Information
-
Patent Grant
-
6688882
-
Patent Number
6,688,882
-
Date Filed
Monday, December 23, 200222 years ago
-
Date Issued
Tuesday, February 10, 200421 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Coats & Bennett, P.L.L.C.
-
CPC
-
US Classifications
Field of Search
US
- 431 354
- 431 350
- 431 268
- 431 266
- 431 351
- 239 5533
- 239 567
- 239 4163
- 239 552
- 239 568
- 239 554
- 126 39 R
- 126 39 E
- 126 39 N
- 126 39 K
-
International Classifications
-
Abstract
A gas burner forces a premixing of the incoming gas with ambient air by moving the front face of the gas orifice upstream from the normal location and spacing it from the front face of the venturi portion of the burner. The premix air is pulled through the gap formed thereby and enters the venturi section with the gas via a central opening. Primary mixing air flows through separate opening(s). Both the gas and the premix air flow through the central opening, and the premix air at least partially combines with the gas before the primary air combines with the gas in the venturi. The combination of the gas, the premix air, and the primary air the routed to the output ports for combustion. Such a burner combusts the gas with an efficiency factor of at least forty-five, and optionally at a rate of at least 30,000 Btu/hr.
Description
BACKGROUND OF THE INVENTION
The present invention generally relates to the field of commercial cooking devices, and more particularly to gas burners for commercial cooking devices with increased performance.
A wide variety of gas burners have been used over the years in commercial cooking devices (e.g., commercial stoves, boilers, and the like). One common approach is to supply natural gas to the burner at a pressure regulated down to a pressure of 4-8 inches of water, mix the natural gas with ambient air (primary air) at an upstream portion of the burner, and then route the gas/air mixture to a plurality of downstream burner ports for combustion. For some burner designs, proper combustion also requires additional air, referred to as secondary air, to be supplied to the combustion site from a path external to the burner; other burner designs do not require this secondary air.
One important aspect of gas burners is their ability to efficiently convert the chemical potential energy of the gas into useful heat through the combustion process. It has long been known that the proper mixing of air and gas prior to the ejection of the same from the burner ports is very important in achieving good combustion. If not enough/too much air is provided, then the combustion process is less efficient, resulting in wasted energy and/or increased cooking times. However, the control of the mixing process is viewed in the art as being rather unpredictable, particularly in the wide variety of circumstances encountered in real world installations. Typically, a single venturi is used to mix the primary air with the incoming gas. Frequently, a mechanism is provided just upstream of the venturi to allow the operator to manually adjust the airflow for optimum combustion, such as by providing a variable shutter arrangement at the ambient air inlet. However, this has proved less than ideal in practice, given the myriad of other items vying for the operator's attention in the real world. In addition, such single venturi burners are typically limited as to their maximum heat output. Another approach is supply the burner with a preset mixture of air/gas from a canister, rather than relying on on-location mixing with ambient air. However, reliance on premix canisters is both cumbersome and frequently cost prohibitive.
Therefore, there remains a need for alternative burner designs, particularly alternative burner designs that are efficient and/or are able to produce more useful heat from a readily available gas supply.
SUMMARY OF THE INVENTION
The present invention is directed to an improved gas burner design and a method of operating the same. The burner of the present invention utilizes a unique approach for combining the gas and ambient air on-site to produce a more efficient and/or more productive combustion process. To do so, the present invention forces a premixing of the incoming gas with ambient air by moving the front face of the gas orifice upstream from the normal location and spacing it from the front face of the venturi portion of the burner. The air used for the premixing is pulled through this gap and enters the venturi section with the gas. Additional ambient air, the primary air, flows into the venturi via separate openings spaced from the gas/premix air opening, and then combines therewith in the venturi.
In one embodiment, the burner has a main burner body with a plurality of output ports towards one end and an opposing input end, with the venturi therebetween. A central opening is disposed on the upstream side of the venturi. The gas orifice outputs gas at a front face disposed upstream and spaced from this central opening. In addition, other opening(s), called the primary opening(s), are disposed on the upstream side of the venturi and spaced from the central opening. The primary mixing air flows through these primary opening(s) and combines with the gas in the venturi. Both the gas and the premix air flow through the central opening and the premix air at least partially combines with the gas before the primary air combines with the gas. The combination of the gas, the premix air, and the primary air the routed to the output ports for combustion. The central opening and the primary openings may advantageously be provided by a restricting plate rotatably moveable with respect to the input end. A mounting bracket may be connected to the restricting plate to support the gas orifice body in spaced relation to the central opening. Such a burner combusts the gas with an efficiency factor of at least 45, and optionally at a rate of ≧30,000 Btu/hr. In some embodiments, the burner combusts the gas at a rate of approximately 40,000 Btu/hr with an efficiency factor of at least 50.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
shows a partially exploded perspective view of one embodiment of a burner according to the present invention with the orifice removed.
FIG. 2
shows a front face side view of the burner of
FIG. 1
in an assembled condition, also with the orifice removed.
FIG. 3
shows another side view of the burner of
FIG. 1
with the orifice.
FIG. 4
is a more detailed view of a portion of the burner of
FIG. 3
, and shows the gas and air flow paths.
DETAILED DESCRIPTION OF EMBODIMENT(S) OF THE INVENTION
The present invention generally relates to the field of commercial cooking devices, and more particularly to gas burners for commercial cooking devices. The present invention modifies the input to a conventional commercial burner body so that the incoming gas is subjected to a premixing with air before being subjected to the main air/gas mixing in the venturi. For simplicity, the following discussion will use a natural gas burner as an illustrative example of a gas burner for a cooking device, but it should be understood that the invention is not limited to using natural gas and may be used with propane, liquefied natural gas, and other fuels known in the commercial cooking industry.
One embodiment of the burner is shown in
FIGS. 1-4
, and generally indicated at
10
. The burner
10
includes a main body
20
, a restricting plate
70
, and an orifice
90
. The main body
20
includes a head section
22
, a venturi section
40
, and an input
30
. The head section
22
is a generally cylindrical body with an optionally open center area. The head section
22
is preferably symmetric about a generally vertical axis
28
, with a plurality of output ports
24
disposed at various positions about the periphery of the head section
22
. These output ports
24
are preferably oriented generally horizontally and are preferably regularly spaced about the periphery of the head section
22
. The upper portion of the head section
22
may optionally include an overhanging flange
26
that acts to prevent drippings and other contaminants from falling into, and thereby clogging, the output ports
24
. The annular body formed by the head section
22
is hollow, with the output ports
24
opening into a common inner chamber (not shown).
The venturi section
40
includes a downstream portion
42
and an upstream portion
44
. The downstream portion
42
connects to the head section
22
at the lower portion thereof and extends generally horizontally away from the head section
22
. The downstream portion typically takes the form of a gently expanding conical section about generally horizontal axis
48
. The upstream portion
44
is supported by the downstream portion
42
and flares out from the relatively narrow diameter of the downstream portion
42
to a substantially larger diameter at the input
30
of the main body
20
. Like the head section
22
, the venturi
40
is hollow, with a central passage
50
in the upstream portion
44
and downstream portion
42
that operatively connects to the inner chamber of the head section
22
. The face
46
of the upstream portion
44
of the venturi
40
typically forms the input
30
of the main body
20
. This face
46
may include “bow-tie” shaped aperture
52
with a generally round center section
54
and two opposing arc-shaped lobes
56
. In addition, the face
46
may optionally include a tapped hole for accepting a screw
60
as described further below.
The main body
20
of the burner
10
may be made from any suitable material, such as by cast iron, etc. Preferably, the head section
22
and the venturi section
40
are integrally formed. In addition, the main body
20
may optionally include a locating pin
29
if desired to aid in locating and securing the burner
10
in position within a commercial cooking device.
It should be noted that the main body
20
as described above is a known commercially available product utilized in product number 1182193, available from Southbend Company of Fuquay-Varina, N.C., rendering further discussion of the details of its configuration and operation unnecessary for understanding by one of ordinary skill in the art. While some details of the main body
20
have been described to aid in understanding the present invention, these details are not intended to be limiting unless directly claimed. The inventive approach of the present invention focuses on modifications to burner designs that employ similar combustion-related principles as used in the main body
20
described above.
For the embodiment of
FIGS. 1-4
, a restricting plate
70
is disposed just upstream of the main body
20
on the input end. The restricting plate
70
includes a main section
72
disposed generally parallel to the face
46
of the venturi section
40
and bordered by a flange
74
that extends perpendicular thereto. The flange
74
extends around a corresponding flat outer section of the venturi section
40
of the main body
20
. The main section
72
includes a central opening
76
and two arc-shaped primary openings
78
disposed radially outward from the central opening
76
and disposed opposite each other. The central opening
76
is preferably round in shape, with a relatively sharply radiused inwardly protruding lip. The primary openings
78
are preferably sized and shaped to match the lobes
56
of the face
46
of the venturi section
40
. The restricting plate
70
is rotatably secured to the main body
20
by screw
60
; loosening screw
60
allows the restricting plate
70
to be rotated, while tightening screw
60
allows the restricting plate
70
to be locked in place relative to face
46
. It is advantageous to size primary openings
78
and lobes
56
so that rotating the restricting plate
70
has the effect of increasing or decreasing the flow of primary air
120
to the venturi
40
. Due to this shuttering action, the restricting plate
70
is sometimes referred to as a shutter in the art. The restricting plate
70
may be made from any suitable material known in the art, such as steel.
The orifice
90
includes an orifice body
92
with a central passage ending at an orifice port
94
at the front face
96
of the orifice body
92
. The front face
96
may meet the periphery of the orifice body at a chamfer section. The gas supply is connected to the upstream end of the orifice body
92
, and the gas flows through the orifice body
92
and out the orifice port
94
. These type of orifice bodies
92
, and their operation, are well known in the art.
In the prior art, the orifice
90
was mounted directly to the restricting plate
70
, with the orifice body
92
extending through the central opening
76
. As such, the gas ejected by the orifice
90
was injected directly into the venturi section
40
where it mixed with the primary air
120
flowing through the outer openings
78
. This combined flow then was routed to the output ports
24
on the main body
20
for combustion.
In contrast, the burner of the present invention
10
has the front face
96
of the orifice
90
spaced away from the central opening
76
so that both ambient air and gas
100
enter the main body
20
through the central opening
76
. One approach to spacing the front face
96
of the orifice
90
from the central opening
76
is to locate the orifice
90
upstream from the main section
72
of the restricting plate
70
via a mounting bracket
80
portion of the restricting plate
70
. The mounting bracket
80
may take any suitable shape, but the simple inverted U-shape shown in the Figures is believed advantageous. Such a bracket
80
should include a support hole
82
, aligned with the central opening.
76
, for engaging and holding the outer surface of the orifice body
92
. In such an arrangement, the front face
96
of the orifice
90
is supported in a location upstream of the central opening
76
and aligned therewith, with a gap
105
formed between the orifice body
92
and the restricting plate
70
. Through the action of the gas ejection, etc. ambient air is pulled into the central opening
76
through this gap
105
. Thus, both gas
100
and ambient air flow through the central opening
76
. To differentiate this air flowing through the central opening
76
from the primary air
120
flowing through the primary openings
78
, the air flowing through the central opening
76
will be referred to herein as the “premix air”
110
. It is believed that the gas
100
mixes, or combines, at least partially with this premix air
110
before the combination is further combined with the primary air
120
in the passage
50
of venturi section
40
of the main body
20
. The combined gas
100
, premix air
110
, and primary air
120
, collectively
130
, is then routed to the output ports
24
for combustion.
The burner
10
may have a venturi
40
of approximately 5½ inches long, a gap
105
of 0.125 inch, with a central opening
76
of 0.468 inch diameter, and an orifice
90
with an outer diameter of 0.438 inch, an overall length of about {fraction (7/10)} inch, with an approximately 45°×¼ inch chamfer, and a port
94
of approximately 0.104 inch corresponding to a #37 drill bit. Such an orifice
90
is available from Southbend Company under part number 1008737. Of course, these dimensions of the gap
105
and the orifice are not intended to be limiting, but merely illustrative of one functional embodiment of the burner
10
of the present invention. It is believed that the gap
105
should be of a size that is approximately one-half the difference in size between the periphery of the orifice
90
and the size of the central opening
76
, with a slightly smaller gap
105
for orifices with small ports
94
, and a slightly larger gap
105
for orifices with larger ports
94
.
The burner
10
of the present invention provides increased performance over prior art burners of the same general class (i.e., atmospheric burners, of which Bunsen type burners are a subclass). That is, preferred embodiments of the present invention are more efficient and/or are able to produce more useful heat than prior art designs. One convenient measure of the efficiency of gas burners is to compare the amount of Btu in the gas being supplied to the burner (Btu
in
) to the amount of heat input to a water pot placed over the burner (Btu
pot
). The value of one hundred times the ratio Btu
pot
/Btu
in
represents the efficiency of the burner, and the term “efficiency factor” will be used herein to refer to this value. A test for efficiency can be carried out using the test method described in ANSI Z83.11 Thermal Efficiency 2.22. Prior art burners typically convert less than 40% of the Btus from the gas into useable heat at higher Btu levels (i.e., ≧⅔ of their maximum Btu output level). As such, the prior art burners have an efficiency factor of at most forty, resulting in a limited maximum production of about 26,000 Btu/hr or less of useful heat. In contrast, the burners
10
of the present invention are able to operate with an efficiency factor of at least forty-five, with an useful output of at least 30,000 Btu/hr. Indeed, some embodiments of the burner
10
are able to operate with an efficiency factor of at least sixty, with an useful output of at least 55,000 Btu/hr, but values of fifty and 40,000 Btu/hr are more typical. This increase in efficiency results in decreased fuel costs and overall energy conservation. In addition, the increase in useful output allows for faster heating, thereby reducing cooking times. As such, the burners
10
of the present invention are not only beneficial to the users thereof, but also are helpful to the nation as a whole by reducing energy usage.
The discussion above has assumed that the burner
10
includes a restricting plate
70
distinct from the main body
20
; however, the restricting plate
70
may alternatively be integral to the main body
20
, or omitted, although this is believed to be less advantageous. For instance, the central opening
76
and the outer opening(s)
78
may be distinct openings on the face
46
of the venturi section
40
and the mounting bracket
80
may attach directly to the main body
20
. Thus, the presence of the restricting plate
70
itself is not required, provided that the front face
96
of the orifice
90
is located upstream from and spaced from the central opening
76
.
The foregoing description and drawings describe and illustrate one or more embodiments of the present invention in detail. However, the present invention may be carried out in other specific ways than those set forth herein without departing from the essential characteristics of the invention. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive, and all changes coming within the meaning and equivalency range of the appended claims are intended to be embraced therein.
Claims
- 1. A gas burner for a cooking device, comprising:a main burner body having a plurality of output ports towards one end and an input end, with a venturi therebetween; a central opening disposed upstream of said venturi and supplying at least ambient air to said venturi as premix air; at least one primary opening disposed upstream of said venturi and spaced from said central opening, said primary opening supplying ambient air to said venturi as primary air; an orifice outputting gas at a front face, said front face disposed upstream and spaced from said central opening; wherein said primary air flows through said at least one primary opening and combines with said gas in said venturi; wherein gas and premix air both flow through said central opening, said premix air at least partially combining with said gas before said primary air combines with said gas; and wherein a combination of said gas, said premix air, and said primary air is output at said output ports for combustion.
- 2. The burner of claim 1 wherein said main burner body includes a generally cylindrical section extending along a generally vertical axis with said output ports disposed on an outer surface of said cylindrical section and oriented generally horizontally.
- 3. The burner of claim 2 wherein said venturi extends along a generally horizontal axis.
- 4. The burner of claim 1 further comprising a restricting plate rotatably moveable with respect to said input end, said restricting plate defining said central opening and said at least one primary opening.
- 5. The burner of claim 1 further comprising a mounting bracket connected to said input end and supporting said orifice in spaced relation to said central opening.
- 6. The burner of claim 1 wherein said combination of said gas, said premix air, and said primary air combusts with the aid of secondary air supplied external to said burner.
- 7. The burner of claim 1 wherein said burner combusts said gas with an efficiency factor of at least 45.
- 8. The burner of claim 7 wherein said burner combusts said gas with an efficiency factor of at least 50.
- 9. The burner of claim 1 wherein said burner combusts said gas at a rate of at least 30,000 Btu/hr with an efficiency factor of at least 45.
- 10. The burner of claim 1 wherein said burner combusts said gas at a rate of approximately 40,000 Btu/hr with an efficiency factor of at least 45.
- 11. The burner of claim 1 wherein said front face of said orifice is spaced from said central opening a distance of approximately one-half the difference between a size of said orifice and a size of said central opening.
- 12. The burner of claim 11 wherein said orifice includes a chamfer proximate said front face.
- 13. The burner of claim 1 wherein said at least one primary opening is distinct and separate from said central opening.
- 14. The burner of claim 13 wherein said at least one primary opening comprises at least a first and a second primary opening, and wherein said first primary opening, said second primary opening, and said central opening are distinct and separate from each other.
- 15. The burner of claim 14 further comprising a restricting plate rotatably moveable with respect to said input end, said restricting plate defining said central opening, said first primary opening, and said second primary opening.
- 16. A method of generating heat for a cooking device, comprising:providing a burner having: a main burner body having a plurality of output ports towards one end and an input end, with a venturi therebetween; a central opening disposed upstream of said venturi; at least one primary opening disposed upstream of said venturi and spaced from said central opening; an orifice having a front face disposed upstream and spaced from said central opening; supplying ambient air to said venturi via said primary opening as primary air and combining said primary air with said gas in said venturi; supplying ambient air to said venturi via said central opening as premix air and supplying gas to said venturi via said central opening; at least partially combining said premix air with said gas before said primary air combines with said gas; and routing a combination of said gas, said premix air, and said primary air to said output ports for combustion.
- 17. The method of claim 16 wherein said main burner body includes a generally cylindrical section extending along a generally vertical axis with said output ports disposed on an outer surface of said cylindrical section and oriented generally horizontally.
- 18. The method of claim 16 further comprising combusting said gas with an efficiency factor of at least 45.
- 19. The method of claim 18 further comprising combusting said gas with an efficiency factor of at least 50.
- 20. The method of claim 16 further comprising combusting at a rate of at least 30,000 Btu/hr with an efficiency factor of at least 45.
- 21. The method of claim 20 further comprising combusting at a rate of approximately 40,000 Btu/hr with an efficiency factor of at least 45.
- 22. The method of claim 16 further comprising locating said front face of said orifice a distance away from said central opening, wherein said distance is approximately one-half the difference between a size of said orifice and a size of said central opening.
US Referenced Citations (4)
Number |
Name |
Date |
Kind |
3063494 |
Meyer |
Nov 1962 |
A |
3627462 |
Lotter |
Dec 1971 |
A |
6079402 |
Gort et al. |
Jun 2000 |
A |
6244263 |
Schlosser et al. |
Jun 2001 |
B1 |
Foreign Referenced Citations (1)
Number |
Date |
Country |
3118011 |
Nov 1982 |
DE |