1. Field of the Invention
The present invention generally relates to heating systems. More specifically, the present invention is drawn to a gas and electric heating system having a boiler that utilizes both gaseous fuel and electric energy to generate steam.
2. Description of the Related Art
Potential shortages of gas and oil and pollution generated during hydrocarbon combustion have caused builders to consider electric energy as a cleaner alternative for heating steam-producing boilers. However, the high costs of producing electricity and the relative inefficiency of using only electric power to generate steam render this alternative economically imprudent. The heating industry and the consumer would certainly welcome a heating system that could incorporate the best features of both an electric and a hydrocarbon-fueled, steam-generated heating system. Thus, a gas and electric heating system solving the aforementioned problems is desired.
The gas and electric heating system is a high-efficiency heating system that employs combination gas and electric heat generators to provide energy to a boiler that generates steam. The system comprises a blue-flame, gaseous-fuel burner disposed externally to provide heat to a steam-generating boiler, and electrical heating elements that are positioned inside the boiler. Steam generated in the boiler flows to a heating core. The core is positioned in an air duct so that heat is transferred from the core to air flowing through the duct. The heated air flows from the duct into an area to be heated. Controls are provided to correlate the functions of the various components in the system. The duct can be oriented in any direction (horizontal, down-flow, up-flow, etc.).
Accordingly, the instant invention presents a heating system that employs a combination of energy sources to produce steam. The heating system is effective and efficient and may reduce the user's annual heating bill up to 80%. The system provides for an arrangement of improved elements for the purposes described that are inexpensive, dependable and fully effective in accomplishing their intended purposes.
These and other features of the present invention will become readily apparent upon further review of the following specification and drawings.
Similar reference characters denote corresponding features consistently throughout the attached drawings.
Attention is first directed to
Water is fed to boiler tank 20 via water conduit 24. Shutoff valve 26, low-water cutout valve and switch 28, and water-feeder sensor 30 control the flow of water through conduit 24. A drain valve 32 and pressure-relief valve 34 are disposed on boiler tank 20 for obvious safety reasons. Electric heating elements 36, 38 (shown in phantom lines) are positioned within the interior of boiler tank 20. Two elements are preferred. However, one element or more than two elements may be used, if suitable.
Energy applied to boiler tank 20 by flame 15 and electrical elements 36, 38 combine to generate steam. The generated steam flows from boiler tank 20 through conduit 40 and into heating core 42. Gauge 44 is positioned on conduit 40 to monitor the temperature and pressure of steam flow. Control 46 functions to regulate and monitor the pressure of the steam. Heating core 42 is positioned in the exit duct 50a of blower 50. Blower-driven air is heated as it flows over core 42 and into space S (the space that is to be warmed by the heated air). A control sensor 52 is disposed at the exit of duct 50a to monitor blower output and air temperature. A relatively small bleeder line 54 allows an amount of steam to pass from the core directly into space S for humidification purposes. A conventional thermostat 64 is disposed in space S to control system operation in the usual manner.
Circuitry for controlling operation of the system is illustrated in
As best seen in
It is to be understood that the present invention is not limited to the embodiment described above, but encompasses any and all embodiments within the scope of the following claims.