The present subject matter relates generally to cooktop appliances and more particularly to gas burner assemblies for cooktop appliances.
Gas burners are commonly used on the cooktops of household gas cooking appliances including e.g., range ovens and cooktops built into cabinetry. For example, gas cooktops traditionally have at least one gas burner positioned at a cooktop surface for use in heating or cooking an object, such as a cooking utensil and its contents. Control knobs are typically used to adjust the power level of the heating element, e.g., the amount of fuel directed to the burner, and thus the amount of heat delivered by the gas burner.
Normally aspirated gas burners rely on the energy available in the form of pressure from the fuel supplied to the gas burner to entrain air for combustion. Because the nominal pressure in households is relatively low, there is a practical limit to the amount of primary air a normally aspirated gas burner can entrain. Introducing a fan or another forced air supply into a gas burner assembly may improve the mixture of fuel and air for improved operation at higher outputs, with shorter flames and improved stability, and with improved efficiency. Forced air burners often use tall, narrow, and closely spaced burner ports to minimize the burner footprint and flame lengths, thereby improving heat transfer efficiency.
However, commonly used methods of manufacturing burner heads have limited ability to accommodate such high aspect ratio burner ports. For example, when die casting a burner head, the dies used to produce the burner ports would have very thin walls and would lack the strength and wear properties to withstand the stresses of injecting molten metals. Similarly, forging methods would require dies having long, thin projections too fragile to form the high aspect ratio burner ports.
Accordingly, an improved gas burner assembly is desirable. More particularly, a gas burner assembly including an easily manufactured forced air burner having tall, narrow burner ports would be particularly beneficial.
Aspects and advantages of the invention will be set forth in part in the following description, or may be apparent from the description, or may be learned through practice of the invention.
In one exemplary embodiment, a gas burner assembly for a cooktop appliance is provided. The gas burner assembly defines an axial direction, a radial direction perpendicular to the axial direction, and a circumferential direction extending around the axial direction. The gas burner assembly includes a plurality of flame ports arranged in an annular array and defining a flame ring of the gas burner assembly. Each flame port of the plurality of flame ports is collectively defined by and between an outer ring and an inner ring. The outer ring and the inner ring are concentrically aligned and concentrically mated so as to define the plurality of flame ports which extend radially between the inner ring and the outer ring.
In another exemplary embodiment, a cooktop appliance is provided. The cooktop appliance includes a top panel and a gas burner assembly positioned on the top panel. The gas burner assembly defines an axial direction, a radial direction perpendicular to the axial direction, and a circumferential direction extending around the axial direction. The gas burner assembly includes a plurality of flame ports which are arranged in an annular array and which define a flame ring of the gas burner assembly. Each flame port of the plurality of flame ports is collectively defined by and between an outer ring and an inner ring. The outer ring and the inner ring are concentrically aligned and concentrically mated so as to define the plurality of flame ports which extend radially between the inner ring and the outer ring.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures.
Repeat use of reference characters in the present specification and drawings is intended to represent the same or analogous features or elements of the present invention.
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
The present disclosure relates generally to a gas burner assembly for a cooktop appliance 100. Although cooktop appliance 100 is used below for the purpose of explaining the details of the present subject matter, one skilled in the art will appreciate that the present subject matter may apply to any other suitable consumer or commercial appliance. For example, the exemplary gas burner assemblies described below may be used on other types of cooking appliances, such as ranges or oven appliances. Cooktop appliance 100 is used in the discussion below only for the purpose of explanation, and such use is not intended to limit the scope of the present disclosure in any manner.
According to the illustrated exemplary embodiment, a user interface panel or control panel 106 is located within convenient reach of a user of cooktop appliance 100. For this exemplary embodiment, control panel 106 includes control knobs 108 that are each associated with one of heating elements 104. Control knobs 108 allow the user to activate each heating element 104 and regulate the amount of heat input each heating element 104 provides to a cooking utensil located thereon, as described in more detail below. Although cooktop appliance 100 is illustrated as including control knobs 108 for controlling heating elements 104, it should be understood that control knobs 108 and the configuration of cooktop appliance 100 shown in
According to the illustrated embodiment, control knobs 108 are located within control panel 106 of cooktop appliance 100. However, it should be appreciated that this location is used only for the purpose of explanation, and that other locations and configurations of control panel 106 and control knobs 108 are possible and within the scope of the present subject matter. Indeed, according to alternative embodiments, control knobs 108 may instead be located directly on top panel 102 or elsewhere on cooktop appliance 100, e.g., on a backsplash, front bezel, or any other suitable surface of cooktop appliance 100. Control panel 106 may also be provided with one or more graphical display devices, such as a digital or analog display device designed to provide operational feedback to a user.
According to the illustrated embodiment, cooktop appliance 100 is a gas cooktop and heating elements 104 are gas burners, such as gas burner assembly 150 described below. As illustrated, heating elements 104 are positioned within top panel 102 and have various sizes, as shown in
As shown schematically in
Cooktop appliance 100 may further includes features for assisting mixing of air and fuel as the fuel enters heating element 104, e.g., injectors, Venturi mixers, etc. According to an exemplary embodiment, fuel control valves 120 are each coupled to a respective one of control knobs 108. Thus, a user may adjust fuel control valves 120 with control knobs 108, thereby regulating fuel flow to heating elements 104. Similarly, air regulator 126 may be either directly controlled by control knob 108 or may be controlled based on the amount of fuel supplied to obtain the desired air/fuel ratio for combustion. According to an exemplary embodiment, some or all of these control components may be mounted to panel top 102, e.g., on a bottom surface or underside of top panel 102.
Referring now generally to
Referring now to
Referring now also to
Mixing chamber 174 and inner chamber 170 are generally configured for receiving a flow of air and a flow of fuel and fully premixing them into a homogenous fuel mixture prior to combustion. In this manner, for example, bottom housing 154 defines a boost fuel inlet 180 and a boost air inlet 182 that are each in fluid communication with mixing chamber 174. For example, boost fuel inlet 180 may terminate in a spray nozzle 183 (see
Referring again to
Upper housing 200 generally defines a boost burner chamber 206 that extends along the axial direction A and is in fluid communication with inner chamber 170 of center body 158. Top portion 202 defines a plurality of boost flame ports 210 which extend outward along the radial direction R and upward along the axial direction A and are spaced about the circumferential direction C. Thus, the top portion 202 of the upper housing 200 may also be referred to as a flame ring in that the top portion 202 defines an annular array of flame ports, e.g., the boost flame ports 210. The plurality of boost flame ports 210 are in fluid communication with boost burner chamber 206. As will be described in more detail below, the plurality of boost flame ports 210 may, in some embodiments, be defined by and between an inner ring 201 and an outer ring 203. In addition, a top cap 212 is positioned on top of top portion 202 to provide a clean appearance to gas burner assembly 150 and to help disperse the fuel mixture around boost flame ports 210.
Gas burner assembly 150 further includes a flow developer 220 for straightening the flow of fuel mixture prior to passing through boost flame ports 210. For example, as illustrated, top portion 202 defines flow developer 220 which is positioned between inner chamber 170 and boost burner chamber 206 for straightening or conditioning a flow of mixed fuel and air. It should be appreciated that although flow developer 220 is illustrated as being positioned at a bottom of upper housing 200, flow developer 220 could be defined by center body 158 or could be a separate component according to alternative embodiments. In general, flow developer 220 includes a plurality of conduits or passageways 222 that extend generally along the axial direction A between inner chamber 170 and boost burner chamber 206. According to alternative embodiments, flow developer 220 may include a plurality of fins extending along the axial direction A or any other flow straightening structure.
In addition to including a boost burner as described above, gas burner assembly 150 further includes a primary burner. According to an exemplary embodiment, the primary burner is a normally aspirated burner that may be regulated for normal operation while boost burner is a discretely operating (i.e., on or off) auxiliary forced air burner intended for performing high heat operation such as boiling a large pot of water. However, it should be appreciated that the primary burner and boost burner may both be incrementally regulated simultaneously or independently of each other according to alternative embodiments.
As shown, upper housing 200 defines a primary burner chamber 230, or more specifically, primary burner chamber 230 is defined between top portion 202 and bottom portion 204. A primary fuel inlet 232 is in fluid communication with primary burner chamber 230 for providing a flow of fuel into primary burner chamber 230. More specifically, as illustrated in
Air entrainment chamber 238 is in fluid communication with a primary air inlet 250 that extends about the circumferential direction C above top panel 102 of cooktop appliance 100. More specifically, primary air inlet 250 is defined between upper wall 172 of center body 158 and bottom portion 204 of upper housing 200. In this manner, fresh primary supply air may be drawn from ambient through primary air inlet 250 into air entrainment chamber 238. In addition, as best shown in
In addition, the cylindrical channel 256 extends toward top portion 202 of upper housing 200. Notably, cylindrical channel 256 terminates proximate a top of primary burner chamber 230, e.g., adjacent top portion 202 of upper housing 200. In this manner, cylindrical channel 256 discharges a mixture of fuel and air proximate a top of primary burner chamber 230. In addition, top portion 202 of upper housing 200 defines a circumferential baffle 260 that is positioned within primary burner chamber 230 and extends down along the axial direction A toward bottom portion 204 to define an annular opening 262 proximate a bottom of primary burner chamber 230. In this manner, the fuel and air mixture that is ejected into primary burner chamber 230 migrates from a top of primary burner chamber 230 downward along the axial direction A toward annular opening 262, thereby increasing residence time and ensuring the mixture is more evenly dispersed throughout primary burner chamber 230 for improved combustion.
As may be seen, for example, in
As may be seen in
As best seen in
As mentioned above, the outer ring 203 may be forged and machined and the inner ring 201 may be die cast. For example, the outer ring 203 may be forged brass and may be machined to form the outer portions 284 of the boost flame ports 210 therein. For example, the outer ring 203 may be machined using a slit mill to form the outer portion 284 of each boost flame port 210 using only a linear slit tool path, which results in the bottom channel 280 of each boost flame port 210 having a linear profile in the axial-radial plane across the outer portion 284 of each boost flame port 210. As another example, the inner ring 201 may be die cast, such as die cast aluminum material, and the curvilinear profile of the inner portion 282 of each boost flame port 210 may be formed by die casting the aluminum material to form the inner ring 201.
One skilled in the art will appreciate that in addition to the configurations of gas burner assembly 150 described herein, alternative configurations of gas burner assembly 150 are possible and within the scope of the present subject matter. For example, the size, positioning, and configuration of bottom housing 154, center body 158, and upper housing 200 may vary, the various fuel and air mixing chambers may be positioned differently, and other mixing features or configurations may be used. It should be appreciated that still other configurations are possible and within the scope of the present subject matter.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Name | Date | Kind |
---|---|---|---|
1716601 | Reznor | Jun 1929 | A |
1923393 | Pickup | Aug 1933 | A |
2041348 | Johnson | May 1936 | A |
4311451 | Matumoto et al. | Jan 1982 | A |
5490778 | Meijer | Feb 1996 | A |
5649822 | Gertler | Jul 1997 | A |
5690483 | Oda et al. | Nov 1997 | A |
5915956 | Kwiatek et al. | Jun 1999 | A |
6322354 | Carbone et al. | Nov 2001 | B1 |
6607378 | Harneit | Aug 2003 | B2 |
8381714 | Shaffer | Feb 2013 | B2 |
8479721 | Graham et al. | Jul 2013 | B2 |
8845326 | Shaffer | Sep 2014 | B2 |
8899972 | Fowler | Dec 2014 | B2 |
9612018 | Bettinzoli | Apr 2017 | B2 |
10274202 | Cadima | Apr 2019 | B2 |
10415823 | Acosta Herrero | Sep 2019 | B2 |
10436451 | Aguilar | Oct 2019 | B2 |
10451289 | Paller | Oct 2019 | B2 |
10677469 | Paller | Jun 2020 | B2 |
10823402 | Cadima | Nov 2020 | B2 |
10830451 | Cadima | Nov 2020 | B2 |
20040048216 | Brown et al. | Mar 2004 | A1 |
20070218414 | Harneit | Sep 2007 | A1 |
20130059256 | Cadeau | Mar 2013 | A1 |
20140048293 | Luongo et al. | Feb 2014 | A1 |
20140295357 | McAfee et al. | Oct 2014 | A1 |
20170108226 | Moon | Apr 2017 | A1 |
20200191387 | Noeth | Jun 2020 | A1 |
Number | Date | Country |
---|---|---|
101509672 | Aug 2009 | CN |
1594975 | Apr 2010 | CN |
101825281 | Aug 2012 | CN |
204438127 | Jul 2015 | CN |
102444892 | Jan 2016 | CN |
103900103 | Jan 2016 | CN |
887590 | Dec 1998 | EP |
2534421 | Mar 2014 | EP |
3165828 | May 2017 | EP |
3255341 | Dec 2017 | EP |
2002174410 | Jun 2002 | JP |
3737184 | Jan 2006 | JP |
2007057226 | Mar 2007 | JP |
04595599 | Dec 2010 | JP |
101885690 | Aug 2018 | KR |
Entry |
---|
Machine Translation of Miao (CN 101509672 A) (Year: 2009). |
Machine Translation of Acosta Herrero et al (EP 3255341 A1) (Year: 2017). |
Number | Date | Country | |
---|---|---|---|
20210033279 A1 | Feb 2021 | US |