The present invention relates to mechanical oil pumps actuated by sucker rod reciprocation. More particularly, the invention relates to sand control in an oil pump and to the use of a gas anchor assembly therein.
As the natural pressure in a completed oil well gradually depletes, the well may require a means known as artificial lift to continue the flow of petroleum reserves from their subterranean location to the earth's surface. Various forms of artificial lift are known including, for example, gas injection, water injection, and mechanical pumping. Petroleum engineers select a form of artificial lift depending on a number of criteria including, for example, formation geology and economics. The sucker rod pump is a well-known kind of mechanical pump that is widely used in the petroleum industry.
The sucker rod pumping system typically includes a means of providing a reciprocating (up and down) mechanical motion located at the surface near the well head. A string of sucker rods—up to more than a mile in length—is connected to the mechanical means. The sucker rod string is fed through the well tubing down hole where it is connected to the pump.
As is generally known in the art, a sucker rod pump includes at least two separate valves as well as other pump components such as a barrel, plunger, and anchor. Beginning at the south end, oil pumps generally include a standing valve, which has a ball therein, the purpose of which is to regulate the passage of oil (or other substance being pumped) from downhole into the pump, allowing the pumped matter to be moved northward out of the system and into the flow line, while preventing the pumped matter from dropping back southward into the hole. Oil is permitted to pass through the standing valve and into the pump by the movement of the ball off its seat, and oil is prevented from dropping back into the hole by the seating of the ball. North of the standing valve, coupled to the sucker rod, is a traveling valve. The purpose of the traveling valve is to regulate the passage of oil from within the pump northward in the direction of the flow line, while preventing the pumped oil from dropping back in the direction of the standing valve and hole.
Actual movement of the pumped substance through the system will now be discussed. Oil is pumped from a hole through a series of “downstrokes” and “upstrokes” of the oil pump, which motion is imparted by the above-ground pumping unit. During the upstroke, formation pressure causes the ball in the standing valve to move upward, allowing the oil to pass through the standing valve and into the barrel of the oil pump. This oil will be held in place between the standing valve and the traveling valve. In the traveling valve, the ball is located in the seated position, held there by the pressure from the oil that has been previously pumped.
On the downstroke, the ball in the traveling valve unseats, permitting the oil that has passed through the standing valve to pass therethrough. Also during the downstroke, the ball in the standing valve seats, preventing pumped oil from moving back down into the hole. The process repeats itself again and again, with oil essentially being moved in stages from the hole, to above the standing valve and in the oil pump, to above the traveling valve and out of the oil pump. As the oil pump fills, the oil passes through the pump and into the tubing. As the tubing is filled, the oil passes into the flow line, from which oil is taken to a storage tank or other such structure.
Presently known designs of sucker rod pumps suffer from several shortcomings in various areas of the design. The ball and seat components used in both the traveling valve and the standing valve are exposed to wear. The seat components are also subject to high pressures, particularly in deep wells, which can lead to cracking. Hence, it would be desired to develop sucker rod pumps having valves that display improved wear and cracking resistance.
A further disadvantage of presently-known sucker rod pump designs relates to sand control. Sand that is often produced along with petroleum can clog and foul pump components. Once sand enters the pump at a bottom, or southward, position, the sand must be managed in the pump apparatus. Hence, it would be desired to provide a sucker rod pump with improved sand control features. Further, it would be desired to limit sand or solids from entering the pump at the pump's lower position.
Still a further disadvantage of known sucker rods relates to the flow of petroleum and fluids through the pump. Pumps typically allow for the turbulent flow of fluids at high pressures. This turbulent flow promotes wear of pump components. It would be desired to provide a sucker rod pump with an improved flow control.
Hence there has been identified a need to provide an improved sucker rod pump and components therein. It is desired that the sucker rod pump be robust and provide an improved service life over known pumps, and thereby that the sucker rod pump provide an improved cost performance. It would further be desired that the sucker rod pump provide an improved pumping efficiency. It would also be desired that an improved sucker rod pump be compatible with existing petroleum production devices. The present invention addresses one or more of these needs.
In one embodiment, and by way of example only, there is provided a gas anchor for use in admitting fluids into a downhole sucker rod oil pump. The gas anchor includes an outer shell positioned around a hollow core, which defines an interior region and an exterior region of the gas anchor. The gas anchor further includes an upper region and a lower region. The hollow core and outer shell have a plurality of holes passing through the hollow core and outer shell, and the holes provide fluid communication from the exterior region to the interior region of the anchor. The hollow core and outer shell further define at least one channel which is in fluid communication from the upper region to the lower region. Additionally, the plurality of holes are formed so as to induce a cyclonic rotation on fluids passing into the interior region of the gas anchor.
Other independent features and advantages of the gas anchor assembly for use with a sucker rod pump will become apparent from the following detailed description, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
The following detailed description of the invention is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any theory presented in the preceding background of the invention or the following detailed description of the invention. Reference will now be made in detail to exemplary embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
Referring first to
Referring now to
Referring again to
Referring now to
In those embodiments of gas anchor 30 that include a concentrator 51 positioned in screen chamber 40, the concentrator 51 acts to provide an additional step of solids separation. And thus, for that reason, it is desirable to include a concentrator 51 in the gas anchor assembly for use in those wells that include a relatively high degree of sand or solids in the petroleum fluids. Concentrator 51 is positioned so that fluids pass up from central chamber 35 into the inner region of concentrator 51. These fluids move with a rotational or cyclonic movement due to the motion imparted into the fluid as it passes through holes 34. Due to this cyclonic movement, sand and other materials with a heavier density move to an outer radial position. And further, the sand and other materials with a heavier density tend to exit from the inner region of concentrator 51 through exit opening 52 because exit opening is positioned at the outer diameter of concentrator. Those sand particles are then further processed by screen 39.
Referring again to
The placement and positioning of holes 34 is further represented in
With respect to the cyclonic rotation of fluids, there is a differing preference for structures to be used in the northern hemisphere versus the southern hemisphere. In the northern hemisphere it is preferred that rotation be counterclockwise as viewed from above. Conversely, in the southern hemisphere it is preferred that the rotation be clockwise when viewed from above.
The bottom position of central chamber 35 restricts movement of fluids, thus, fluids are forced to escape upwardly by passing from central chamber 35 into screen chamber 40. The cyclonic motion of fluids begun in central chamber 35 continues for those fluids in screen chamber 40. Screen chamber 40 is designed so that screen 39 allows solids to exit through openings in screen 39. Solids that move through screen 39 pass from screen chamber 40 in a radially outward direction into solids capture chamber 42. Fluids that remain in screen chamber 40 continue an upward movement until passing out of top opening 41 of gas anchor 30.
Returning to the solids capture chamber 42 shown in
The gas anchor may further comprise bottom outlet 44 that allows solids and/or fluids to exit from a lower region of the gas anchor. In one embodiment, bottom outlet 44 may further comprise a ball valve 45 including, for example, a springed ball valve. In such an embodiment, the spring and ball valve 45 are configured so as to permit heavy fluids to exit during an upstroke and/or downstroke of the pump. Passages at the bottom of the gas anchor allow sand, which falls to the lower region of the gas anchor, to escape to a lower position.
The ball valve 45 plays a role in admitting fluids into the gas anchor. On an upstroke, the spring forces the ball to seal against a seat 46 positioned above the ball. Thus, in order for fluid to enter the gas anchor it must do so through the holes 34. The fluid experiences suction during the upstroke so that the fluid enters the gas anchor substantially through the holes 34. On the downstroke, the ball is pushed off the seat 46 against the spring. Fluid flushes through ball valve 45 on the downstroke, expelling sand and/or other solids through radial flutes 47 (see
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.