The present disclosure relates to high-voltage circuit interrupters. More specifically, the present disclosure relates to a high-voltage circuit interrupter having an improved density gas blast for quenching arcs.
A gas-insulated high-voltage circuit interrupter typically contains a male contact, a female contact that is capable of moving relative to the male contact along an axis, a heating chamber for accommodating a supply of quenching gas, and a heating channel positioned to direct the quenching gas toward the contacts. With this type of interrupter, the pressure of the quenching gas within the heating chamber is generating when an arc occurs between the two contacts as the two contacts disconnect. As the contacts disconnect, high pressure gas is forced up the heating channel into the heating chamber. There, the quenching gas already in the heating chamber is pressurized and, after the pressure reaches a high enough level, the quenching gas is forced out of the heating chamber through the heating channel toward the arc as it approaches current zero, thereby extinguishing the arc. The interrupter may also include an insulating nozzle positioned to direct the pressurized quenching gas toward the arc.
In order to quench the arc, a quenching gas such as sulfur hexafluoride (SF6) or a combination of gases is used. The quenching gas is compressed during the disconnecting of the contacts and subsequently extinguishes the arc, thereby interrupting the current flow at a zero crossing.
Interrupters using self-blowing arc quenching, or “inhale/exhale” interrupters, have several disadvantages. Depending upon the geometry and stroke position of the contacts, a larger portion of the energy created by the arc is lost to female-side exhaust rather than pressurizing the quenching gas in the heating chamber. Additionally, the gas forced into the heating chamber or “inhaled” into the heating chamber increases the temperature of the quenching gas already stored in the heating chamber, thereby reducing the density of the quenching gas and the overall associated quenching capabilities as the quenching gas is subsequently “exhaled” toward the arc.
This disclosure is not limited to the particular systems, devices and methods described, as these may vary. The terminology used in the description is for the purpose of describing the particular versions or embodiments only, and is not intended to limit the scope.
As used in this document, the singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art. Nothing in this document is to be construed as an admission that the embodiments described in this document are not entitled to antedate such disclosure by virtue of prior invention. As used in this document, the term “comprising” means “including, but not limited to.”
In one general respect, the embodiments disclose a gas-insulated circuit interrupter. The interrupter includes a first contact and a second contact configured to alternatively connect to and disconnect from the first contact. One or both of the contacts are at least partially contained in an arcing chamber. The arcing chamber includes the point at which the contacts connect during current-carrying operation of the interrupter. The arcing chamber is at least partially surrounded by a heating chamber for accommodating a quenching gas. A channel connects the heating chamber and the arcing chamber and is positioned to direct the quenching gas toward the first contact and the second contact arcing area. One or more valves direct gas from the arcing chamber to the heating chamber when the interrupter is operated to interrupt a current.
Over the years, gas-insulated circuit interrupters have been continuously improved to deliver higher fault duty by extensive testing, analysis and redesign. Fault interruption requirements have progressed from 25 kA to 31.5, 40, 63 and, in some examples, 80 kA. This increase has been primarily driven by increased power demand on electrical grids. When demand increases, it is much less expensive to upgrade existing equipment than it is to install and implement new lines, substations, relays, or other equipment.
As the fault current requirements increased, manufacturers began designing interrupters to include large, expensive capacitors. By using large amounts of capacitance, the manufacturers are limited in the voltage ratings the interrupters can safely handle. Additionally, large scale capacitors are expensive to produce and add another component failure mode.
This document describes a novel interrupter capable of providing robust performance at high fault current levels by taking advantage of some of the lost energy typically found in prior inhale/exhale designed interrupters. In some embodiments, the design described below may help to reduce degradation of the quenching gas—such as sulfur hexafluoride (SF6) without significantly increasing the mechanical energy required to disconnect the interrupter contacts.
It should be noted that the female contact 102 and the male contact 104 are shown by way of example only. In an alternative embodiment, the contacts may have an alternative shape that provides an electrical connection between the contacts when in a connected position. Additionally, one or both of the contacts 102 and 104 may be configured to move during the disconnection operation.
Similarly, the stroke of female contact 102 during the disconnection operation is shown in the figures as a linear path of movement by way of example only. In an alternative embodiment, the stroke of the movable contact or movable contacts may be a radial path of movement or other non-linear paths of movement.
Interrupter 100, as shown in
As shown in
As shown in
As shown in
Each valve 114 may be of various design and implementation and are shown as a pivoting valve for illustrative purposes only. For example, as shown in
In an alternative interrupter 200, as illustrated in
It should be noted that a floating ball valve (as shown in
It should be noted that in alternative embodiments a male contact may be configured to move away from female contact and the operation of the valve may be dependent instead on the position of the male contact. In yet another alternative, both contacts may be configured to move. Thus, the operation of the valve may be dependent on the position of one or both of the contacts.
When the interrupter operates and hot gas passes from the arcing chamber 101 through the valve(s) 114 into the heating chamber 106, the hot gas acts as a piston in the wider base portion of the heating chamber, thus pushing the heating chamber's quenching gas into the channel 108 to extinguish the arc 106. During operation the flow rate of gas from the arcing chamber into the heating chamber may be subsonic (i.e., less than mach 1), while the flow rate of quenching gas from the heating chamber 106 to the arcing chamber 101 may be supersonic (i.e., from mach 1 to about mach 5).
The arcing chamber 101, valve(s) 114, heating chamber 106, and integral or separate chamber 108 may be formed of any material that will withstand high temperatures and pressures, such as steel, copper or alloys of steel or copper. After operation, the hearing chamber 106 will be refilled with quenching gas for use in subsequent interrupting operations. Optionally, after a period of time after interruption during which the quenching gas cools in the arcing chamber 101, the quenching gas may be returned to the heating chamber.
Referring again to
It should be noted that the position of the various interrupter components as shown above is shown by way of example only. For example, the geometry of the heating chamber 106 and channel 108 may be altered depending on the configuration of the exhaust pathways in the interrupter. Additionally, as discussed above, the configuration and movement of contacts 102 and 104 may vary depending on the design of the interrupter.
Were it not for the position of the valves 114 shown, in the interrupter, any pressurized gas generated by an arc between the male contact 104 and the female contact 102 would be dispersed in multiple directions. A portion of the gas would travel up the channel 108 to pressurize the quenching gas contained within the heating chamber 106, a portion of the gas would travel through a male-side exhaust 112, and a portion would travel through a female-side exhaust 110. Thus, much of the energy created by the are would be lost through the exhausts 110 and 112.
Various of the above-disclosed and other features and functions, or alternatives thereof, may be combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art, each of which is also intended to be encompassed by the disclosed embodiments.
This patent document claims priority to U.S. Provisional Patent Application No. 61/509,727, filed Jul. 20, 2011, the disclosure of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3602670 | Teijeiro | Aug 1971 | A |
3965947 | Easton et al. | Jun 1976 | A |
4206331 | Kii | Jun 1980 | A |
4362915 | Swindler | Dec 1982 | A |
4387280 | Iman | Jun 1983 | A |
4604508 | Talpo | Aug 1986 | A |
5150690 | Carter et al. | Sep 1992 | A |
6013888 | Thuries | Jan 2000 | A |
6489581 | Ozil et al. | Dec 2002 | B2 |
6696657 | Hirose et al. | Feb 2004 | B2 |
7250583 | Cameroni et al. | Jul 2007 | B2 |
7339132 | Urai et al. | Mar 2008 | B2 |
7566842 | Hunger et al. | Jul 2009 | B2 |
7829814 | Marchand et al. | Nov 2010 | B2 |
8044318 | Dufournet et al. | Oct 2011 | B2 |
20070241079 | Johnson et al. | Oct 2007 | A1 |
20100219161 | Seeger et al. | Sep 2010 | A1 |
20110192821 | Dufournet | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
WO 2010040574 | Apr 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20130020285 A1 | Jan 2013 | US |
Number | Date | Country | |
---|---|---|---|
61509727 | Jul 2011 | US |