This application claims the priority to and the benefit of Chinese Patent Application No. 201610829242.0, filed on Sep. 18, 2016, which is incorporated herein by reference in its entirety.
The present disclosure relates generally to the technical field of mechanical equipment, and particularly to a gas and liquid knife and a control method thereof.
According to kind of ejected fluid, a gas and liquid knife could be divided into two kinds, i.e., gas knife and liquid knife. The gas knife is generally used to cut off liquid via gas flow; while the liquid knife is generally used to pre-wet product by ejecting liquid.
A gas and liquid knife according to prior art, as shown in
The embodiments of the present disclosure provide the following technical solution, so as to achieve an effect of the present disclosure.
In one aspect, the present disclosure provides a gas and liquid knife, comprising:
a chamber and a knife head provided at the chamber;
an ejection opening is provided at the knife head, which communicates with an internal of the chamber;
the knife head has a first knife lip and a second knife lip, the ejection opening is defined between a first inner wall of the first knife lip and a second inner wall of the second knife lip;
the chamber is defined between the first wall plate and the second wall plate slidably connected with each other, and provided with an inlet; the first knife lip connects to the first wall plate, and the second knife lip connects to the second wall plate, the first knife lip and second knife lip moves relatively as the first wall plate and the second wall plate slides relatively, such that a minimum distance between the first inner wall and the second inner wall could be changed.
In another aspect, the present disclosure provides a control method of a gas and liquid knife, the gas and liquid knife comprises a chamber and a knife head provided at the chamber; an ejection opening is provided at the knife head, which communicates with an internal of the chamber; the knife head has a first knife lip and a second knife lip, the ejection opening is defined between a first inner wall of the first knife lip and a second inner wall of the second knife lip;
the chamber is defined between the first wall plate and the second wall plate slidably connected with each other and provided with an inlet; the first knife lip connects to the first wall plate, and the second knife lip connects to the second wall plate, the first knife lip and second knife lip moves relatively as the first wall plate and the second wall plate slides relatively, such that a minimum distance between the first inner wall and the second inner wall could be changed;
the control method comprising:
obtaining a preset width of the ejection opening;
controlling the first wall plate and the second wall plate to slide relatively until the minimum distance between the first inner wall and the second inner wall is equal to the preset width of the ejection opening; and
injecting gas or liquid into the chamber via the inlet, and ejecting the gas or liquid via the ejection opening.
In order to clarify technical aspects in embodiments of the present disclosure more clearly, drawings which are needed for the description of the embodiments are briefly described hereinafter. It will be apparent that the drawings in the following description are merely some embodiments of the present disclosure. Other drawings may be obtained according to these drawings by those skilled in the art, without creative labor.
Specific embodiments in this disclosure have been shown by way of example in the foregoing drawings and are hereinafter described in detail. The figures and written description are not intended to limit the scope of the inventive concepts in any manner. Rather, they are provided to illustrate the inventive concepts to a person skilled in the art by reference to particular embodiments.
Exemplary embodiments will be specifically and completely described as follows combining with drawings. It will be appreciated that the embodiments as described are merely parts of embodiments according to the present disclosure, not the whole. Other embodiments obtained by those skilled in the art without creative labor are intended to fall within the scope of the disclosure.
An ejection opening k is provided at the knife head 12, which communicates with an internal of the chamber 11.
The knife head 12 has a first knife lip 121 and a second knife lip 122. The ejection opening k is defined between a first inner wall b1 of the first knife lip 121 and a second inner wall b2 of the second knife lip 122.
The chamber 11 is defined between the first wall plate 111 and the second wall plate 112 slidably connected with each other. The first knife lip 121 connects to the first wall plate 111, and the second knife lip 122 connects to the second wall plate 112. The first knife lip 121 and second knife lip 122 moves relatively as the first wall plate 111 and the second wall plate 112 slides relatively (i.e., the first wall plate 111 slides relative to the second wall plate 112 in direction h or opposite to h), such that a minimum distance s between the first inner wall b1 and the second inner wall b2, i.e., a width of the ejection opening k, will be changed. An inlet 13 is formed at the chamber 11 through which gas or liquid is allowed to be injected.
The first inner wall b1 and the second inner wall b2 of the gas and liquid knife may be parallel with each other as shown in
As shown in
It should be noted that during the relative slide of the first wall plate 111 and the second wall plate 112, the chamber 11 is closed except the position where the inlet 13 and the ejection opening k are provided.
Consequently, in the gas and liquid knife according to the present disclosure, the ejection opening is defined between the inner walls of the two knife lips, and the minimum distance between the inner walls of the two knife lips could be changed by relatively moving the two knife lips, which solves the problem of big error of the width of the ejection opening caused by shim with error thickness and compactness during adjusting the width of the ejection opening by adhering shim in prior art, thereby achieving an effect of adjusting the width of the ejection opening with little error.
Further, as shown in
A plane n1 of the first inner wall b1 and a plane n2 of the second inner wall b2 intersect and create an intersection line x (the intersection line x is perpendicular to the paper as shown in
It should be noted that, as the angle between the first inner wall b1 and the second inner wall b2 becomes small, during relative slide of the first wall plate 111 and the second wall plate 112, the minimum distance s between the first inner wall b1 and the second inner wall b2 changes slowly, such that accuracy of adjustment for the width of the ejection opening k becomes higher; on the contrary, as the angle between the first inner wall b1 and the second inner wall b2 becomes large, during relative slide of the first wall plate 111 and the second wall plate 112, the minimum distance s between the first inner wall b1 and the second inner wall b2 changes quickly, such that accuracy of adjustment for the width of the ejection opening k becomes lower.
Alternatively, the intersection line x defined by the plane n1 of the first inner wall b1 and the plane n2 of the second inner wall b2 is perpendicular to the ejection direction p of the ejection opening k.
As shown in
As shown in
As shown in
Alternatively, the gas and liquid knife further includes a measure assembly 16 having a dial 161 and a scale mark portion 162 for illustrating a relative movement distance between the first knife lip 121 and second knife lip 122. The dial 161 fixedly connects to the adjusting screw 152, and the scale mark portion 162 is provided on the holder 151. Signs on the dial 161 may be corresponding to the width of the ejection opening k (the explanation of the width of the ejection opening may refer to
As shown in
As shown in
Alternatively, the first inner wall b1 and the second inner wall b2 are rectangle, and an end of the first inner wall b1 away from the first wall plate 111 is parallel to an end of the second inner wall b2 away from the second wall plate 112, which allows air or liquid curtain ejected from the ejection opening k is uniform. The ejection opening may be rectangle, and the width of the ejection opening is equated with the width of a rectangle, length of which depends on the length of the first inner wall b1 and the second inner wall b2.
The explanation of other reference numerals as shown in
During manufacturing, a display substrate to be treated requires a large mount of drug liquid. Before treated by the drug liquid, the display substrate may be pre-wetted by a liquid curtain ejected from the gas and liquid knife according to the embodiment of the present disclosure so as to prevent adverse event; when the display substrate has been treated by the drug liquid, the gas and liquid knife according to the embodiment of the present disclosure could eject a gas curtain to forming a partition for the drug liquid so as to reduce the amount of the drug liquid carried out by the display substrate, thereby reducing waste and pollution. Meanwhile, after cleared by water, the display substrate may be blown dry by the gas curtain ejected from the gas and liquid knife according to the embodiment of the present disclosure so as to prevent effect by waterlogging during following process.
Consequently, in the gas and liquid knife according to the present disclosure, the ejection opening is defined between the inner walls of the two knife lips, and the minimum distance between the inner walls of the two knife lips could be changed by relatively moving the two knife lips, which solves the problem of big error of the width of the ejection opening caused by shim with error thickness and compactness during adjusting the width of the ejection opening by adhering shim in prior art, thereby achieving an effect of adjusting the width of the ejection opening with little error.
Step 401, obtaining a preset width of the ejection opening.
During performing the control method of the gas and liquid knife according to the embodiment of the present disclosure, the preset width of the ejection opening may be obtained as first, which could be set by operator.
It should be noted that the subject for performing the control method of the gas and liquid knife according to the embodiment of the present disclosure may be a controller for controlling the gas and liquid knife. The controller may include an integrated circuit, processor or the like. The operator could set the preset width of the ejection opening by the controller.
Step 402, controlling the first wall plate and the second wall plate to slide relatively until the minimum distance between the first inner wall and the second inner wall is equal to the preset width of the ejection opening.
After the preset width of the ejection opening is obtained, the first wall plate and the second wall plate could be controlled to slide relatively, such that the minimum distance between the first inner wall and the second inner wall, i.e., the width of the ejection opening, could be equal to the preset width of the ejection opening.
Step 403, injecting gas or liquid into the chamber via the inlet, and ejecting the gas or liquid via the ejection opening.
In the case that the minimum distance between the first inner wall and the second inner wall is equal to the preset width of the ejection opening, gas or liquid may be injected into the chamber via the inlet, and then ejected via the ejection opening.
In the following detail is described by taking the gas and liquid knife as shown in
During controlling the gas and liquid knife as shown in
Consequently, in the gas and liquid knife according to the present disclosure, the ejection opening is defined between the inner walls of the two knife lips, and the minimum distance between the inner walls of the two knife lips could be changed by relatively moving the two knife lips, which solves the problem of big error of the width of the ejection opening caused by shim with error thickness and compactness during adjusting the width of the ejection opening by adhering shim in prior art, thereby achieving an effect of adjusting the width of the ejection opening with little error.
It should be understood for those skilled in the art that a part of or the whole of steps in the embodiments may be implemented by hardware, or by programs instructing the related hardware. The programs may be stored in a computer readable medium. The storage medium described as above may be a red-only memory, a magnetic disc, an optical disc or the like.
It will be appreciated by those skilled in the art that the disclosure is not limited the disclosed embodiments; one of ordinary skill in the art can make various changes and modifications to the present disclosure without departing from the spirit and scope of the invention. Thus, the present disclosure intends to encompass such changes and modifications provided that those changes and modifications fall within the scope of claims of the present invention and equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
2016 1 0829242 | Sep 2016 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
3607366 | Kurokawa | Sep 1971 | A |
3917888 | Beam | Nov 1975 | A |
4041895 | Overton | Aug 1977 | A |
4346129 | Decker | Aug 1982 | A |
5074242 | Bricmont | Dec 1991 | A |
5221345 | Blankenship | Jun 1993 | A |
8113139 | Kim | Feb 2012 | B2 |
Number | Date | Country | |
---|---|---|---|
20180078956 A1 | Mar 2018 | US |