This invention relates a railway braking systems, and more particularly, to an gas actuated retarder for controlling the rolling speed of a railway car along a track section.
Existing braking systems generally include pneumatic or hydraulic piston cylinder actuators which activate frictional braking members. In some systems, a railway wheel is pinched from both sides of the running rail to retard rolling movement of the rail cars. In other systems, the cylinder pushes a brake shoe against a rail wheel to retard its rolling motion.
The apparatus of the present disclosure must also be of construction which is both durable and long lasting, and it should also require little or no maintenance to be provided by the user throughout its operating lifetime. In order to enhance the market appeal of the apparatus of the present disclosure, it should also be of inexpensive construction to thereby afford it the broadest possible market. Finally, it is also an objective that all of the aforesaid advantages and objectives be achieved without incurring any substantial relative disadvantage.
The disadvantages and limitations of the background art discussed above are overcome by the present disclosure.
There is disclosed a gas actuated retarder system to resist movement of a railcar moving on wheels along a track section having a first and second running rail. The gas actuator retarder system includes a plurality of steel ties positioned substantially parallel to each other and perpendicular to the first and second running rails of the track section. The track section is typically installed in a classification yard or a hump yard of a railroad company's facility. The track section which is a part of the gas actuator retarder system, because of its modular configuration, is typically manufactured in a length specified by a customer or user which typically is governed by requirements at a specific railroad installation.
A plurality of gas bladder actuators are disposed between the running rails of the track section.
Each of the gas bladder actuators includes a gas bladder mount. The gas bladder mount, in one embodiment is positioned between the running rails of the track section equidistant from each of the running rails. A first gas bladder and a second gas bladder are each coupled to the gas bladder mount with one gas bladder on each side of the bladder mount. A pair of lever arms are coupled to each of the gas bladders at one end of each lever arm. A second end of the lever arm is coupled pivotally to a pivot pin which itself is secured to one of the steel ties making up the track section.
A fulcrum bar is coupled to each of the lever arms and to each of the pivot pins. The lever arms are configured to rotate about the pivot pin as the gas bladders coupled to the gas bladder mounts are inflated and deflated.
A brake clevis, including a link arm, is coupled between the first and second ends of each lever arm proximate the pivot pin. The brake clevis extends toward the running rail on each side of the track section.
A gas supply line is coupled to each of the gas bladders of each of the gas bladder actuators with the gas supply line configured to expand each of the gas bladders. In one embodiment, a controller is coupled to the gas supply line and is configured to selectively control the expansion and deflation of the gas bladders in each of the gas bladder actuators.
A pair of brake beams, with one beam coupled to each clevis on one side of each of the plurality of gas bladder actuators is provided. Each brake beam is parallel to one of the running rails. A brake shoe is coupled to each brake beam and is configured to engage the wheels of the railroad car when the gas bladder actuators are inflated and disengage the wheels when the gas bladders are deflated. The brake beam is configured to extend the entire length of the gas actuated retarder system in order to provide a more consistent application of frictional force to the rail car wheels as the railcar passes through the retarder.
In another embodiment, a second lever arm is coupled to each of the other lever arms of each of the gas bladder actuators. With the second lever arm disposed in a spaced distance below the other lever arm, the second lever arm is coupled to the corresponding gas bladder and pivot pin of the other lever arm. The two lever arms define a box with the pivot pin and the gas bladders.
In another embodiment, ultra-high molecular weight plastic members are disposed in a sliding area under each of the lever arms and brake beam. Use of such ultra-high molecular weight plastic members minimizes the amount of lubrication, for example grease, that must be used with the gas actuator retarder system during its lifetime. The ultra-high molecular weight plastic members can be replaced as they wear or become damaged.
The gas utilized in the gas actuator retarder system can be one of air and nitrogen.
There is further provided a gas actuator retarder system to resist movement of the railcar moving on wheels along a track section having a first and second running rail. The gas actuated retarder system includes a plurality of steel ties positioned substantially parallel to each other and perpendicular to the first and second running rails of the track section. A plurality of gas bladder actuators are disposed between the running rails.
Each gas bladder actuator includes a gas bladder mount to which a first gas bladder and a second gas bladder are coupled. In this embodiment, each of the first and second gas bladders are coupled to two of the gas bladder mounts with one gas bladder on an opposite side of the bladder mount.
A pair of lever arms, are provided, with each lever arm having a first and a second end. The first end of each lever arm is coupled to one of the gas bladders and the second end of each lever is pivotally coupled to a pivot pin secured to one of the steel ties. A fulcrum bar is coupled to each of the second ends of the two levers and to each pivot pin.
A first clevis including a link arm, is coupled between the first and second ends of each lever arm approximate the pivot pin. The clevis extends toward the running rail on each side of the track section. A second clevis is coupled between the first end and the first clevis to each lever arm and a compression spring is coupled to each of the second clevises with the compression spring configured to exert a force against each lever arm causing the lever arm to pivot about the respective pivot pin and move the first clevis away from each of the running rails of the track section. The first clevis is also referred to as a brake clevis and the second clevis is referred to as a lever clevis. In a preferred embodiment, two compression springs positioned side by side are coupled to each of the second clevises as described above. The size of the compression springs can vary depending on the particular application to which the gas actuator retarder system is to be applied.
A gas supply line is coupled to each of the gas bladders of each of the gas bladder actuators and is configured to expand each gas bladder. Conventional gas valves or actuators are used to deflate the gas bladder as controlled by the controller.
A pair of brake beams, with one beam coupled to each clevis on each side of each of the plurality of gas bladder actuators is provided. Each brake beam is parallel to one of the running rails. In one embodiment, the brake beam substantially extends the full length of the gas actuator retarder system. For purposes of this application, substantially extending the full length of the gas actuator retarder system means at least beyond, at each end of the retarder system, each of the gas bladder actuators.
A brake shoe is coupled to each brake beam and is configured to engage the wheels of the railway car when the gas bladder actuators are deflated and disengage the wheels when the gas bladders are inflated.
In another embodiment, a controller is coupled to the gas supply line and is configured to selectively control the expansion and deflation of the gas bladders in each of the gas bladder actuators by use of control gas valves. In a further embodiment, a second lever arm is coupled to each of the lever arms of each of the gas bladder actuators. The second lever arm is disposed a spaced distance below the other lever arm with the second lever arm coupled to the corresponding gas bladder and pivot pin of the other lever arm. This configuration of the two lever arms, respective gas bladder and pivot pin define a box. Further, in predetermined sliding areas, an ultra-high molecular weight plastic member is disposed to facilitate movement of the brake beam and lever arms during operation of a gas actuated retarder system.
There is also disclosed a method to reduce the velocity of a free moving railcar supported with wheels and running rails of a track section. The method includes transferring the railcar wheel forces horizontally to a brake beam coupled to a gas bladder actuator and resisting the horizontal wheel force with an opposite force exerted on the brake beam by one of inflating and deflating a gas bladder coupled to a lever arm coupled to the brake beam with a clevis. The force on the brake beam from the wheels and the force on the brake beam from the gas bladder actuator oppose the railcar wheel rolling forces and reduce the railcar velocity of the free moving railcar.
The apparatus of the present invention is of a construction which is both durable and long lasting, and which will require little or no maintenance to be provided by the user throughout its operating lifetime. Finally, all of the aforesaid advantages and objectives are achieved without incurring any substantial relative disadvantage.
These and other advantages of the present disclosure are best understood with reference to the drawings, in which:
Referring to
A fulcrum bar 122 is coupled to lever arms 116 and pivot pins 124. The fulcrum bar 122 is positioned perpendicular to the centerline of the gas bladder actuation 108 and coupled to the steel tie 102 by fasteners, for example bolts, or welded to the steel tie.
A pair of lever arms 116 are disposed between the first and second running rails 104, with each lever arm 116 coupled to a gas bladder 112, 114 and the fulcrum bar 122. One lever arm 116 is disposed on each side of the gas bladder mount 110 of the gas bladder actuator 108. A brake clevis 130, including a link arm 126 is coupled to each lever arm 116 proximate the pivot pin 124 at the fulcrum bar 122, with the brake clevis 130 coupled to a brake beam 134. The brake beam 134 is aligned parallel to one of the first and second running rails 104.
As illustrated in
The brake beam 134 may be a single beam or may be a plurality of beams aligned horizontally and parallel to the running rail of a track section. The preferred embodiment provides a brake beam 134 extending substantially the full length of the retarder system 100. (See
Typically a plurality of brake shoes 136 are coupled to the brake beam 134 and configured to do one of apply a frictional force to a passing railway car wheel 150 and release a force from a passing railway car when the gas bladders 112, 114 expand or deflate. Such action causes the lever arm 116 to pivot about the pivot pin 124 and push the clevises 130 and attached brake beam 134 towards the running rails 104 and engage railcar wheels 150. Each of the lever arms 116 has an associated lever arm stop 144 positioned to limit the distance the lever arm 116 moves when the air bladder 112, 114 is expanded.
A biasing member such as a compression spring 148 may be positioned between the brake beam 134 and the running rails 104 to move the brake beam 134 back towards each of the air actuated retarders 108 when air pressure in the air bladders 112, 114 are relieved. A typical compression spring 148 is a coil spring of sufficient size and strength for its intended purpose.
In another embodiment, a second clevis 146, also referred to as a lever clevis, is coupled between the first end 118 and the first clevis 130, referred to as the brake clevis, to each lever arm 116 and a compression spring 148 coupled to each of the second clevises 146 with the compression spring 148 configured to exert a force against each lever arm 116 causing the lever arms 116 to pivot about the respective pivot pin 124 and move the first clevis 130 away from each of the running rails 104 of the track section 105. In this configuration, the brake shoes 136 coupled to each of the brake beams 134 are configured to engage the wheels 150 of the railroad car when the gas bladder actuators 108 are deflated and disengage the wheels 150 when the gas bladders 108 are inflated.
An appropriate fluid supply 158 and fluid line 138 are coupled to each of the air bladders 112, 114 to provide a compressible fluid, such as air or nitrogen to expand the air bladders 112, 114. It should also be understood that each of the air bladders can be expanded with a gas such as nitrogen as determined by the user of the air actuated retarder. Appropriate controls to the fluid supply, valve trains, and gas bladders control the operation of the gas actuated retarder. Controls can be hard-wired or wireless with appropriate connections, for example with a controller 160, such as a computer.
For purposes of this disclosure, the term “coupled” means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or moveable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or the two components and any additional member being attached to one another. Such adjoining may be permanent in nature or alternatively be removable or releasable in nature.
Although the foregoing description of the present air actuated retarder has been shown and described with reference to particular embodiments and applications thereof, it has been presented for purposes of illustration and description and is not intended to be exhaustive or to limit the disclosure to the particular embodiments and applications disclosed. It will be apparent to those having ordinary skill in the art that a number of changes, modifications, variations, or alterations to the disclosure as described herein may be made, none of which depart from the spirit or scope of the present disclosure. The particular embodiments and applications were chosen and described to provide the best illustration of the principles of and practical application to thereby enable one of ordinary skill in the art to utilize the disclosure in various embodiments and with various modifications as are suited to the particular use contemplated. All such changes, modifications, variations, and alterations should therefore be seen as being within the scope of the present disclosure.
This patent application is a non-provisional application and claims priority to U.S. Provisional Patent Application No. 61/535,823, filed on Sep. 16, 2011, which is hereby incorporated herein in full by this reference.
Number | Name | Date | Kind |
---|---|---|---|
2326924 | Bowe | Aug 1943 | A |
3196985 | Rowe | Jul 1965 | A |
3659680 | Soulakis et al. | May 1972 | A |
3946973 | Budway et al. | Mar 1976 | A |
4030574 | Evans | Jun 1977 | A |
4125177 | Durraffourt | Nov 1978 | A |
4198909 | Plantureux | Apr 1980 | A |
4513843 | Danieli | Apr 1985 | A |
4535872 | Bick et al. | Aug 1985 | A |
4650038 | Bick | Mar 1987 | A |
4867279 | Link et al. | Sep 1989 | A |
5015131 | Schmidt et al. | May 1991 | A |
5092248 | Parry | Mar 1992 | A |
5333707 | Kaneda | Aug 1994 | A |
5388525 | Bodkin | Feb 1995 | A |
5575218 | Gutknecht | Nov 1996 | A |
5676337 | Giras et al. | Oct 1997 | A |
RE36084 | Gutknecht | Feb 1999 | E |
6152042 | Barry et al. | Nov 2000 | A |
6216525 | Bernd et al. | Apr 2001 | B1 |
6220400 | Kickbush | Apr 2001 | B1 |
6463861 | Nottingham | Oct 2002 | B1 |
6829998 | Kickbush | Dec 2004 | B1 |
7140302 | Kickbush | Nov 2006 | B2 |
7299751 | Kickbush | Nov 2007 | B2 |
7306077 | Heyden et al. | Dec 2007 | B2 |
7325567 | Heyden et al. | Feb 2008 | B2 |
7392887 | Heyden et al. | Jul 2008 | B2 |
7530432 | Heyden | May 2009 | B2 |
8365876 | Mazur et al. | Feb 2013 | B2 |
20050120903 | Kickbush | Jun 2005 | A1 |
20060225968 | Heyden et al. | Oct 2006 | A1 |
20070062407 | Kickbush | Mar 2007 | A1 |
20090045019 | Heyden | Feb 2009 | A1 |
20130068124 | Kickbush | Mar 2013 | A1 |
Number | Date | Country |
---|---|---|
2010132092 | Jun 2010 | JP |
Entry |
---|
PCT Search Report from PCT/US2012/055017 issued on Dec. 21, 2012. |
Number | Date | Country | |
---|---|---|---|
20130068124 A1 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
61535823 | Sep 2011 | US |