The present invention relates to a gas burner system for food cooking appliances according to the preamble of claim 1.
Burner systems are known in the art which comprise two concentric burners, generally an outer one and an inner one, having a substantially circular shape.
Burner systems of the double burner type are also known which comprise two concentric burners that may be fed by independent control valves, so that the two burners can be used either together or separately in order to achieve good variability and a homogeneous distribution of the heat to be transferred to the cooking containers. As an alternative, both concentric burners may be fed by a single gas inlet duct, fitted with an associated tap, which simultaneously feeds the different intake channels supplying the air-gas mixture to the burners.
In addition, in the burner systems known in the art the gas may be mixed with primary air either above or below the cooking top on which the burner system is mounted.
For example, Italian patent No. IT 1232887 in the name of the same Applicant describes a gas burner system comprising two concentric burners wherein gas is mixed with primary air above the cooking top on which the burner system is mounted and through ducts operating as a Venturi tube. In order to ensure a uniform outlet of the air-gas mixture through the holes or vents of an outer burner of said concentric burners, wedge-shaped profiles are obtained on the underside of the caps covering the outer burner; however, such wedge-shaped profiles imply the drawback of requiring caps having a complex construction as well as an excessive and undesired height.
International patent application No. WO 2005/078342 describes a gas burner system for food cooking applications comprising a main body inside of which two distinct, non-communicating gas inlet ducts are obtained. Said inlet ducts reach the centre of the main body for feeding a central burner and an outer burner concentric to the central burner in an independent manner; in particular, a first nozzle for feeding the central burner branches off a first inlet duct, whereas a diverging pair of nozzles for feeding the outer burner branches off a second inlet duct. In addition, said gas burner system comprises three Venturi effect chambers: a first central chamber having a vertical axis, located above the first nozzle, and two other chambers having an inclined and diverging axis, located above the diverging pair of nozzles.
This solution suffers from several problems and drawbacks as well.
In particular, the fact that the burner feeding nozzles are central with respect to the main body of the gas burner system implies much difficulty in mixing primary air with gas. As a matter of fact, primary air must follow a winding path among the various components of the burner system, so that its gas mixing efficiency is inevitably reduced.
A further drawback of the above-described system is that the inclined and diverging axis of the nozzles and of the associated Venturi effect chambers causes much difficulty in directing the flames of the burner system upwards, i.e. towards the cooking containers. In particular, when using cooking containers having a spherical bowl-shaped bottom, the above-described burner system even require that the caps be replaced with other components having an appropriate profile. Therefore, such a solution also suffers from the drawback of requiring the use of a large number of components adapted to make up the entire burner system in order to ensure an adequate heating of different cooking containers; this complexity inevitably translates into higher costs.
Another drawback of said gas burner system is that the first central Venturi effect chamber having a vertical axis does not allow to limit the height of the central burner, and therefore of the gas burner system as a whole.
In this frame, it is the main object of the present invention to overcome the above-mentioned drawbacks.
In particular, it is the main object of the present invention to provide an improved gas burner system for food cooking appliances which allows to optimize the combustion efficiency of the burner system, thus making it more effective than the solutions of the prior art.
It is another object of the present invention to provide a gas burner system for food cooking appliances which facilitates the mixing of primary air with gas.
It is another object of the present invention to provide a gas burner system for food cooking appliances wherein the flames of the burner system can easily be directed upwards, in particular towards the cooking containers, without the need of using a large number of components adapted to make up the complete burner system in order to heat different cooking containers appropriately, thus also remarkably cutting down the costs of the gas burner system as a whole.
It is a further object of the present invention to provide a solution which allows to limit the height of the complete gas burner system for food cooking appliances.
In order to achieve such objects, the present invention provides a gas burner system for food cooking appliances incorporating the features set out in the appended claims, which are intended as an integral part of the present description.
Further objects, features and advantages of the present invention will become apparent from the following detailed description and from the annexed drawings, which are supplied by way of non-limiting example, wherein:
Referring now to
Burner system 1 also comprises a pair of substantially concentric burners 3, 4, said pair of burners 3, 4 comprising an outer burner 3 and an inner burner 4.
According to the embodiment of
On the outer perimeter of their upper edge, said outer burner 3 and inner burner 4 have main vents 5 for letting out and igniting the primary air-gas mixture suitable for heating a cooking container (not shown).
Burner system 1 shown in
It is however clear that different arrangements of burner system 1 according to the present invention are possible as well. For example, inner burner 4 may also comprise a double crown of main vents 5 (not shown in the drawings), thus obtaining a quadruple flame crown burner system 1.
Burner system 1 may also comprise secondary vents, smaller than main vents 5 and preferably arranged each between two main vents 5, which ensure flame propagation and stabilization, in particular as outer burner 3 and inner burner 4 are being ignited.
A first cap 6 is positioned on outer burner 3, while a second cap 7 is positioned on inner burner 4, the shape and dimensions of said caps 6 and 7 essentially matching those of said outer burner 3 and inner burner 4. Aiming at reducing the number of parts making up burner system 1 according to the present invention, first cap 6 is preferably provided in one piece adapted to be laid on outer burner 3. In particular, said caps 6 and 7 are symmetrical relative to a central axis A (visible in
As shown in particular in
Taking primary air from above cooking top 8 allows to avoid some problems which are often encountered in all those cases where primary air is taken from below a cooking top. Such problems may be caused by air flow disturbance, e.g. when opening or closing cabinet doors underneath burner system 1, or by primary air pollution due to the presence of a cooking oven underneath said burner system 1.
In accordance with the present invention, burner system 1 comprises a pair of Venturi effect chambers 10 having a first axis 10A inclined towards central axis A of said burner system 1, said pair of Venturi effect chambers 10 being obtained on the underside of outer burner 3. The angle of inclination of said first axis 10A relative to central axis A of burner system 1 is between 5° and 25°, preferably between 12° and 14°. Said pair of chambers 10 is adapted to direct the air-gas mixture flow coming from first sump 2A and from second sump 2B towards vents 5 of burners 3 and 4. Said inclination of said pair of Venturi effect chambers 10 allows to improve the combustion efficiency of burner system 1 according to the present invention considerably, thus making burner system 1 more efficient and powerful, the quantity of consumed gas being equal.
In
Such a positioning of chambers 10 allows to obtain an adequate mixing of primary air with the gas delivered by duct 2, and allows to optimize, without adversely affecting it, the flow of secondary air required for the proper operation of crowns 5A, 5B, 5C of main vents 5, in particular of second crown 5B and third crown 5C.
In a preferred embodiment of burner system 1 according to the present invention, said pair of nozzles 2C, 2D comprise a second axis 2E inclined towards central axis A of said burner system 1. In particular, said second axis 2E substantially coincides with first axis 10A of the pair of Venturi effect chambers 10.
As a consequence, the fact that the pair of nozzles 2C, 2D have the same angle of inclination as chambers 10 allows to improve even further the combustion efficiency of burner system 1 according to the present invention and thus, the power output of burner system 1 being equal, to reduce gas consumption.
Burner system 1 according to the present invention comprises dividing walls 11 provided on the underside of outer burner 3, for the purpose of closing primary air intake passages 9 and directing said primary air towards first sump 2A and second sump 2B. Consequently, said dividing walls 11 allow to improve the flow of primary air within first sump 2A and second sump 2B, as well as to separate the primary air flow from the secondary air flow appropriately.
Furthermore, the provision of dividing walls 11 on the underside of outer burner 3 is particularly advantageous because said dividing walls 11 can be obtained together with the other components of outer burner 3, in particular during the die casting process carried out in order to manufacture the latter.
By providing dividing walls 11 on the underside of outer burner 3, rather than on duct 2 or on first sump 2A and second sump 2B, it is also possible to:
As shown in
Venturi effect chambers 10 and inner burner 4 are connected together through a duct 12 extending under said inner burner 4.
In particular, a pair of passages 13 allow said duct 12 to be hydraulically connected to respective chambers 10, whereas a vent 14 allows duct 12 to be hydraulically connected to inner burner 4.
Therefore, duct 12 allows to canalize the primary air-gas mixture flowing in chambers 10 and to convey it towards inner burner 4, so that it can flow out through the vents 5 of third crown 5C.
As a consequence, it is apparent that in burner system 1 according to the present invention two concentric burners 3, 4 can both be fed by gas inlet duct 2 alone, which simultaneously feeds the different intake channels that supply air-gas mixture to burners 3, 4.
The features of the present invention, as well as its advantages, are apparent from the above description.
In particular, the fact that first axis 10A of the pair of Venturi effect chambers 10 is inclined towards central axis A of burner system 1 provides a considerable improvement in the combustion efficiency of said burner system 1, thus making the latter more efficient and powerful, the quantity of consumed gas being equal.
A further advantage of gas burner system 1 for food cooking appliances according to the present invention is offered by the arrangement of chambers 10 on diametrically opposed sides with respect to axis A of burner system 1 in the regions of primary air intake passages 9, which ensures that primary air is mixed appropriately with the gas delivered by duct 2. Thus, the secondary air flow required for the operation of second crown 5B and third crown 5C of main vents 5 is not affected at all. It should also be pointed out that the present invention provides a first sump 2A/second sump 2B assembly having very small dimensions, which translates into a remarkable material saving.
The fact that the pair of nozzles 2C, 2D comprise a second axis 2E inclined towards the central axis A of said burner system 1, in particular that said second axis 2E has the same angle of inclination as chambers 10, allows to improve the combustion efficiency of burner system 1 even further, thus reducing gas consumption while obtaining the same power output.
Another advantage of burner system 1 according to the present invention is that the presence of dividing walls 11 allows to improve the flow of primary air within first sump 2A and second sump 2B, as well as to separate the primary air flow from the secondary air flow appropriately.
In addition, the fact that said dividing walls 11 are obtained on the underside of outer burner 3 allows to simplify the production cycle of burner system 1, thus reducing the quantity of material required for manufacturing sumps 2A, 2B and making sumps 2A, 2B easier to clean.
Another advantage of burner system 1 according to the present invention is that cap 6 having a third axis 6A substantially perpendicular to first axis 10A of said chambers 10 allows the air-gas mixture flow to be directed in the most appropriate manner towards first crown 5A and second crown 5B.
Furthermore, the particular inclination of chambers 10 and of first cap 6 allows to limit the height of inner burner 4 and thus of burner system 1 as a whole, in that vents 5 of second crown 5B can remain at an appropriate distance from vents 5 of inner burner 4.
The burner system described herein by way of example may be subject to many possible variations without departing from the novelty spirit of the inventive idea; it is also clear that in the practical implementation of the invention the illustrated details may have different shapes or be replaced with other technically equivalent elements.
Among the various possible modifications, second cap 7 may be provided with its underside inclined upwards in its distal development, i.e. in the direction extending outwards from axis A of burner system 1.
According to another possible modification, first cap 6 may be made up of two or more parts suitable for being laid on outer burner 3.
It can therefore be easily understood that the present invention is not limited to the above-described device, but may be subject to many modifications, improvements or replacements of equivalent parts and elements without departing from the inventive idea, as clearly specified in the following claims.
Furthermore, the teaching of the present invention is also applicable to a simple gas burner such as, for example, outer burner 3 shown in the drawings, by eliminating inner burner 4, second cap 7 and duct 12, with all of associated passages 13 and vents 14.
In conclusion, the present invention also relates to a gas cooking top for food cooking applications comprising at least one burner and/or one burner system having one or more of the above-described features.
Number | Date | Country | Kind |
---|---|---|---|
TO2007A0133 | Feb 2007 | IT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2008/000329 | 2/14/2008 | WO | 00 | 8/24/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/104845 | 9/4/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3858811 | Mizerak et al. | Jan 1975 | A |
5277576 | Hartung et al. | Jan 1994 | A |
5401164 | Yen | Mar 1995 | A |
6325619 | Dane | Dec 2001 | B2 |
6332460 | Paesani | Dec 2001 | B1 |
6780008 | Koch et al. | Aug 2004 | B2 |
7594812 | Armanni | Sep 2009 | B2 |
7661954 | Harneit | Feb 2010 | B2 |
7901205 | Trochou | Mar 2011 | B2 |
20010010897 | Dane | Aug 2001 | A1 |
20030228550 | Koch et al. | Dec 2003 | A1 |
20050277079 | Wu | Dec 2005 | A1 |
20070141521 | Armanni | Jun 2007 | A1 |
20070218414 | Harneit | Sep 2007 | A1 |
20080206697 | Trochou | Aug 2008 | A1 |
20090047611 | Armanni | Feb 2009 | A1 |
20100279238 | Harneit | Nov 2010 | A1 |
20100319677 | Lacche | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
412372 | Apr 1971 | AU |
547098 | Dec 1959 | BE |
392522 | Mar 1924 | DE |
3918722 | Nov 1990 | DE |
10315343 | Oct 2004 | DE |
0485645 | May 1992 | EP |
0552135 | Jul 1993 | EP |
1120603 | Aug 2001 | EP |
1132685 | Sep 2001 | EP |
1531304 | May 2005 | EP |
2236921 | Oct 2010 | EP |
432193 | Nov 1911 | FR |
2404803 | Apr 1979 | FR |
2414681 | Aug 1979 | FR |
2223302 | Apr 1990 | GB |
2233444 | Jan 1991 | GB |
2280743 | Feb 1995 | GB |
61 086507 | May 1986 | JP |
2002317935 | Oct 2002 | JP |
2002333108 | Nov 2002 | JP |
2002333109 | Nov 2002 | JP |
2003090518 | Mar 2003 | JP |
2005156087 | Jun 2005 | JP |
WO 2005078342 | Aug 2005 | WO |
WO 2006051368 | May 2006 | WO |
WO 2007012766 | Feb 2007 | WO |
WO 2008104831 | Sep 2008 | WO |
WO 2008104845 | Sep 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20100319677 A1 | Dec 2010 | US |