/cm2. In some example aspects, it has been found that subjecting the first face to a high stitch density such as that used in Pass 1228 may reduce the formation of pills on the first face of the resulting composite nonwoven textile. The penetration depth of Pass 1228 may be adjusted to produce a longer pile or a shorter pile. After Pass 1228, the resulting composite nonwoven textile may be rolled to form a rolled good 1236 although other processing steps are contemplated herein (e.g., pattern cutting, printing, calendaring, embossing, coating, and the like) as discussed above with respect to the manufacturing process 600.
In example aspects, the stitch density before Pass 1228 may be reduced compared to, for example, the stitch density of Pass 614 and Pass 616 of the manufacturing process 600 to ensure that the elastomeric layer 1216 is not overneedled before Pass 1228 since the stitch density of Pass 1228 is high. Overneedling the elastomeric layer 1216 may impact the structural integrity of the elastomeric layer 1216 and negatively affect the growth and recovery properties of the resulting composite nonwoven textile. The end result of the manufacturing process 1200 is a composite nonwoven textile having a desired basis weight, a desired loft, and a pile that has a uniform coverage on a second face of the textile, where the coverage may include both fibers ends and fiber loops, just fiber ends, or just fiber loops depending on needle selection.
With respect to
Returning to the example composite nonwoven textile 120, the fibers forming the different layers of the composite nonwoven textile 120 may have different color properties that impart a unique aesthetic to the nonwoven textile 120 as shown in
The patterning of the first color property 1612 and the second color property 1610 shown in
Aspect herein contemplate that the composite nonwoven textile 120 may exhibit a different resistance to pilling on the first face 710 compared to the second face 810 in response to wash and wear. In some example aspects, the different resistances to pilling between the first face 710 and the second face 810 may be a desired property to produce a desired aesthetic and hand feel. Properties associated with the first, second, and third webs 110, 112, and 114 and properties associated with the order of stacking of the webs 110, 112, and 114 may be adjusted to engineer a differential resistance to pilling on the first face 710 and the second face 810. In general, the first face 710 is more resistant to pilling compared to the second face 810. Said differently, the second face 810 may produce a greater number of pills per cm2 in response to wash and wear compared to the first face 710. The different in resistance to pilling between the first face 710 and the second face 810 of the nonwoven textile 120 may be due to a number of factors. For example, the greater number of silicone-coated fibers 312 present on the second face 810 increases the likelihood of fiber ends migrating out of the second face 810 and entangling with other fibers ends to form pills that extend away from the second face 810. Another reason may be that Pass 614 is from the first face 710 toward the second face 810. This pass may push some of the fibers ends out through the second face 810 where they may entangle to form pills.
The differential pilling between the first face 710 and the second face 810 over time is illustrated in
When the composite nonwoven textile 120 is incorporated into an article of apparel, it is contemplated herein that the first face 710 forms an outer-facing surface of the article of apparel and, in example aspects, may form an outermost-facing surface of the article of apparel. The second face 810 forms an inner-facing surface of the article of apparel and, in example aspects, may form an innermost-facing surface of the article of apparel. Thus, in example aspects, the greater rate of pilling (or less pilling resistance) of the second face 810 may cause the inner-facing surface of the article of apparel to have a greater number of pills per cm2 compared to the outer-facing surface of the article of apparel which is somewhat contrary to typical articles of apparel where pills may preferentially form on the outer-facing surface in areas exposed to greater abrasion (e.g., elbow area).
The differential pilling between the outer-facing surface of an article of apparel and the inner-facing surface of the article of apparel over time is illustrated in
In other example aspects, it may be desirable to reduce the number of pills formed on the first face 710 and the second face 810 of the composite nonwoven textile 120 to achieve a different aesthetic and/or a different hand feel. In this aspect, the composite nonwoven textile 120 may be subjected to a number of post-processing steps that increase the resistance to pilling on the first face 710 and the second face 810. Example post-processing steps may include calendaring (hot or cold), embossing, treating the first face 710 and/or second face 810 with coatings such as, for example, an oil-based polyurethane, and the like. Any and all aspects, and any variation thereof, are contemplated as being within aspects herein.
Forming the article of apparel 2700 from the composite nonwoven textiles 120 and/or 1300 impart different properties to the outer-facing surface 2710 and the inner-facing surface. For example, the outer-facing surface 2710 may have a greater resistance to abrasion due to the presence of a greater amount of the fibers 210 compared to, for example, the fibers 310 and 312. The outer-facing surface 2710 may also have different color properties than the inner-facing surface due to the unequal movement of the fibers 410 between the first face and the second face of the composite nonwoven textiles 120 and/or 1300. The inner-facing surface of the article of apparel 2700 may have a softer hand due to, for example, a greater amount of the silicone-coated fibers 312 compared to, for example, the outer-facing surface 2710. As well, the soft hand may be due to the smaller denier of the fibers 310 and 312 that primarily form the inner-facing surface of the article of apparel 2700.
Similar to the article of apparel 2700, the asymmetric faces of the composite nonwoven textiles 120 and/or 1300 impart different desired features to the outer-facing surface 2810 and the inner-facing surface of the article of apparel 2800. The composite nonwoven textiles 120 and/or 1300 may be utilized in other articles of apparel where different features on the outer-facing surface versus the inner-facing surface are desired. Such articles of apparel may include, for example, an upper of an article of footwear.
As stated above, it may be desirable to reduce the number of pills formed on the first face 710 and/or the second face 810 of the composite nonwoven textile 120 to achieve a different aesthetic and/or a different hand feel. In this aspect, the composite nonwoven textile 120 may be subjected to pre-formation steps and/or one or more post-processing steps that increase the resistance to pilling on the first face 710 and/or the second face 810.
As used herein, the term “chemical bonding” refers to the use of chemical binders (e.g., adhesive materials) that are used to hold fibers together. The chemical binder joins fibers together at fiber intersections and fiber bonding results. In one example aspect, the chemical binder may form an adhesive film the bonds the fibers together at, for example, fiber intersections. Because the fibers are adhered together, the terminal ends of the fibers are less prone to pilling and the overall pilling resistance of at least the first face 710 of the composite nonwoven textile 120 is increased. Suitable chemical binders include those that comprise polymers and may include vinyl polymers and copolymers, acrylic ester polymers and copolymers, rubber and synthetic rubber, and natural binders such as starch. The chemical binder may be applied in an aqueous dispersion or an oil-based dispersion. In one example aspect, the chemical binder may include an oil-based polyurethane binder. The term “chemical bonding site,” as used herein refers to the location of the chemical bond and it furthers refers to the chemical binder itself as applied to the composite nonwoven textile at the chemical bonding site. The components depicted in
The rotogravure system 2900 includes a gravure roller 2910 adapted to rotate in a first direction 2912. The gravure roller 2910 has an engraved pattern 2914. In example aspects, the gravure roller 2910 is supplied with a chemical binder 2916. For example, the gravure roller 2910 may be partially immersed in a tray 2918 that holds the chemical binder 2916. As the gravure roller 2910 rotates in the first direction 2912, the chemical binder 2916 fills the engraved pattern 2914. In example aspects, excess chemical binder 2916 is scraped from the gravure roller 2910 before the gravure roller 2910 makes contact with the composite nonwoven textile 120 in order to remove excess chemical binder 2916. In example aspects, a viscosity of the chemical binder 2916 before application may be selected to achieve a desired level of penetration into the composite nonwoven textile 120 after the chemical binder 2916 is applied to, for example, the first face 710 of the composite nonwoven textile 120. For example, the viscosity of the chemical binder 2916 when it is in the form of an oil-based polyurethane may range from about 960 millipascal-second (mPa·s) to about 1020 mPa·s, from about 970 mPa·s to about 1010 mPa·s, or from about 980 mPa·s to about 1000 mPa·s when at application temperatures from about 28 degrees Celsius to about 33 degrees Celsius and at a relative humidity from about 50% to about 80%.
The rotogravure system 2900 further includes an impression roller 2920 that rotates in a second direction 2922 opposite the first direction 2912. The composite nonwoven textile 120 is positioned between the impression roller 2920 and the gravure roller 2910 such that the first face 710 of the composite nonwoven textile 120 is in contact with the gravure roller 2910 and the second face 810 is in contact with the impression roller 2920. The gravure roller 2910 and the impression roller 2920 may each be adapted to apply a certain amount of pressure and heat to the composite nonwoven textile 120. For example, the pressure applied by each of the gravure roller 2910 and the impression roller 2920 may range from about 20 kg to about 60 kg, from about 25 kg to about 55 kg, or from about 30 kg to about 50 kg. Aspects herein further contemplate that the gravure roller 2910 and the impression roller 2920 may apply different amounts of pressure. For example, the gravure roller 2910 may apply a pressure of 30 kg and the impression roller 2920 may apply a pressure of 50 kg. In another example, the gravure roller 2910 may apply a pressure of 50 kg and the impression roller 2920 may apply a pressure of 30 kg. As the composite nonwoven textile 120 advances in a machine direction, the chemical binder 2916 is transferred from the engraved pattern 2914 to the first face 710. The impression roller 2920 applies force to ensure that an entirety of the first face 710 is brought into contact with the gravure roller 2910 such that an even coverage of the chemical binder 2916 is applied to the first face 710 in a pattern corresponding to the engraved pattern 2914.
Although the rotogravure system 2900 is depicted as applying the chemical binder 2916 to only the first face 710, aspects herein contemplate that the chemical binder 2916 may also be applied to the second face 810. For example, after the chemical binder 2916 is applied to the first face 710, the composite nonwoven textile 120 may be re-run through the rotogravure system 2900 such that the second face 810 is in contact with the gravure roller 2910 and the first face 710 is in contact with the impression roller 2920. In addition, or alternatively, additional rotogravure systems may be serially aligned.
In example aspects, the chemical binder 2916 may compositionally comprise an oil-based dispersion of a polyurethane binder, a polyurethane binder in a dispersion that contains silica, and combinations thereof. In example aspects, the use of silica reduces the friction between fibers to which the chemical binder 2916 is applied, which will make the fibers less likely to pill when exposed to abrasion or external friction (i.e., they slide more easily relative to each other). As stated, the chemical binder 2916 acts as an adhesive helping to secure fibers together in areas where it is applied. Because the fibers are adhered together, the terminal ends of the fibers are less prone to pilling and the overall pilling resistance of at least the first face 710 of the composite nonwoven textile 120 is increased. As previously described, in example aspects, when the composite nonwoven textile 120 is incorporated into a garment, the first face 710 of the composite nonwoven textile 120 forms an outer-facing surface of the garment. Thus, the application of the chemical binder 2916 helps to increase the pilling resistance of the outer-facing surface of the garment which may be more prone to abrasion than, for example, the inner-facing surface of the garment formed by the second face 810.
In example aspects, the engraved pattern 2914 may be selected such that an average size 3012 of each cell 3010, and its corresponding chemical bonding site on the composite nonwoven textile 120 ranges from about 0.1 mm to about 1 mm. Moreover, a distance 3014 between adjacent cells 3010, and the corresponding chemical bonding sites on the composite nonwoven textile 120 ranges from about 0.5 mm to about 6 mm, from about 1 mm to about 5 mm, or about 1.1 mm to about 4 mm. In example aspects, the size 3012 of the cells 3010 and/or the distance 3014 between adjacent cells 3010 may be selected based on an average staple length of, for example, the fibers that form the first face 710 (e.g., the fibers 210, 310, 312, and, when used 410), and/or the fibers that form the second face 810 (e.g., the fibers 210, 310, 312, and, when used 410). As previously described, the staple length of the fibers 210, 310, and 312 may range from about 40 mm to about 60 mm, from about 45 mm to about 55 mm, or about 51 mm. In this example, the size 3012 and/or distance 3014 between adjacent cells 3010 may be less than about 60 mm, less than about 55 mm, or less than about 51 mm. This ensures that different portions of an individual fiber length are secured by the chemical binder 2916.
By configuring the engraved pattern 2914 to include discrete shapes having the size and spacing as described, a desired amount of surface area of the composite nonwoven textile 120 occupied by the resulting chemical bonding sites is achieved. In example aspects, the surface area of the composite nonwoven textile 120 occupied by the resulting chemical bonding sites is balanced by the desire to maintain the drape, hand, and growth and recovery characteristics of the composite nonwoven textile 120. For example, if the surface area of the composite nonwoven textile 120 occupied by chemical bonding sites exceeds a threshold, then the drape and growth and recovery characteristics of the composite nonwoven textile 120 are reduced due to the adhesive characteristics of the chemical binder 2916 although resistance to pilling is increased. Moreover, the hand of the composite nonwoven textile 120 may become more rubber-like which may decrease its desirability for use in apparel. Conversely, if the surface area occupied by the chemical bonding sites is below the threshold, the pilling resistance of at least the first face 710 of the composite nonwoven textile 120 may be less than desired. In example aspects, the amount of surface area of the composite nonwoven textile 120 occupied by the chemical bonding sites may be between about 10% to about 70%, or between about 40% to about 60% to produce a pilling resistance of 2 or greater while still maintaining desired drape, hand, and growth and recovery characteristics.
Using a rotogravure system, such as the rotogravure system 2900 is just one example way of applying a liquid form of the chemical binder 2916 to the composite nonwoven textile 120. Other application methods may include spraying the chemical binder 2916, and/or applying the chemical binder 2916 as a foam or powder. In these example aspects, a mask may be used in areas of the composite nonwoven textile 120 where the chemical binder 2916 is not desired. An additional application method includes digitally printing the chemical binder 2916 on to the composite nonwoven textile 120. Digital printing may be desirable, in some aspects, where a zonal application of the chemical binder 2916 is desired. For example, a computer program may be used to instruct the digital printer to print the chemical binder 2916 in a desired pattern including a pattern where the density of chemical bonding sites is greater in a first area of the composite nonwoven textile 120 compared to a second area of the composite nonwoven textile 120. As used with respect to bonding sites, the term “density” refers to a number of discrete bonding sites per cm2. Zonal application of chemical bonding sites will be described further below with respect to
The upper-body garment 3400 includes a plurality of chemical bonding sites 3415 located on at least the outer-facing surface 3401. The depiction of the chemical bonding sites is illustrative in nature and not necessarily drawn to scale. For example, the number of chemical bonding sites, the size of the chemical bonding sites, and the spacing between the chemical bonding sites is illustrative. In example aspects, the chemical bonding sites 3415 may be absent from the inner-facing surface of the upper-body garment 3400. In example aspects, a greater density of chemical bonding sites 3415 may be applied to areas of the upper-body garment 3400 that typically experience higher rates of abrasion. For example, with respect to the upper-body garment 3400, areas that may typically experience higher rates of abrasion include, for example, the elbow areas, collar area, waistband area, and cuff area. In some example aspects, the areas of application of a greater density of chemical bonding sites may be based on a particular sport for which the upper-body garment 3400 is designed. In one example where the sport is running, a greater density of chemical bonding sites may be applied along the sides of the torso portion and in the underarm portion as these areas may experience a relatively higher amount of abrasion due to a wearer's arm movements when running.
In the example shown in
The lower-body garment 3500 includes a plurality of chemical bonding sites 3515 located on at least the outer-facing surface 3501. The depiction of the chemical bonding sites is illustrative in nature and not necessarily drawn to scale. For example, the number of chemical bonding sites, the size of the chemical bonding sites, and the spacing between the chemical bonding sites is illustrative. In example aspects, the chemical bonding sites 3515 may be absent from the inner-facing surface of the lower-body garment 3500. In example aspects, a greater density of the chemical bonding sites 3515 may be applied to areas of the lower-body garment 3500 that typically experience higher rates of abrasion. Some example locations include the knee areas, the waist opening area, leg cuff areas, and/or the buttocks portion. Similar to the upper-body garment 3400, the areas of application of a greater density of chemical bonding sites may be based on a particular sport for which the lower-body garment 3500 is designed. For example, where the sport is running or cycling, a greater density of chemical bonding sites may be applied along the inner thigh portions of the lower-body garment 3500 as these areas may experience a relatively higher amount of abrasion due to a wearer's leg movements when running and/or cycling.
In the example shown in
As used herein, the term “thermal bonding” refers to a process that may include locally heating fibers to melt, partially melt, and/or soften the fibers. This permits polymer chain relaxation and diffusion or polymer flow across fiber-fiber interfaces between two crossing fibers. Subsequent cooling of the fibers causes them to re-solidify and to trap the polymer chain segments that diffused across the fiber-fiber interfaces. The thermal bonds trap the terminal ends of the fibers and makes the fibers ends less prone to interacting with other fiber ends to form pills. As used herein, the term “thermal bonding site,” refers to the location of the thermal bond on the composite nonwoven textile, and the term “thermal bond structure” refers to the actual structure formed by the re-solidified fibers and/or materials and typically includes fibers and materials from the different webs of fibers used to form the composite nonwoven textile 120. The term “film form” as used herein also refers to a structure formed by the re-solidified fibers and/or materials. The components depicted in
The ultrasonic bonding system 3600 may include an impression roller 3610 having an impression pattern 3612. The impression pattern 3612, in example aspects, may include a plurality of discrete projections extending away from the impression roller 3610. As described further below, a size of the projections and a spacing between adjacent projections may be selected to provide a desired thermal bonding pattern. Although the projections are depicted as having a rectangular shape, this is illustrative and other shapes are contemplated herein (e.g., circles, triangles, squares, and the like). The impression roller 3610 is configured to rotate in a first direction 3614.
The ultrasonic bonding system 3600 further includes a sonotrode or ultrasonic horn 3616. The composite nonwoven textile 120 is positioned between the impression roller 3610 and the ultrasonic horn 3616 such that, in one example aspect, the first face 710 of the composite nonwoven textile 120 is in contact with the impression roller 3610 and the second face 810 is in contact with the ultrasonic horn 3616. Aspects herein further contemplate that the second face 810 of the composite nonwoven textile 120 is in contact with the impression roller 3610 and the first face 710 is in contact with the ultrasonic horn 3616.
As the composite nonwoven textile 120 advances in a machine direction, the impression roller 3610 applies pressure to discrete areas of the composite nonwoven textile 120 based on the impression pattern 3612. Stated differently, pressure is applied to the composite nonwoven textile 120 in areas corresponding to the projections that form the impression pattern 3612. In example aspects, the pressure applied to the composite nonwoven textile 120 may be between about 2 kg/cm2 to about 4.6 kg/cm2. The pressure causes the discrete areas of the composite nonwoven textile 120 to come firmly into contact with the ultrasonic horn 3616 which delivers ultrasonic vibrations to heat up the fibers forming the composite nonwoven textile 120 to a melted, partially melted, and/or softened state which forms a plurality of thermal bonding sites 3618 (described further below). Pressures below these values may cause insufficient contact with the ultrasonic horn 3616 and the resulting thermal bonds may be weakened. At the thermal bonding sites 3618, the fibers 210, 310 and 312, and, when used, the fibers 410 may be melted together and have a film form at the thermal bonding sites 3618. Additionally, a portion of the elastomeric layer 116 may be melted together with the fibers 210, the fibers 310 and 312, and the fibers 410 (when used) at the thermal bonding sites 3618. Because the fibers 210, 310 and 312, and the fibers 410 (when used) are melted at the thermal bonding sites 3618, there are reduced fiber ends available for pilling and, thus, pilling resistance of the composite nonwoven textile 120 is increased on both the first face 710 and the second face 810.
By configuring the impression pattern 3612 to include discrete shapes having particular sizes and spacing, a desired amount of surface area of the composite nonwoven textile 120 occupied by the resulting thermal bonding sites is achieved. In example aspects, the surface area of the composite nonwoven textile 120 occupied by the resulting thermal bonding sites is balanced by the desire to maintain the drape, and growth and recovery characteristics of the composite nonwoven textile 120. For example, if the surface area of the composite nonwoven textile 120 occupied by thermal bonding sites exceeds a threshold, then the drape and growth and recovery characteristics of the composite nonwoven textile 120 are reduced although resistance to pilling is increased. Conversely, if the surface area occupied by the thermal bonding sites is below the threshold, the pilling resistance of at least the first face 710 of the composite nonwoven textile 120 may be less than desired. In example aspects, the amount of surface area of the composite nonwoven textile 120 occupied by the thermal bonding sites may be between about 10% to about 50%, between about 11% to about 30%, or between about 15% to about 25% to achieve a pilling resistance of 2 or greater.
In some example aspects, the thermal bond structure 3910 is offset a first average depth 3912 relative to the first face 710 and is further offset a second average depth 3914 relative to the second face 810, where the first average depth 3912 is greater than the second average depth 3914. Stated differently, the thermal bond structure 3910 is offset with respect to both the first face 710 and the second face 810 and with respect to a center plane 3915 of the composite nonwoven textile 120 where the center plane 3915 is positioned approximately halfway between the first face 710 and the second face 810. In the example aspect shown in
In example aspects, the first plurality of discrete thermal bonding sites 4010 are arranged in a first pattern, and the second plurality of discrete thermal bonding sites 4012 are arranged in a second pattern that is different from the first pattern. For instance, the first plurality of discrete thermal bonding sites 4010 may be distinct and separate from the second plurality of discrete thermal bonding sites 4012 such that the first plurality of discrete thermal bonding sites 4010 do not overlap with the second plurality of discrete thermal bonding sites 4012. Further, as shown in
From the perspective of the second face 810, the first thermal bond structure 4210 is offset a third depth 4216 relative to the second face 810 in a direction extending toward the first face 710. The second thermal bond structure 4215 is offset a fourth depth 4218 relative to the second face 810 in a direction extending toward the first face 710. In example aspects, the third depth 4216 is less than the first depth 4212 and the fourth depth 4218 is greater than the second depth 4214. In addition, the fourth depth 4218 is greater than the third depth 4216.
Applying thermal bonding sites to both faces of the composite nonwoven textile 120 may act to increase the resistance to pilling for both the first face 710 and the second face 810. For example, the thermal bonding sites 4010 created when the first face 710 is positioned against the impression roller 3610 may help to capture a greater percentage of the fibers from the first entangled web of fibers 712 in the first thermal bond structure 4210, and the thermal bonding sites 4012 created when the second face 810 is positioned against the impression roller may help to capture a greater percentage of the fibers from the second entangled web of fibers 718 in the second thermal bond structure 4215 with the result that a smaller percentage of the fibers from the first entangled web of fibers 712 are available for pilling and a smaller percentage of the fibers from the second entangled web of fibers 718 are available for pilling.
The upper-body garment 4300 includes a plurality of thermal bonding sites 4315 located on at least the outer-facing surface 4301. The depiction of the thermal bonding sites is illustrative in nature and not necessarily drawn to scale. For example, the number of thermal bonding sites, the size of the thermal bonding sites, and the spacing between the thermal bonding sites is illustrative. In example aspects, a greater density of thermal bonding sites 4315 may be applied to areas of the upper-body garment 4300 that typically experience higher rates of abrasion. For example, with respect to the upper-body garment 4300, areas that may typically experience higher rates of abrasion include, for example, the elbow areas, collar area, waistband area, and cuff area. In some example aspects, the areas of application of a greater density of thermal bonding sites may be based on a particular sport for which the upper-body garment 4300 is designed. In one example where the sport is running, a greater density of thermal bonding sites may be applied along the sides of the torso portion and in the underarm portion as these areas may experience a relatively higher amount of abrasion due to a wearer's arm movements when running.
In the example shown in
The lower-body garment 4400 includes a plurality of thermal bonding sites 4415 located on at least the outer-facing surface 4401. The depiction of the thermal bonding sites is illustrative in nature and not necessarily drawn to scale. For example, the number of thermal bonding sites, the size of the thermal bonding sites, and the spacing between the thermal bonding sites is illustrative. In example aspects, a greater density of the thermal bonding sites 4415 may be applied to areas of the lower-body garment 4400 that typically experience higher rates of abrasion. Some example locations include the knee areas, leg cuff areas, the waist opening area, and/or the buttocks portion. Similar to the upper-body garment 4300, the areas of application of a greater density of thermal bonding sites may be based on a particular sport for which the lower-body garment 4400 is designed. For example, where the sport is running or cycling, a greater density of thermal bonding sites may be applied along the inner thigh portions of the lower-body garment 4400 as these areas may experience a relatively higher amount of abrasion due to a wearer's leg movements when running and/or cycling.
In the example shown in
In example aspects, the thermal bonding sites created through use of the ultrasonic bonding system 3600 may be combined with the chemical bonding sites created through, for example, the rotogravure system 2900 to further increase pilling resistance of the composite nonwoven textile 120. In this aspect, the composite nonwoven textile 120 may first be processed using the rotogravure system 2900 and then subsequently processed using the ultrasonic bonding system 3600. Conversely, the composite nonwoven textile 120 may first be processed using the ultrasonic bonding system 3600 and then subsequently processed using the rotogravure system 2900. In example aspects, the engraved pattern 2914 of the gravure roller 2910 and the impression pattern 3612 of the impression roller 3610 may be configured such that the resulting chemical bonding sites and thermal bonding sites on the composite nonwoven textile 120 are distinct and separate from one another and do not overlap. This facilitates a desired amount of surface area of the composite nonwoven textile 120 to include chemical bonding sites and thermal bonding sites while minimizing usage of the chemical binder 2916 and reducing energy expenditure of both the rotogravure system 2900 and the ultrasonic bonding system 3600.
At a step 4810, the first web of fibers 110 undergoes a first mechanical entanglement pass 4816 that is executed unidirectionally in a direction from a first face 4812 to an opposite second face 4814 of the first web of fibers 110. The stitch density of the first mechanical entanglement pass 4816 may be greater than 50 n/cm2, about 75 n/cm2, about 100 n/cm2, or about 200 n/cm2. In one example, the stitch density of the first web of fibers 110 after the first mechanical entanglement pass 4816 may be at least twice as much as the stitch density of the second web of fibers 112, and, when used, the third web of fibers 114. In example aspects, the first web of fibers 110 does not undergo a mechanical entanglement pass that is executed in a direction from the second face 4814 toward the first face 4812.
Step 4818 depicts the first web of fibers 110 after undergoing the first mechanical entanglement pass 4816. Because the first mechanical entanglement pass 4816 occurs unidirectionally in the direction from the first face 4812 toward the second face 4814, the fibers 210 that form the first web of fibers 110 are pushed by the entanglement needles such that the fibers 210, including terminal ends 4820 of the fibers 210, extend outward from the second face 4814 of the first web of fibers 110. Stated differently, the fibers 201 extend in a direction away from the first face 4812 of the first web of fibers 110.
At a step 4822, the first web of fibers 110 is stacked with the second web of fibers 112, the optional third web of fibers 114, and the elastomeric layer 116. In this example, the first web of fibers 110 is stacked such that the second face 4814 faces outward and away from, for example, the elastomeric layer 116 and the third web of fibers 114 (when used). As such, the terminal ends 4820 of the fibers 210 extend in a direction away from the elastomeric layer 116 and the third web of fibers 114 (when used) in the stacked configuration.
At a step 4824, a second mechanical entanglement pass 4826 is executed on the stacked configuration of the first web of fibers 110, the second web of fibers 112, the third web of fibers 114 (when used), and the elastomeric layer 116. The second mechanical entanglement pass 4826 is executed in a direction from the first web of fibers 110 toward the second web of fibers 112, and the second mechanical entanglement pass 4826 is effective to push the terminal ends 4920 of the fibers 210 back into at least the first web of fibers 110 to form, for example, loop structures. The step 4824 may include additional entanglement passes such as those described with respect to
Step 4828 depicts the composite nonwoven textile 120 after undergoing the second mechanical entanglement pass 4826 where the composite nonwoven textile 120 includes the first entangled web of fibers 712, the second entangled web of fibers 718, the third entangled web of fibers 714 (when used), and the elastomeric layer 116. As shown, the second face 4814 of the first web of fibers 110 forms the first face 710 (otherwise known as the first facing surface) of the composite nonwoven textile 120 and includes a plurality of loops 4830 that represent the fibers 210 whose terminal ends 4820 were pushed back into the first web of fibers 110 subsequent to the second mechanical entanglement pass 4826. Because the fiber terminal ends 4820 are not extending outward from the first face 710 and thus are not available to interact with other fiber terminal ends to form pills, the pilling resistance of at least the first face 710 is increased to 2 or more.
Step 4832 depicts the composite nonwoven textile 120 formed into an upper-body garment 4834 where the plurality of loops 4830 extend from an outer-facing surface of the upper-body garment 4834. Aspects herein contemplate that the process 4800 may be configured to produce a zonal distribution of the plurality of loops 4830 where a greater density of loops 4830 are positioned at areas of a garment prone to increased abrasion similar to that described with respect to
Referring now to
In at least some examples, a composite nonwoven textile that constructs at least a portion of the garment 5200 can include any of the composite nonwoven textiles described with respect to
In some examples, the composite nonwoven textile of the garment 5200 can include the first web of fibers, a second web of fibers, and an elastomeric layer combined with (e.g., entangled with) the first web of fibers and the second web of fibers. The first web of fibers and the second web of fibers can each include a respective web of fibers having properties similar to any of the first web of fibers 110/712, the second web of fibers 112/718, or the third web of fibers 116/714. In addition, the composite nonwoven textile can include an elastomeric layer that is entangled with the first web of fibers and/or the second web of fibers and that includes properties similar to the elastomeric layer 116.
In some examples, the composite nonwoven textile of the garment 5200 can include the first web of fibers, the second web of fibers, a third web of fibers, and an elastomeric layer combined with (e.g., entangled with) an elastomeric layer. The first web of fibers, the second web of fibers, and the third web of fibers can each include a respective web of fibers having properties similar to any of the first web of fibers 110/712, the second web of fibers 112/718, or the third web of fibers 116/714. In addition, the composite nonwoven textile can include an elastomeric layer that is entangled with the first web of fibers, the second web of fibers, and/or the third web of fibers and that includes properties similar to the elastomeric layer 116. For example, in some instances, the composite nonwoven textile of the garment 5200 can include properties similar to the composite nonwoven textile associated with
In some examples, the composite nonwoven textile can include four or more webs of fiber that are combined with (e.g., entangled with) an elastomeric layer. Each of the webs of fiber can include a respective web of fibers having properties similar to any of the first web of fibers 110/712, the second web of fibers 112/718, or the third web of fibers 116/714. In addition, the composite nonwoven textile can include an elastomeric layer that is entangled with the four or more webs of fiber and that includes properties similar to the elastomeric layer 116.
In some examples, the composite nonwoven textile of the garment 5200 can include one or more surface treatments applied to an outer-facing surface and/or an inner-facing surface. For example, the composite nonwoven textile can include one or more chemical bonding sites and/or a thermal bonding sites (e.g., as described with respect to
In some examples, the composite nonwoven textile can include one or more of the color properties (e.g., varied color among webs of fiber, heather-like effect), etc.), as described in other part of this disclosure.
In an example, the upper-body garment 5200 can include a first textile panel that includes a composite nonwoven textile (e.g., one or more webs of fiber and an elastomeric layer) and that is coupled to a second textile panel (e.g., one or more webs of fiber and an elastomeric layer), which also includes a composite nonwoven textile. For example, the upper-body garment 5200 includes, on the back as depicted in
The first textile panel 5202 and the second textile panel 5204 can be coupled by various structures. Referring to
In at least one example, the first textile panel 5202 and the second textile panel 5204 can include one or more properties of the lap joint as depicted in
In at least some examples, the upper-body garment 5200 includes the lap joint 5220 coupling the first textile panel 5202 to the second textile panel 5204. For example, the lap joint 5220 can include an overlapping zone 5222 including the first panel edge 5210 overlapping the second panel edge 5216, such that, in the overlapping zone, 5222 the second face 5208 and the third face 5212 are face-to-face. In addition, the lap joint 5220 can include a seam 5224 bisecting the overlapping zone 5222 and connecting the first textile panel 5202 to the second textile panel 5204. In examples, the seam 5224 can be offset from the first panel edge 5210 and the second panel edge 5216. The seam 5224 can bisect the overlapping zone 5222 at a position that is relatively evenly spaced between the first panel edge 5210 and the second panel edge 5216. In addition, the seam 5224 can bisect the overlapping zone 5222 at a position that is closer to the first panel edge 5210 or at a position that is closer to the second panel edge 5216. In at least some examples, the seam 5224 can include a merrow stitch or other set of stitches that couple the first panel 5202 to the second panel 5204. In at least some examples, the seam 5224 can include one or more couplings (e.g., in addition to or instead of stitching), such as adhesive, fiber entanglement, heat-set fibers, etc.
In examples of the present disclosure, the lap joint 5220 can at least partially impart or contribute to one or more various properties of the garment 5200. For example, the lap joint 5220 can contribute to a relatively strong connection between panels. In addition, the lap joint 5220 can contribute to a relatively low profile at the junction between the panels. Further, the lap joint 5220 can contribute to a desired aesthetic associated with the garment 5220. For example, it can be desirable to, at least at some positioned of the garment 5220, display or present an exposed edge (e.g., 5210) of the composite nonwoven textile. In some examples, the exposed edge can provide visibility to one or more of the fiber web layer comprising the composite nonwoven textile, which can allow the wearer (and others) to visibly observe the technology (e.g., composite-nonwoven technology) comprised in the textile and in the garment 5200. In some examples, the exposed edge can provide an opportunity for the edge to organically change in one or more interesting manners. For example, based at least in part on the edge 5210 being exposed, at least some of the fiber-web layers can (e.g., over time) at least partially detangle from one another. In some instances, at least partially detangled layers can curl or provide other interesting contours or aesthetics.
The lap joint 5220 is described in association with the back of the garment 5200. In at least some examples, other parts of the garment 5220 can include a similar lap joint. For example, a left side of the hood can be connected to a right side of the hood via a lap joint. In some examples, panels of the garment 5200 can be coupled using a butt joint.
In at least some examples, the garment 5200 can include one or more pocket structures. For example,
In examples of the present disclosure, the pocket 5226 can include the first opening 5228 constructed into a composite nonwoven textile panel 5232. That is, the composite nonwoven textile panel 5232 can include an outer-facing surface 5234 (e.g., outermost surface) and an inner-facing surface (not shown in
The pocket 5226 can include various constructions. For example, referring to
The second composite nonwoven textile panel 5238 can be coupled to the composite nonwoven textile panel 5232 by various constructions. In some examples, an adhesive 5240 (e.g., bonding tape) is positioned near one or more edges of the second nonwoven textile panel 5238. In some examples, the adhesive 5240 can include a low-melt adhesive, which includes a melt temperature or a softening temperature that is below the deformation temperature of fibers associated with the composite nonwoven textile panels.
Referring to
In at least one example, the panel 5232 and 5238 can include a composite nonwoven 5248 with at least some properties similar to the composite nonwoven described with respect to
In at least some example, the pocket assembly can impart various advantages. For example, the pocket assembly can include a strong and robust structure for retaining various objects. In addition, the construction can provide a relatively low profile, such as based on the relatively small thickness of the panels 5232 and 5238 and the connector (e.g., adhesive layer). Further, the pocket assembly can provide for a relatively simple and efficient method of manufacturing. For example, once the openings 5228 and 5230 are formed (e.g., knife slit, stamped, laser cut, etc.) the pocket can be formed by simply affixing the front inner panel 5238 to the inner-facing side 5236 of the front outer panel 5232.
A pocket can include other features. Referring to
Referring to
Referring to
In examples, the opening 5228 can include the edges 5228a and 5228b forming a perimeter around at least a portion of the opening 5228. In some examples, the edges 5228a and 5228b can include at least some fibers that have been melted or softened and resolidified (e.g., when the opening 5228 is laser cut or heat stamped), such that the resolidified fibers form a thin, flexible film along the edges 5228a and 5228b. In examples, the film can bind other fibers entangled therewith (e.g., fibers that may not have melted/softened and resolidified) to reduce the likelihood that fibers along the edge (and/or the fiber webs) will become disentangled.
In at least some examples, the opening 5228 can be associated with the trim assembly 5250. A trim assembly can include, among other things, a trim panel of a composite nonwoven material that is affixed to the inner-facing surface 5236 of the front outer panel 5232. For example, the trim assembly 5250 includes a composite nonwoven trim panel 5252 coupled, along the edge 5228a, to the inner-facing surface 5236 of the front outer panel 5232. In at least some examples, a connector, such as an adhesive 5254, can connect the trim panel 5252 to the inner-facing surface 5236. In examples, the adhesive 5254 can include a low-melt adhesive with a melt or softening temperature that is below a deformation temperature associated with fibers of the composite nonwoven textile panels. An adhesive (e.g., bonding tape) is one type of connector that can be used to connect the trim panel 5252. In some examples, the trim panel 5252 can be coupled to the front outer panel 5232 via one or more other connectors (in addition to or in lieu of the adhesive), such as stitches, fiber entanglement, heat-set fibers, etc.
In at least some examples, the trim panel 5252 can include a composite nonwoven 5256 with at least some properties similar to the composite nonwoven described with respect to
In addition, the panels 5232 and 5238 can include an asymmetric composite nonwoven textile 5248 that is similar to the textile 5256. That is, the asymmetric composite nonwoven textile 5248 can include a first entangled web of fibers 5262 (e.g., 712 in
The trim assembly 2250 can be constructed in various manners. For example, referring back to
Referring to
In at least some examples, the hood 5260 can include a face opening 5262 comprising a perimeter edge 5264 that at least partially circumscribes the face opening 5262. In addition, the hood 5260 can include a dual-layer construction, which includes a first textile panel 5266 that forms at least part of an outer textile layer (e.g., oriented further away from the wearer's head when the hood is in an up position and worn) and a second textile panel 5268 that forms at least part of an inner textile layer (e.g., oriented closer to the wearer's head when the hood is in an up position and worn).
In at least some examples, the first textile panel 5266 and the second textile panel 5268 can include a composite nonwoven textile 5270 and 5272 (respectively) with at least some properties similar to the composite nonwoven textile described with respect to
In at least an example, the first textile panel 5266 can include a first portion 5284 that comprises an outer-facing surface of the hood 5260, a second portion 5286 that is continuous with the first portion 5284 and that comprises a fold. That is, the first textile panel 5266 can include a portion 5286 that folds back onto itself, and in some instances, the folded portion 5286 can comprise at least a portion of the perimeter edge 5264 around the face opening 5262. In addition, in some examples, the portion of the first textile panel 5266 that folds back onto itself is coupled to the second textile panel 5268.
In at least some examples, the first textile panel 5266 is coupled at a seam 5288 to the second textile panel 5268. For example, an edge of the first textile panel 5266 can be stitched, adhered, entangled, fused, or otherwise coupled to an edge of the second textile panel. In some examples, the seam 5288 can include a butt joint between the first textile panel 5266 and the second textile panel 5268 and the coupling can include stitches (e.g., merrow stitch or other style of stitch).
In at least some examples of the present disclosure, a construction associated with the hood orients the seam 5288 on an inner facing side or surface 5290 (e.g., a side or surface that faces towards the wearer when the hood is up and worn on the wearer's head). For example, as indicated above, the portion 5286 that includes a fold along the perimeter edge 5264, and the fold can position the junction between the panels 5266 and 5268 on an inner-facing side 5290 of the hood 5260. In addition, in at least some examples, the folded portion 5286 and the seam 5288 intersect with the seam 5292 at the seam junction 5294, which can help to retain the seam 5288 in the inner-facing orientation. That is, the intersection of the folded portion 5286 and the seam 5288 with the seam 5292 can tack down the seam 5288 in the inner-facing orientation, which can reduce the likelihood of the seam 5288 rolling or flipping to the outer-facing orientation.
The seam construction of the hood 5260 that contributes to the inner-facing orientation can impart various properties to the hood 5260. In some examples, seam construction and resulting inner-facing orientation can contribute to a “seamless” appearing aesthetic, in which the outer-facing surface of the hood 5260 near the perimeter edge 5264 has fewer seams (e.g., no seams) than other constructions and can provide a cleaner aesthetic. In addition, the position of the seam on the inner-facing surface can, in some instances, help retain the hood in an up configuration when worn, such as where the seam 5288 can frictionally engage with the wearer's head to help prevent the hood 5260 from inadvertently falling off.
This detailed description is provided in order to meet statutory requirements. However, this description is not intended to limit the scope of the invention described herein. Rather, the claimed subject matter may be embodied in different ways, to include different steps, different combinations of steps, different elements, and/or different combinations of elements, similar or equivalent to those described in this disclosure, and in conjunction with other present or future technologies. The examples herein are intended in all respects to be illustrative rather than restrictive. In this sense, alternative examples or implementations can become apparent to those of ordinary skill in the art to which the present subject matter pertains without departing from the scope hereof.
This application claims the priority benefit of U.S. Application No. 63/402,844 (filed Aug. 31, 2022), which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
63402844 | Aug 2022 | US |