Gas burner for cooking appliances

Information

  • Patent Grant
  • 9835327
  • Patent Number
    9,835,327
  • Date Filed
    Thursday, August 2, 2007
    16 years ago
  • Date Issued
    Tuesday, December 5, 2017
    6 years ago
Abstract
The invention relates to a burner for gas-fired cooking appliances, with a structure comprised of: a body (10) defining a chamber (12) within which an injector (14) inputs the gas which, upon mixing with air, forms the gas-air combustible mixture; a ring (16) positioned over the body and provided with a periphery along which are arranged the combustible mixture outlet ports (18), and a circular plate (20) that closes the top of the burner. At least the burner ring (16) is made of a metal or a metal alloy and is coated with a thin layer of material having catalytic activity, which may be coated on a catalyst precursor porous support substrate.
Description
BACKGROUND OF THE INVENTION
(1) Field of the Invention

The present invention relates to gas-fired cooking appliances, in particular of household type, and regards specifically the burners for such appliances.


(2) Description of Related Art

As is well known, the combustion process that takes place in these appliances generates various noxious substances, such as nitrogen oxides (NOx), volatile organic compounds (VOC) and carbon oxides (CO and CO2).


The problem of eliminating or reducing these substances to improve the working conditions in cooking environments has been tackled for a long time with various technical solutions.


One of the known solutions provides for the use of so-called “catalytic” burners, i.e., burners in which a gas-air mixture is passed through a structure constructed or coated with a material that produces a flame-less combustion of the mixture. These burners act substantially as filters designed to absorb the combustion gases or produce an exothermic oxidation of the same, so as to eliminate the noxious substances resulting from combustion.


GB 2,347,362 discloses a burner of this type, with a structure made of ceramic material, such as cordierite, and the catalyst includes at least one metal selected from among platinum, rhodium, palladium and iridium, with the preferred metal being platinum. Cordierite is chosen because it displays a surface porosity necessary to achieve the deposition of the catalyst, thus increasing the active surface in the elimination of noxious gases. However, the construction of catalytic burners with a structure of ceramic material has not proved to be advantageous in household applications for various reasons, such as, for example, the fragility of the material, which is scarcely suitable for an object, such as a burner, consisting of a plurality of pieces which need to be frequently disassembled for cleaning and maintenance. In addition, the catalytic material is applied to only one part of the surface of the burner, particularly on the outlet surface of the structure, as it is believed it should act on the gaseous products of combustion, that is, after the combustion has occurred.


A similar solution is disclosed in JP 07091622, where the surfaces that come into contact with gas emissions are coated with catalyzing material to produce an oxidation-reduction of the same emissions.


The known catalytic burners act by eliminating the noxious substances produced by combustion because, as already mentioned, the catalyst is made to act downstream of combustion. Thus, the main advantage obtainable with the use of catalytic burners has been to facilitate the maintenance of the cleanness of the surfaces in contact with the flame, with the so-called self-cleaning burners. Examples of catalytic burners of this type are described in U.S. Pat. No. 3,817,689 and U.S. Pat. No. 3,921,913.


BRIEF SUMMARY OF THE INVENTION

The main objective of this invention is to provide a burner for cooking appliances, particularly of household type, that effectively resolves the problem of eliminating the noxious products of combustion, by bringing the air-gas mixture in contact with a catalytic surface before combustion takes place.


Another objective of the invention is to provide a burner of catalytic type that offers a greater thermal efficiency and reduces the energy required for combustion.


A further objective of the invention is to provide a burner of catalytic type whose structure is realized with metal materials suitable for use in household cooking appliances, particularly aluminium alloys, which ensure the required mechanical sturdiness.


These and other objectives of the invention will be achieved with a burner as described hereunder and with specific reference to the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The characteristics and advantages of the present invention will become clear from the following description, given by way of example and not by way of limitation, with reference to the accompanying drawings, wherein:



FIG. 1 is an exploded perspective view of a burner structure according to the invention;



FIG. 2 is a schematic cross section of the burner structure of FIG. 1;



FIG. 3 is a diagram illustrating the energy required to activate the catalytic reaction in the combustion process;



FIG. 4 is a diagram showing the quantities of catalyst that are activated to generate combustion as a function of the energy supplied.



FIGS. 5A and 5B each show a cross sectional view of a surface of the burner.





A burner according to the invention has a structure (FIG. 1) that substantially consists of: a body 10 defining a chamber 12, wherein an injector 14 inputs the gas that upon mixing with the air forms the combustible air-gas mixture; a ring-shaped element 16 on the upper side of the body, having a periphery provided with the combustion mixture outlet ports 18, and a burner-covering circular plate 20.


According to the invention, at least the ring-shaped element 16 is made of a metal or metal alloy, preferably an aluminium alloy such as Pyral (96% Al, 2% Mg, 2% Si), a material widely used in the production of gas-fired burners. Naturally, the body 10 and the circular plate can also be made from metal material or a metal alloy.


As is well known, the combustible mixture issues from the outlet ports 18 and is ignited by an ignition device (non shown), forming a crown of flames around the periphery of the burner. The heat generated by combustion is transmitted to the whole structure of the burner, which reaches a high steady-state temperature (in the order of several hundred degrees Celsius).


According to the invention, at least the ring 16 (FIG. 2) is coated with a thin layer of material having a catalytic activity, for the purpose of reacting with the gas-air mixture that flows out along the surface of the ring.


As shown in FIG. 5A, the thin layer of material 110 having catalytic activity is formed on a surface 120 of the burner. This surface 120 may be at least an underside surface of the burner-covering plate. As mentioned above, this surface 120 may also be on the ring 16. This surface may also be at least an internal surface of the burner body 10. As shown in FIG. 5B, a support layer 130 may be formed on the surface 120. The layer 130 may also be a buffer layer or substrate.


The coating material having catalytic activity is made up of metal oxides, either simple or mixed, in particular oxides of alkaline or alkaline-earth metals, that are coated on the burner surfaces by means of known procedures, for example by immersion in a catalyst bath.


To obtain a suitable coating, the surfaces can be, if necessary, prepared by forming on them the support layer 130 that serves as suitable precursor of the catalyst. When the burner is made of Pyral, which has a compact surface with low porosity, the surfaces can be prepared by coating them with an alumina layer AI2O3, for example by electrochemical oxidation, so as to form a buffer layer or substrate.


The catalysts used, which are active at the typical temperatures of household gas burners (200-4000 C), enable the gas-air combustible mixture to burn with a better combustion, reducing the production of noxious gases, while lowering the quantity of energy required for combustion, with the result of improving its efficiency and consequently reducing the output of noxious gases. In fact, the contact of the combustible mixture with the catalyst-coated and activated burner surfaces has the effect of preoxidizing the air-gas mixture within the burner body.


The combustion reaction requires considerable quantity of activation energy. This activation energy is considerably reduced in a burner coated with catalyzing material according to the invention.


As shown in the diagram of FIG. 3, the use of the catalyst makes it possible to lower the priming energy necessary to activate the combustion process.


The reduction of the combustion activation energy is due to the fact that the catalytic reaction brings about an increase in the quantity of fuel particles that acquire the energy necessary for combustion. Normally, the quantity of particles provided with such energy is represented by area A in the diagram of FIG. 4, while area B represents the additional quantity of particles that are activated by the catalytic reaction to generate combustion. Finally, area C represents the quantity of particles that do not have sufficient energy to take part in the reaction.

Claims
  • 1. A burner for gas-fired cooking appliances, the burner comprising: a burner body defining a chamber;a burner-covering plate positioned above the burner body;a ring-shaped burner element positioned between the burner body and the burner-covering plate, the ring-shaped burner element and the burner-covering plate defining an outlet between a periphery of the ring-shaped burner element and a periphery of the burner body; andan injector for introducing gas into the chamber of the burner body wherein the flow of gas from the injector draws air into the chamber from a surrounding environment from an air inlet to form a combustible gas-air mixture within the chamber, the combustible gas-air mixture being conveyed into a space defined between the ring-shaped burner element and the burner-covering plate;wherein at least the ring-shaped burner element is made of a metal or a metal alloy and is coated with a thin layer of material having catalytic activity,wherein the ring-shaped burner is configured such that the combustible gas-air mixture is conveyed over the material having catalytic activity and reacts with the material having catalytic activity upstream of the outlet to form a pre-oxidized air-gas mixture within the chamber of the burner body, the outlet between the periphery of the ring-shaped burner element and the periphery of the burner body configured to allow the pre-oxidized air-gas mixture to exit the chamber of the burner body for ignition outside of the chamber, andwherein the material having catalytic activity is one of simple metal oxides and mixed metal oxides.
  • 2. The burner of claim 1, wherein the material having catalytic activity is one of oxides of alkaline and oxides of alkaline-earth metals.
  • 3. The burner of claim 1, wherein the burner-covering plate is made of a metal or metal alloy, and at least an underside surface of the burner-covering plate is coated with a thin layer of the material having catalytic activity.
  • 4. The burner of claim 3, wherein the material having catalytic activity is one of oxides of alkaline and oxides of alkaline-earth metals.
  • 5. The burner of claim 1, wherein the burner body is made of a metal or metal alloy and at least an internal surface of the burner body is coated with a thin layer of the material having catalytic activity.
  • 6. The burner of claim 5, wherein the material having catalytic activity is one of oxides of alkaline and oxides of alkaline-earth metals.
  • 7. The burner of claim 1, wherein the burner is made of aluminum alloy.
  • 8. The burner of claim 1, wherein the burner is made of Pyral.
  • 9. The burner of claim 1, wherein the thin layer of material having catalytic activity is formed by immersion in a catalyst bath.
  • 10. A burner for gas-fired cooking appliances, the burner comprising: a burner body defining a chambera burner-covering plate positioned above the burner body;a ring-shaped burner element positioned between the burner body and the burner-covering plate, the ring-shaped burner element and the burner-covering plate defining an outlet between a periphery of the ring-shaped burner element and a periphery of the burner body; andan injector for introducing gas into the chamber of the burner body wherein the flow of gas from the injector draws air into the chamber from a surrounding environment through an air inlet to form a combustible gas-air mixture within the chamber, the combustible gas-air mixture being conveyed into a space defined between the ring-shaped burner element and the burner-covering plate;wherein at least the ring-shaped burner element is made of a metal or a metal alloy and is coated with a thin layer of material having catalytic activity,wherein the burner-covering plate is made of a metal or metal alloy, and at least an underside surface of the burner-covering plate is coated with a thin layer of material having catalytic activity,wherein the ring-shaped burner is configured such that the combustible gas-air mixture is conveyed along the underside surface of the burner-covering plate and along a surface of the ring-shaped burner element and reacts with the materials having catalytic activity upstream of the outlet to form a pre-oxidized air-gas mixture in the chamber of the burner body, the outlet between the periphery of the ring-shaped burner element and the periphery of the burner body configured to allow the pre-oxidize air-gas mixture to exit the chamber of the burner body for ignition outside of the chamber, andwherein the thin layer of material having catalytic activity on the ring-shaped burner element and the underside surface of the burner-covering plate is one of simple metal oxides and mixed metal oxides.
  • 11. The burner of claim 10, wherein the material having catalytic activity is one of oxides of alkaline and oxides of alkaline-earth metals.
  • 12. The burner of claim 11, wherein the burner body is made of a metal or metal alloy and at least an internal surface of the burner body is coated with a thin layer of the material having catalytic activity.
  • 13. The burner of claim 10, wherein the burner is made of aluminum alloy.
  • 14. The burner of claim 10, wherein the burner is made of Pyral.
  • 15. The burner of claim 10, wherein the thin layer of material having catalytic activity is formed by immersion in a catalyst bath.
  • 16. The burner of claim 10, wherein the ring-shaped burner is configured such that the combustible gas-air mixture reacts with the material having catalytic activity on the bottom surface of the ring-shaped burner before the combustible gas-air mixture is combusted by flowing outwardly along the bottom surface of the ring-shaped burner.
  • 17. The burner of claim 8, wherein a buffer layer of Al2O3 is disposed on the ring-shaped burner element and between the ring-shaped burner element and the material having catalytic active.
  • 18. The burner of claim 1, wherein a buffer layer of Al2O3 is disposed on the ring-shaped burner element and between the ring-shaped burner element and the material having catalytic active.
  • 19. The burner of claim 1, wherein the air inlet to the chamber is on a periphery of the burner body.
  • 20. The burner of claim 10, wherein the air inlet to the chamber is on a periphery of the burner body.
  • 21. The burner of claim 1, further comprising an ignition device for igniting the pre-oxidized air-gas mixture outside the chamber of the burner body.
  • 22. The burner of claim 10, further comprising an ignition device for igniting the pre-oxidized air-gas mixture outside the chamber of the burner body.
  • 23. The burner of claim 1, wherein at least one of the ring-shaped burner element and the burner-covering plate includes a plurality of tooth-shaped projections disposed on a peripheral edge of the at least one of the ring-shaped burner element and the burner-covering plate.
  • 24. The burner of claim 10, wherein at least one of the ring-shaped burner element and the burner-covering plate includes a plurality of tooth-shaped projections disposed on a peripheral edge of the at least one of the ring-shaped burner element and the burner-covering plate.
  • 25. The burner of claim 1, wherein the material having catalytic activity has an activation temperature in the range of 200-400° C.
  • 26. The burner of claim 10, wherein the material having catalytic activity has an activation temperature in the range of 200-400° C.
Priority Claims (1)
Number Date Country Kind
06120216 Sep 2006 EP regional
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2007/058032 8/2/2007 WO 00 5/7/2009
Publishing Document Publishing Date Country Kind
WO2008/028731 3/13/2008 WO A
US Referenced Citations (43)
Number Name Date Kind
1379538 Silva May 1921 A
1895032 Fisher Jan 1933 A
2044511 Ryschkewitsch Jun 1936 A
3088271 Smith May 1963 A
3473987 Sowards Oct 1969 A
3538908 Reid et al. Nov 1970 A
3817689 Capy Jun 1974 A
3885020 Whelan May 1975 A
3921913 Capy Nov 1975 A
3955556 Pangborn et al. May 1976 A
4008037 Hindin et al. Feb 1977 A
4018553 Baker et al. Apr 1977 A
4080150 Hunter et al. Mar 1978 A
4154568 Kendall et al. May 1979 A
4270896 Polinski et al. Jun 1981 A
4421476 Gulden et al. Dec 1983 A
4588373 Tonon et al. May 1986 A
4870824 Young et al. Oct 1989 A
4917599 Hasselmann Apr 1990 A
5169300 Chou et al. Dec 1992 A
5183401 Betta et al. Feb 1993 A
5328357 Riehl Jul 1994 A
5352114 Numoto et al. Oct 1994 A
5405260 Betta et al. Apr 1995 A
5511972 Betta et al. Apr 1996 A
5518697 Betta et al. May 1996 A
5746194 Legutko May 1998 A
5810577 Ledjeff Sep 1998 A
6015285 McCarty et al. Jan 2000 A
6145501 Manohar Nov 2000 A
6231991 Maloney May 2001 B1
6537065 Shirali et al. Mar 2003 B1
6638055 Carroni et al. Oct 2003 B2
6736634 Manohar et al. May 2004 B2
7040890 Todoli et al. May 2006 B2
7241137 Leinemann et al. Jul 2007 B2
7541005 Kulkarni et al. Jun 2009 B2
20030031972 Griffin et al. Feb 2003 A1
20030186181 Kang et al. Oct 2003 A1
20050112520 Todoli et al. May 2005 A1
20060141412 Masten et al. Jun 2006 A1
20060141413 Masten et al. Jun 2006 A1
20060196493 Serenellini Sep 2006 A1
Foreign Referenced Citations (16)
Number Date Country
19724810 Dec 1997 DE
19724812 Dec 1997 DE
19724813 Dec 1997 DE
1 512 909 Mar 2005 EP
2 347 362 Sep 2000 GB
2347362 Sep 2000 GB
55031257 Mar 1980 JP
56042003 Apr 1981 JP
57028907 Feb 1982 JP
57087517 Jun 1982 JP
60026211 Feb 1985 JP
60060411 Apr 1985 JP
61140715 Jun 1986 JP
02213607 Aug 1990 JP
7-91622 Apr 1995 JP
07091622 Apr 1995 JP
Non-Patent Literature Citations (2)
Entry
International Search Report dated Feb. 27, 2008 for International Application No. PCT/EP2007/058032.
Written Opinion of the International Searching Authority dated Feb. 27, 2008 for International Application No. PCT/EP2007/058032.
Related Publications (1)
Number Date Country
20100000515 A1 Jan 2010 US