The present invention relates to a breaker, and more particularly to a gas circuit breaker that blows insulating gas at the time of shutting off a current to extinguish an arc.
As an exhaust structure for cooling generated hot gas, there is an invention described in JP-A-2000-268688. The present invention is a structure in which a cooling blade for changing the flow of exhausted gas is arranged between a movable side puffer shaft and a movable side exhaust conductor. The exhausted hot gas hits the cooling blade, stirring with the surrounding low-temperature gas is promoted, and the high-temperature gas is cooled. By cooling the high-temperature gas discharged from an exhaust pipe, insulation performance against the ground of the breaker is improved.
In the invention described in JP-A-2000-268688, since the cooling blade is arranged between the movable side puffer shaft and the movable side exhaust conductor, for an exhaust structure on the movable side, there is a problem that flow path resistance of the exhausted gas always becomes large, hindering exhausting of the hot gas between electrodes and reducing interrupting performance between the electrodes.
According to an aspect of the present invention, there is provided a gas circuit breaker including a pair of arcing contacts that is arranged oppositely to each other to be opened and closed in a gas tank and a puffer shaft that is coaxially connected to one of the pair of arcing contacts and includes a shaft exhaust hole in a circumferential direction thereof, a puffer cylinder that is coaxially provided on an outer circumference of the puffer shaft, a puffer piston that is provided in a space between the puffer cylinder and the puffer shaft, an insulating nozzle that is fixed to the puffer cylinder on a breaker side, an insulating rod that connects the puffer shaft and an operating device to each other, a shaft guide that is provided on an outer circumference of a connection portion between the puffer shaft and the insulating rod and includes a shaft guide exhaust hole in a circumferential direction thereof, an exhaust guide that is provided on an outer circumference of the shaft guide, and a movable side exhaust conductor that is supported on an inner wall of the gas tank with a supporting insulator on an outer circumference of the exhaust guide and includes a conductor exhaust hole on an outer circumference thereof, in which the gas circuit breaker has a first mode in which hot gas generated by interrupting operation is discharged into the gas tank through the shaft exhaust hole of the puffer shaft, the space formed by the puffer shaft and the shaft guide, and the conductor exhaust hole of the movable side exhaust conductor in the middle of interrupting operation and a second mode in which the shaft exhaust hole of the puffer shaft communicates with the shaft guide exhaust hole of the shaft guide, and hot gas is exhausted into the gas tank through the conductor exhaust hole of the movable side exhaust conductor.
In the aspect of the present invention, by discharging the hot gas generated between the electrodes in the middle of interrupting operation into the gas tank through the shaft exhaust hole of the puffer shaft, the space formed by the puffer shaft and the shaft guide, and the flow path of the movable side exhaust conductor and the conductor exhaust hole thereof, when the hot gas is exhausted into the gas tank, the gas may be cooled, and the insulation performance may be improved. In addition, by connecting the shaft exhaust hole of the puffer shaft and the shaft guide exhaust hole of the shaft guide to the region near the current zero point before the termination of the interrupting operation, the exhaust flow path is shortened, the resistance of the exhaust flow path is reduced, the gas between the electrodes is efficiently exhausted, and the interrupting performance between the electrodes may be improved.
Hereinafter, an example of the present invention will be described with reference to drawings. The following is merely an example of implementation, and it is not intended to limit the content of the invention to the following specific aspects. The invention itself may be implemented in various modes as long as the invention conforms to the contents described in the claims.
The outline structure and operation of a gas circuit breaker at the time of interrupting operation will be described with reference to
A fixed side conductor 12 and a fixed side exhaust pipe 13 are electrically connected to the fixed side arcing contact 3 through a metal supporting structure, and the movable side arcing contact 2, the puffer shaft 6, the puffer piston 7, the puffer cylinder 8, and the movable side main contact 4 electrically connected to one another are electrically connected to the fixed side in an energized state (closed state) respectively. The puffer chamber 9 is arranged coaxially on the inner periphery of the puffer cylinder 8 with the puffer cylinder 8, the inside of the puffer chamber 9 is hollow, and the puffer shaft 6 into which the insulating gas flows and the puffer piston 7 sliding in a space formed between the puffer cylinder 8 and the puffer shaft 6 are formed in the hollow space.
The interrupting portion on the operating device side is fixed to a mounting seat provided on the inner circumferential surface of the gas tank 1 by a supporting insulator 16.
Normally, the fixed side arcing contact 3 on the side opposite to the movable side arcing contact 2 on the operating device side, and the fixed side main contact 5 and the movable side main contact 4 are electrically connected, but when a command of opening electrodes is transmitted at the time of an accident, the movable side is operated by the operating device (not shown) via the puffer shaft 6 and the insulating rod 17, and the fixed side arcing contact 3 on the fixed side and the movable side arcing contact 2 on the movable side, and the fixed side main contact 5 and the movable side main contact 4 are physically separated from each other.
Even after the contact is released, an electric current flows between the fixed side arcing contact 3 and the movable side arcing contact 2, and an arc is generated. Since the gas circuit breaker blows high-pressure insulating gas on the arc to extinguish the arc, the insulating gas in the puffer chamber 9 is compressed by the puffer piston 7 at the time of operation of the movable side, the gas is blown to the arc, and the arc is extinguished.
Pressure formation in the puffer chamber 9 in which insulating gas is blown to the arc is performed by the movable puffer cylinder 8 moving relative to the fixed puffer piston 7. More specifically, the driving force of the operating device is transmitted from the insulating rod 17 connected to the operating device (not shown) to the puffer cylinder 8 through the puffer shaft 6, and the insulating gas in the puffer chamber 9 is compressed by the puffer cylinder 8 moving to the right side of the drawing.
The high-pressure insulating gas compressed in the puffer chamber 9 is blown against the generated arc between the fixed side arcing contact 3 and the movable side arcing contact 2 during the interrupting operation. The high-temperature hot gas generated after being blown to the arc is discharged to the fixed side and the operating device side respectively, passes through the inside of the insulating nozzle 10 and the fixed side exhaust pipe 13 on the fixed side, and is discharged into the gas tank 1 while being cooled.
On the operating device side, the high-temperature hot gas is discharged to the movable side exhaust conductor 15 through a shaft exhaust hole 21 of the puffer shaft 6 and then discharged into the gas tank 1 through a conductor exhaust hole 22 of the movable side exhaust conductor 15. In
The density of the hot gas generated at the time of gas blowing is low because the temperature thereof is high and thus the dielectric strength thereof is low. In order to prevent deterioration of insulation performance between the electrodes, it is necessary to discharge the hot gas promptly after the arc extinguishing succeeds, and the hot gas is exhausted to the fixed side and the movable side through the insulating nozzle 10 and the puffer shaft 6 respectively.
The role of the cylinder is to discharge the generated hot gas promptly without staying between the electrodes and to efficiently cool the hot gas.
The mechanism of dielectric breakdown generation between the movable side exhaust conductor 15 and the gas tank 1 will be described with reference to
For a ground fault accident, means for obtaining the insulation performance against the ground by electric field relaxation between the movable side exhaust conductor 15 and the gas tank 1 by expanding the diameter of the gas tank, and means for improving the cooling capability of the hot gas by enlarging the exhaust pipe are taken. However, such means leads to enlargement of the breaker structure and the exhaust/shield structure. In addition, in recent years, a high-voltage and large-volume current of an electric power system is being developed, and the capacity of a gas circuit breaker is being increased to obtain a required interrupting performance, but contrary to this development, in order to reduce the cost, miniaturization of the gas circuit breaker by optimizing the structure of the breaker and the structure of an exhaust/shield is also under way.
In
The hot gas having a rapid flow generated during the interrupting operation is cooled while passing through the flow path formed by the shaft guide 19 and the exhaust guide 24 and has a temperature having sufficient insulation performance when the hot gas reaches the high electric field portion of the conductor exhaust hole 22.
Next, the gas flow path immediately before the termination of the interrupting operation will be explained with reference to
As shown in
In the above example, there are two shaft exhaust holes 21 and two shaft guide exhaust holes 23 in the case of being opened in the upward and downward direction of the drawing, but even when the number of holes is changed, the same cooling effect may be obtained by arranging the exhaust holes alternately in a similar manner in the circumferential direction.
In the above example, a puffer-type breaker which obtains blowing gas pressure by mechanical compression of the puffer piston 7 is described, but it is also possible to apply the present invention to a heat puffer-type breaker which is provided with a volume-fixed heat puffer chamber and obtains blowing gas pressure by taking in arc heat.
SF6 is used as insulating gas in the present example, but the type of insulating gas is not limited to SF6, but other insulating gas such as dry air/nitrogen gas may be used.
As described above, according to the present example, by discharging the hot gas generated between the electrodes in the middle of interrupting operation into the gas tank through the shaft exhaust hole of the puffer shaft, the space formed by the puffer shaft and the shaft guide, and the flow path of the movable side exhaust conductor and the conductor exhaust hole thereof, when the hot gas is exhausted into the gas tank, the gas is cooled, and the insulation performance is improved. In addition, by connecting the shaft exhaust hole of the puffer shaft and the shaft guide exhaust hole of the shaft guide to the region near the current zero point before the termination of the interrupting operation, the exhaust flow path is shortened, the resistance of the exhaust flow path is reduced, the gas between the electrodes is efficiently exhausted, and the interrupting performance between the electrodes may be improved.
Number | Date | Country | Kind |
---|---|---|---|
2017-003776 | Jan 2017 | JP | national |