A traditional upper receiver 10 for meeting military specifications (MIL SPEC) for the AR-15 firearm is illustrated in
With reference to
In one aspect, the invention provides an upper receiver for a firearm having a barrel extending forward of the upper receiver and a buttstock extending rearward of the upper receiver, the upper receiver comprising: an arcuate surface formed in a wall of the chamber; and wherein the arcuate surface changes direction of gases that are directed rearward in the chamber such that the gases are vented from the upper receiver in a non-rearward direction.
In another aspect of the invention, the upper receiver includes a slot for receiving a charging handle, and the arcuate surface is formed in an upper wall of the slot. In another aspect of the invention, the upper receiver includes a slot for receiving a charging handle, the upper receiver further comprising a recess in an upper wall of the slot, the recess defining the arcuate surface. In another aspect the invention further comprises a rear escape port communicating with the recess to vent the gases from the upper receiver in a non-rearward direction. In another aspect of the invention, the rear escape port intersects the slot. In another aspect of the invention, the non-rearward direction is at least partially forward. In another aspect of the invention, the non-rearward direction is an angle in the range 65-85° with respect to a main axis of the upper receiver. In another aspect, the invention further comprises a charging arm channel extending from a rear end of the upper receiver toward a front end of the upper receiver for housing a charging arm; a gas tube port in a front end of the upper receiver through which a gas tube extends; and a gas accumulation chamber communicating between the charging handle channel and the gas tube port, the gas accumulation chamber having a volume greater than 0.029 cubic inches. In another aspect of the invention, the gas accumulation chamber volume is about 0.046 cubic inches. In another aspect of the invention, the firearm includes a gas tube for return of barrel gases to the chamber, the gas tube including a free end in the chamber, the upper receiver further comprising a forward escape port through the upper receiver sidewall and communicating with the chamber proximate the free end of the gas tube. In another aspect of the invention, the forward escape port vents the gases from the upper receiver in a non-rearward direction. In another aspect, invention further comprises: an ejection port for ejecting spent casings, the ejection port include a shroud framing at least a portion of the ejection port; and an ejection port door covering the ejection port when a spent casing is not being ejected, the ejection port door engaging the shroud when covering the ejection port; wherein the forward escape port extends through the shroud and is covered by the ejection port door when the ejection port door is covering the ejection port.
Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.
With continued reference to
The inventors propose an improvement on the traditional AR-15 for directing gases out of the upper receiver 10 in directions other than rearward. As will be described below, the present invention includes other advantageous aspects including a potentially more rapid discharge of gases from the upper receiver 10 and the potential for reducing the weight of the upper receiver 10. It should be recognized by one of ordinary skill in the art that, although the invention is described with respect to an AR-15 application, the invention can be applied with equal success to many other types of firearms in which barrel gases flow rearward in a manner that can distract the operator. Unless specifically stated as being limited to the AR-15 application, the invention is not limited to the embodiment described and illustrated here.
Referring to
The upper receiver 210 defines a chamber 245 into which the bolt carrier group 220 is installed and a forward assist bore 250 into which the forward assist assembly 230 is installed. The chamber 245 defines a main axis 260 (i.e., a longitudinal axis of the chamber 245) that is collinear with the axis of the barrel 120. The bolt carrier group 220 reciprocates along the main axis 260 in the chamber 245. The longitudinal axis or extent of the overall firearm 100 is parallel to or collinear with the main axis 260.
The bolt carrier group 220 includes a bolt carrier 270, a bolt 275, a firing pin 280, a gas key 285, and other components. Ratchet teeth 290 are formed in the side of the bolt carrier 270 that faces the forward assist assembly 230. In operation, the front end of the bolt 275 carries a round to be fired. The bolt carrier group 220 slides fully forward and the bolt 275 is locked in place before firing. The gas key 285 receives a free end of the gas tube 180 when the bolt carrier group 220 is in the fully forward position. With the bolt 275 locked in place, the firing pin 280 is actuated by the trigger assembly 150 to fire the bullet of the properly-chambered round. The bullet travels down the barrel 120 under the influence of an explosion of gas generated by the round. During ordinary operation of the firearm 100, high-pressure gases are returned from the barrel 120 to the chamber 245 via the gas block 170, gas tube 180, and gas key 285. The barrel gases are under very high pressure, which provides a motive force for sliding the bolt carrier group 220 rearward and ejecting the spent round casing. The spend round casing is ejected out of the right side of the firearm 100 through an ejection port 292. The ejection port 292 is surrounded by a frame or shroud 294 and is covered by an ejection port door 296 which is hingedly coupled at its bottom to the upper receiver 210. The ejection port door 296 is spring biased to fit within the shroud 294 and cover the ejection port 296, but is flung open by high-pressure gases in the chamber 245 when the spent round casing is ejected.
A new round is automatically fed into the chamber 245 and the bolt carrier group 220 again moves forward under the influence of a spring. Once moved fully forward, the bolt 275 locks and the firearm is ready to fire again. In the event the bolt carrier group 220 fails to move fully forward, the forward assist assembly 230 can be manually actuated to incrementally urge the bolt carrier group 220 forward through engagement with the ratchet teeth 290. The charging handle 225 has a hook end that fits around the gas key 285 and is used to draw the bolt carrier group 220 back for loading an initial round, clearing a jammed round, or under any other circumstance in which the bolt carrier group 220 must be manually moved rearwardly.
Turning now to
The illustrated slot 235 includes a rear escape port 370 on each side of the slot 235 at the junction of the top wall 310 and each curved end wall 340. The rear escape ports 370 communicate with the recess 350 through the sidewall 320 of the upper receiver 210. The recess 350 and arcuate surfaces 360 may be formed, for example, with an end milling process from the rear end 210a of the upper receiver 210. The rear escape ports 370 may be formed, for example, by end milling from the rear end 210a of the upper receiver 210 or by drilling through the sidewalls 320. The rear escape ports 370 are formed into the slot 235 in
The gas flow path is illustrated in
The gas leaving the rear escape ports 370 flows in a non-rearward direction such that there is no distracting gas flow into the operator's face. In the illustrated embodiment, the gas flowing out of the rear escape ports 370 flows horizontal and perpendicular to the main axis 260, but in other embodiments the rear escape ports 370 may be configured to vent the gas at an angle forwardly or rearwardly at substantially any desired angle between perpendicular and parallel to the main axis 260 provided it is not directed into the operator's face. The rear escape ports 370 may also be configured to vent the gas upwardly or downwardly at a desired angle instead of horizontally.
With reference now to
Each of the five lobes 440 is of the same size as the prior art lobes 34 (see
The gas accumulation space 450 is enlarged (in terms of diameter and depth) compared to the gas accumulation space 36 illustrated in
As illustrated in
The escape ports 370, 520, 530, 630 are not limited to the positions, sizes, and cross-sectional shapes illustrated and can be provided in any combination of one, two, three, or all four of the sets of ports 370, 520, 530, 630 in other aspects of the invention.
Thus, the invention provides, among other things, an improved upper receiver which includes gas handling features for reducing gas pressure in the chamber, avoiding gas flow rearward, and reducing the weight of the upper receiver. Various features and advantages of the invention are set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2951424 | Stoner | Sep 1960 | A |
6311603 | Dunlap | Nov 2001 | B1 |
7798045 | Fitzpatrick et al. | Sep 2010 | B1 |
7886470 | Doiron | Feb 2011 | B1 |
8316756 | Woodell et al. | Nov 2012 | B1 |
8590199 | Overstreet et al. | Nov 2013 | B2 |
8826797 | Overstreet et al. | Dec 2014 | B2 |
8910406 | Huang | Dec 2014 | B1 |
D759780 | Wang | Jun 2016 | S |
9470472 | Kincel | Oct 2016 | B2 |
9551545 | Rowe | Jan 2017 | B1 |
D787005 | Capps | May 2017 | S |
9677833 | Kincel | Jun 2017 | B2 |
D815237 | Podgurny | Apr 2018 | S |
10132580 | Kincel | Nov 2018 | B1 |
20100212201 | Kincel | Aug 2010 | A1 |
20110252957 | Overstreet et al. | Oct 2011 | A1 |
20120174451 | Overstreet et al. | Jul 2012 | A1 |
20130092014 | Kincel | Apr 2013 | A1 |
20140150639 | Sugg | Jun 2014 | A1 |
20160258699 | Sigler | Sep 2016 | A1 |
20160258713 | Huang | Sep 2016 | A1 |
20160320151 | Kincel | Nov 2016 | A1 |
20170191770 | Stewart et al. | Jul 2017 | A1 |
20170261276 | Morris | Sep 2017 | A1 |
20170336158 | Kincel | Nov 2017 | A1 |
20180080726 | Smith | Mar 2018 | A1 |
20180356171 | Brown | Dec 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
20200003507 A1 | Jan 2020 | US |