The present invention relates to the field of gas burners that are used in the home. Specifically, these burners are used on surface units in household gas cooking appliances.
Atmospheric gas burners commonly used as surface units in household gas cooking appliances generally come in different sizes. The actual physical size of the burner as well as its energy output, which is referred to as BTU's, (British thermal units) are two of many design elements that are used to size the gas burners. The various burner sizes are needed to cook the myriad number of food items that are cooked in different sizes and shapes of cooking containers to satisfy the countless taste requirements of the population.
Gas burners have typically a maximum energy output, which is specified in BTU's, and a minimum energy output, also specified in BTU's. To regulate this energy output the gas flow to each burner is controlled by its own individual gas valve, usually one gas valve controls the gas flow to one gas burner. Manipulation of the burner's gas valve controls whether the burner is operating at its maximum or minimum energy output as well as an infinite number of adjustments between these extreme energy flows.
Generally, the current state of the art of surface mounted gas burners permit a minimum flow adjustment that is at fifteen percent (15%) of the maximum flow adjustment. There are burners, however, that have a minimum adjustment less than fifteen percent (15%) of the maximum flow adjustment and there also are burners that have a minimum energy flow setting that is greater than fifteen percent of the maximum flow adjustment. Therefore, in order to perform a cooking operation that requires a small BTU energy flow, such as melting chocolate without boiling and burning the chocolate, another burner is required that has a small burner body and its own discrete gas valve. That will make the low BTU energy flow requirement possible when the burner's valve is adjusted to its minimum flow setting.
The current state of the art in atmospheric gas burners for surface units of household cooking appliances limits the maximum and the minimum energy flows of the burner by the physical size of the burner body. A large burner body will allow a high BTU energy flow at the maximum flow setting of the burner valve and, although this high energy flow may be a desired feature, the large burner body required for this high energy flow limits low BTU energy flow at the minimum flow setting to a setting that may be higher than the desired cooking results.
In general, the current state of the art of surface mounted gas burners permit a minimum flow adjustment that is at fifteen percent (15%) of the maximum flow adjustment. There are burners, however, that have a minimum adjustment less than fifteen percent (15%), and there also are burners that have a minimum energy flow setting that is greater than fifteen percent (15%). In order to perform a cooking operation that needs a small BTU energy flow (low flame), such as the melting of chocolate (without boiling and burning the chocolate), the use of another burner with a small burner body and it's own discrete gas valve that will allow a low BTU energy flow, when the burner's valve is adjusted to it's minimum flow setting, would be required.
But the limit in BTU energy flow range remains dependent on the physical size of the burner body. A large burner body will allow a large BTU energy flow at the burner valve's maximum flow setting but limit the low BTU energy flow setting to a higher flow than desired for a particular cooking requirement. A burner with a small body may be able to give the desired low BTU energy flow setting when its gas valve is adjusted to the minimum flow setting, but in turn, limit the large BTU energy flow to a smaller flow than desired for a particular cooking requirement.
The following presents a summary of the invention, in order to provide a fundamental understanding of some of the features of the invention. This summary is not a broad overview of the invention. It's purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented later.
In accordance with an aspect of the present invention, a burner assembly is presented with two separate burner bodies, an inner burner body and an outer burner body, where the inner burner body is centrally located within the burner assembly and also centrally located within the outer burner body.
In accordance with another aspect of the present invention, the centrally located burner body of the burner assembly is much smaller than the outer burner body. This difference in size makes it possible to have a greater range in maximum and minimum BTU energy output.
In accordance with yet another aspect of the present invention, the inner and outer burner bodies form an assembly that includes a top side, a bottom side, and a burner cap having a top side and a bottom side. The bottom side of the cap is configured to join with the top side of the outer burner body.
In accordance with a further aspect of the invention, a cover may be installed on the top side of the burner cap and above the inner burner body. This cover may have a transparent or translucent insert that allows the visual observation of the flame on the inner burner body. This cover, when installed, will also more evenly distribute and disperse the heat from the inner burner when the inner burner is operating by itself.
In accordance with yet a further aspect of the invention, the burner assembly includes a mixing cup with orifice fittings to supply gas to the two burner bodies. The mixing cup is in fluid communication with a gas valve that allows the regulation of a gas supply to both the inner and outer burner bodies and therefore regulate the maximum and minimum BTU energy output of both burner bodies.
Other objects, advantages, novel features and various ways in which the principles of the invention may be employed and the present invention is intended to include all such aspects and their equivalents will become apparent from the following detailed description of the invention when considered in conjunction with the drawings and appended claims accompanying the patent.
U.S. Pat. No. 7,040,890 B2 by Silvano Todoli May 9, 2006 describes a gas burner for domestic cooking appliances with a bowl-shaped body, a toothed crown with a plurality of flame ports and an upper cap. There is no mention of five flame rings, as in the current invention nor is there mention of a transparent, heat resistance portion of the burner cap, as in the current invention.
U.S. Pat. No. 6,991,454 B2 by Gore et al. Jan. 31, 2006 reveals a gas burner that simulates a wood burning fire, including a glowing ember effect. The current invention is designed for a conventional oven or range, not for a fireplace.
U.S. Pat. No. 6,951,455 B2 by Jacob Goldman Oct. 4, 2005 shows a system for utilizing a burner with pressurized gas and forced air to burn gas to provide heat for heating and drying purposes such as industrial kilns and drying furnaces. Again, the current invention is used with a gas oven or range found in a kitchen.
U.S. Pat. No. 6,939,126 B2 by Michael Boyes, Sep. 6, 2005 entitled “Gas Burner” describes a gas burner for use in a domestic heating appliance. Prior such devices were fabricated using welds, which fail over prolonged use. The current invention is not used for such domestic heating applications.
U.S. Pat. No. 6,830,045 B2 by Eddie Brock entitled “Gas Burner Module for a Cooking Appliance” shows a gas burner module having a base structure preferably formed from stamped steel upon which is secured at least one gas burner element and a gas orifice defining member in a predetermined alignment. The gas burner module is adapted to be mounted in an oven cavity. The current invention is designed for use on a range top and is substantially more complex than the Brock patent.
U.S. Pat. No. 6,780,009 B2 by Uwe Harneit entitled “Gas Burner Head Assembly” is an earlier patent designed by the inventor of the current patent. This invention has a burner head, a burner cap and a burner body, the burner head having 2 flame rings and one primary jet. The current invention has more than one flame ring, 2 primary jets and one secondary jet.
U.S. Pat. No. 6,764,303 B2 by Bernard Dane, et al. Jul. 20, 2004 entitled “Gas burner for a Cooker” reveals a gas burner for a cooker with a burner head having a frustoconical peripheral side wall and a multiplicity of slots forming flame orifices. This invention attempts to use the geometry of the frustoconical peripheral side to create two operating modes on the burner—a low setting, whereby the small flames remain contained beneath the cap and heat the cap to allow heat transfer to the cooking vessel, and a normal or high setting where the flames go around the cap and heat the cooking vessel directly. The current invention has several levels of settings due to the multiple flame rings not taught by this invention.
U.S. Pat. No. 6,736,631 by William Ferlin, et al. May 18, 2004 entitled “Sealed Gas Burner” teaches a sealed gas burner for a cooking range that has a venturi tube assembly which is attached directly to a range top of a cooking range. A burner cap releasably engages the burner cup and defines a plurality of burner ports. The burner ports can be cleaned by removing only the burner cap. This burner appears to only have one flame ring versus at least one main flame ring, and at least 2 secondary flame rings on the current invention. This invention is also permanently mounted to the range top, whereas the current invention can be removed.
U.S. Pat. No. 6,712,605 B2 by Paolo Moresco Mar. 30, 2004 entitled “Gas Burner for a Cooking Hob” shows a gas burner for a cooking hob that comprises a burner body with a plurality of openings for air; a flame dividing element which defines a gas injector, in conjunction with the burner body and air/gas mixing chamber, for injecting gas into the mixing chamber and a converging/diverging duct that defines a Venturi tube downstream of the gas injector for drawing air into the mixing chamber. The burner body, the flame-dividing element and the converging/diverging duct are in the form of a pressed sheet-metal casing. The current invention differs from this invention by consisting of a mixing cup, a burner body with at least one main flame ring, and at least 2 secondary flame rings and a burner cap, all of which are fabricated as separate components.
U.S. Pat. No. 6,679,699 B2 by Bernard Dane, et. al. Jan. 20, 2004 entitled “Gas burner for a Cooker” is similar to U.S. Pat. No. 6,764,303 B2 by Bernard Dane, et. al. Jul. 20, 2004 entitled “Gas burner for a Cooker” mentioned above by the same inventor. This invention also is limited to fewer settings than the current invention as mentioned supra.
U.S. Pat. No. 6,132,205 by Uwe Harneit by the same inventor as the current invention, describes a burner assembly with 3 flame rings and easy replacement of the gas jets without having to remove the unit from the appliance. The current invention is an improvement on this burner by including more flame rings and a see through window on top of the burner so a cook can see if the burner is active.
U.S. Pat. No. 6,067,978 by Erich J. Schlosser et al. May 30, 2000 entitled “Outdoor Cooking Apparatus with Improved Auxiliary Gas Burner” is an invention for a complete barbeque grill comprising a grilling housing and a gas burner mounted adjacent the grilling housing. The gas burner includes a burner body having a base chamber, a burner head having at least one air and fuel mixture exit port and venturii providing a passage between the burner head and the burner body for the air/fuel mixture. The current invention incorporates at least one main, and at least 2 secondary sets of holes for the flame rings. Also the current invention does not have a see through port on its burner cap as does the current invention.
The invention is better understood by studying the cited embodiment illustrated in the appended drawings. These drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope. The invention will be described and explained with additional specificity and detail through the use of the accompanying drawings:
Figure one shows an exploded view of the top flow burner assembly.
Figure two shows a side view of the top flow burner assembly.
Figure three shows a top view of the top flow burner assembly.
Figure four shows a first cross section of the top flow burner assembly.
Figure five shows a second cross section of the top flow burner assembly.
Figure six shows a perspective view of the internal structure of the mixing cup for the top flow burner assembly.
Figure seven shows an exploded view of the bottom flow burner assembly.
Figure eight shows a side view of the bottom flow burner assembly.
Figure nine shows a top view of the bottom flow burner assembly.
Figure ten shows a first cross section of the bottom flow burner assembly.
Figure eleven shows a second cross section of the bottom flow burner assembly.
Figure twelve shows a perspective view of the internal structure of the mixing cup for the bottom flow burner assembly.
Figure thirteen shows the flame ring intensity using varied step positions.
Figure fourteen A (14A) shows a detail view of the burner cap assembly, burner body interface, and flame rings of the outer burner showing the gas transfer conduit.
Figure fourteen B (14B) shows another detail view of the gas transfer conduit.
Figure fourteen C (14C) shows yet another detail view of the gas transfer conduit.
Figure fifteen A (15A) shows a bottom view of the burner body for a top flow burner in perspective.
Figure fifteen B (15B) shows a bottom view of the burner body for a bottom flow burner in perspective.
Figure sixteen shows a side view of the burner body.
Figure seventeen shows a top view of the burner body.
Figure eighteen shows a bottom perspective view of the secondary burner.
Figure nineteen shows a side view of the secondary burner.
Figure twenty A (20A) shows an exploded view of the burner cap assembly with a cover plate.
Figure twenty B (20B) shows an exploded view of the burner cap assembly with an insert.
Figure twenty C (20C) shows a perspective view of a simple burner cap.
Figure twenty D (20D) shows an exploded view of the burner cap assembly with a square insert.
Figure twenty E (20E) shows an exploded view of the burner cap assembly with a square insert and separate legs.
Figure twenty F (20F) shows an exploded view of burner cap assembly with a round insert.
Figure twenty-one A (21A) shows a cover plate with a circular cutout.
Figure twenty-one B (21B) shows a cover plate with a star shaped cutout.
Figure twenty-two shows a side view of the burner body for a reduced height burner.
Figure twenty-three shows a top perspective view of the burner body for a reduced height burner.
Figure twenty-four shows a top perspective view of another reduced height burner body.
Figure twenty-five shows a top perspective view of a burner body having six sides.
Figure twenty-six shows a top perspective view of a simple burner cap having six sides.
Figure twenty-seven shows a top perspective view of a burner cap assembly having six sides and an insert.
A cover plate (6) is mounted on top of the burner cap assembly (3). The number of flame rings that are necessary on an outer wall (181) of the main burner chamber (35) can be modified so as to provide the proper BTU capacity by revising the cross sectional area of a first slot or hole (21a) for the main flame ring (21) as shown in
Figure six and
Since common construction of the main gas jets (11) have the sizes of the orifices or primary gas flow openings (41) small in diameter, the velocity of the incoming fuel causes a low pressure zone, thereby suctioning the surrounding air and mixing it with the fuel.
In
In
In
In
In
Figure fourteen A (14A) displays the geometry of the required gas transfer channel (54). The gas transfer channel (54) allows the central cavity (102) of the burner body (2) to communicate with the exterior of the burner body (2), providing a flammable gas/air mixture to thusly provide a sustaining flame (24) for the first and second flame rings (21, 22). In the present invention the sustaining flame buttons (23) are located in close proximity to the gas transfer channel (54) and communicate with the main burner chamber (35). The location of the sustaining flame buttons (23) provide an ignition source for the gas/air mixture that is present within the gas transfer channel (54) and ignites the first flame ring (21). At least one sustaining flame hole or slot (24a) is provided between the main burner chamber (35) and the gas transfer channel (54). The gas transfer channel (54) is thusly isolated from the main burner chamber (35) excepting the sustaining flame slot or hole (24a) and a small gap (7) positioned between the bottom of the burner cap (74) and an upper wall of the transfer channel (54) which allows a small amount of communication between the main burner chamber (35) and the gas transfer channel (54) creating a sustaining flame (24) for the first flame ring (21).
The burner body (2) may have one or more of the required transfer channels (54). Figures eighteen and nineteen (18, 19) disclose the structure of a secondary burner (33). A secondary transfer tube (31) is attached to a spherically convex base (30) of the burner body (2) and terminates in an end cap (32). The end cap (32) has a diameter larger than that of the secondary transfer tube (31). At the interface of the end cap (32) and the secondary transfer tube (31), a small groove (52) is defined therein. Additionally, at the interface of the end cap (32) and the secondary transfer tube (31) a fifth series of holes (25a) define a fifth flame ring (25). There is at least 1 hole (25a) defined. The hole (25a) communicates with the secondary transfer tube (31) and a secondary mixing chamber (14), and allows a fuel/air mixture to pass therethrough.
The secondary burner (33) additionally has a sixth series of holes (104) defined. The sixth series of holes (104) communicate with the gas transfer tube (31) and allow the fuel/air mixture to pass therethrough, adding to the fifth flame ring (25). The fuel/air mixture also is captured by the groove (52) creating a sustaining flame thereby. The secondary burner (33) is positioned over the secondary jet (12) and the secondary inlet chamber (10). With the end cap (32) having a diameter larger than the secondary transfer tube (31), the fifth series of holes (25a), sixth series of holes (104), and the small groove (52) located in the secondary transfer tube (31) will not be clogged with debris.
As shown in
In
The ignition electrode (56) in
Ignition wires (49) in electrodes that are found in the industry today are partly fabricated from stainless steel. Stainless steel is known to be heat resistant to 1850° F. Another material commonly used for the ignition wires is ferritic FeCrAl alloy, which is known to be heat resistant to 2370° F. A well-known problem with stainless steel is that when stainless steel comes into contact with a salt solution, it begins to show signs of corrosion. Stainless steel is currently known to be used for the ignition plate (50) on “standard igniters.” The standard method of construction used in the industry is to either rivet or weld the ignition plate (50) and the ignition wire (49) together.
It is known in the engineering and scientific communities that stainless steel and FeCrAl alloys have different coefficients of expansion. Because of this, the cycling of heat and cold will eventually break the weld and allow corrosion to form between the ignition plate (50) and the ignition wires (49). By using only high value FeCrAl alloy both for ignition wire (49) and ignition plate (50) (with a melting point of over 2700° F., the ignition plate (50) and the ignition wire (49) are plasma welded together. This will prevent the current problem of the welds cracking due to different coefficients of expansion.
A method of equalizing the gas pressure and hereby equalizing the flame size circumferentially, is as follows and shown in
It is general practice to define the positional location of the first and second series of holes or slots (21a, 22a,) in angular measures. This would also be true of the eighth series of grooves (114), the ninth series of holes (116), and the seventh series of holes or slots (112). For illustrative purposes, the invention depicts the first series of holes or slots (21a) and the seventh series of slots (112) being separated by ten degrees (10°). The second series of holes (22a) is also shown in ten degree (10°) separation, but second series of holes (22a) is offset five degrees (5°) from the first series of slots (21a). The eighth series of grooves (114) is shown offset by five degrees (5°) from the first series of holes (21a).
In practice, the gas burner assembly (100) operates as follows and is shown in Figure thirteen (13). A user will turn the gas supply knob to a first position, allowing gas fuel to enter through the secondary gas transfer tube (20) and through the secondary jet (12) and the secondary inlet chamber (10) mixing with the air. The pressure from the gas line will allow the flammable gas-air mixture to flow through the secondary transfer tube (31) and then be ignited at the fifth series of holes (25a) creating the fifth flame ring (25)—
Another style of cook top allows air to flow to the burner from the inside of the cooking device. As shown in
In
In
In
As shown if
Figure fourteen A (14A) displays the geometry of the required gas transfer channel (54). The gas transfer channel (54) allows the central cavity (102) of the burner body (2) to communicate with the exterior of the burner body (2), providing a flammable gas/air mixture to thusly provide a sustaining flame (24) for the first and second flame rings (21, 22) (not shown). In the present invention the sustaining flame buttons (23) are located in close proximity to the gas transfer channel (54), and communicate with the main burner chamber (35) (not shown). The location of the sustaining flame buttons (23) provide an ignition source for the gas/air mixture that is present within the gas transfer channel (54) and ignites the first flame ring (21) (not shown). At least one sustaining flame hole or slot (24a) is provided between the main burner chamber (35) and the gas transfer channel (54). The gas transfer channel (54) is thusly isolated from the main burner chamber (35) excepting the sustaining flame slot(s) (24a) which allows a small amount of communication between the main burner chamber (35) and the gas transfer channel (54) creating a sustaining flame (24) for the first flame ring (21).
The secondary burner (33) additionally has a sixth series of holes (104) defined. The sixth series of holes (104) communicate with the secondary gas transfer tube (31) and allow the fuel/air mixture to pass therethrough adding to the fifth flame ring (25). The fuel/air mixture also is captured by the groove (52) creating a sustaining flame thereby. The secondary burner (33) is positioned over the secondary jet (12) and therefore the secondary inlet chamber (222), as shown in
Since the end cap (32) has a diameter larger than the secondary transfer tube (31), the fifth series of holes (25a), sixth series of holes (104), and the small groove (52) located in the secondary transfer tube (31) will not be clogged with debris.
Continuing with
The bottom side (74) of the burner cap (75) has a downward protruding boss (76) that is adapted to fit inside the inner wall (34) of the main burner chamber (35) of the burner body (2). A plurality of upward protruding bosses (80) on the top side (88) of the burner cap (75) creates a planar surface for a cover plate (6), as shown in
The cover plate (6) may be shaped similarly or differently to the burner body (2). The cover plate (6) is made from a dense material, that may have one or more differently shaped openings or holes (256) defined therein. The cover plate (6) additionally has a channel (36) defined therein circumscribing the opening(s) (256), which would allow a burner insert (4) to rest therein. The burner insert (4) may be made as a complete metallic structure, or as the preferred embodiment a transparent or translucent heat resistant structure. The burner insert (4) is shown mounted upon the cover plate (6) allowing visual observation of the flame of the secondary burner (33).
The burner body (2) additionally has vertical locators (42) where each vertical locator (42) has extensions (39) on their side edges that positionally locate the burner body (2) in the modified mixing cup (1). The vertical locators (42) and their extensions (39) are adapted to slide alongside the vertical flanges (238, 242) of the mixing cup (1), and prevent sideways tipping of the burner body (2) over the mixing cup (1). The mixing cup (1) is secured to the cooktop or range. The burner body (2) is placed upon the mixing cup (1) sealing the cooktop and preventing air, spilled food and debris from entering the interior of the cooktop or range. This forces the burner assembly (100A) to draw air from the interior of the cooktop or range.
The upwards protruding boss (218) has a first, and second slot, (248, 250) defined therein, where the first, and second slots (248, 250) are adapted to position the vertical locators (42) of the burner body (2) therein. The vertical locators (42) and their extensions (39) provide the secure centering of the primary jets (11) and therefore the primary gas flow opening (41), to the primary gas mixing chamber (13) and respectively the secondary jet (12) and secondary gas flow opening (44), to the secondary mixing chamber (14).
A method of equalizing the gas pressure and hereby equalizing the flame size circumferentially, is as follows and shown in
It is general practice to define the positional location of the first, and second, series of holes or slots (21a, 22a) in angular measures. This would also be true of the eighth series of grooves (114), the ninth series of holes (116), and the seventh series of holes or slots (112). For illustrative purposes, the invention depicts the first series of holes or slots (21a) and the seventh series of holes or slots (112) being separated by ten degrees (10°). The second series of holes (22a) is also shown in ten degree (10°) separation, but the second series of holes (22a) is offset five degrees (5°) from the first series of holes or slots (21a). The eighth series of grooves (114) is shown offset by five (5°) from the first series of holes or slots (21a).
While the previous disclosures define a burner that maybe used in the majority of appliances, there are instances where the gas burner assembly must be adapted to fit in a more confined area.
As can be seen in
The outer wall (181) of the main burner chamber (35) has at least a first series of slots (21a) creating at least a first flame ring (21). The drawings disclose a first and second series of holes or slots (21a, 22a) creating a first and second flame ring (21, 22) defined therethrough. The first series of slots (21a) are larger than the second series (22a) of holes. The slots or first series of holes (21a) are located on an upper portion (106) of the reduced height burner body (260). The first series of holes or slots (21a) provide for a flame that produces a higher BTU range than of the second series of holes (22a) alone
The number of flame rings that are necessary on an outer wall (181) of the main burner chamber (35) can be modified so as to provide the proper BTU capacity by revising the cross sectional area of a first slot or hole (21a) for the main flame ring (21). In all cases there must be at least one flame ring (21) that provides the high intensity BTU requirement. The burner body (260) is shown having a protruding edge (27) wherein the protruding edge (27) directs debris and spillover from cooking and onto the appliance top (5) (not shown). The main burner chamber (35) has at least one third hole or slot (23a) defined on an inner wall (78), which creates a sustaining flame button (23). The third hole or slot (23a) is of a small diameter so as to create a very small sustaining flame button (23). The third hole or slot (23a) is also located on the, upper portion (78) of the reduced height burner body (260). The first and second series of holes or slots (21a, 22a), and the third hole or slot (23a) all communicate with the main burner chamber (35) and provide an ignitable gas-air mixture.
In all other remaining aspects, the reduced height burner body (260) and (265) operates and is constructed similar to the burner body (2) disclosed previously.
Yet another reduced height burner body (265) can be seen in
In all other remaining aspects, this reduced height burner body (265) operates and is constructed similar to the burner bodies (2, 260) previously disclosed.
Although the foregoing includes a description of the best mode contemplated for carrying out the invention, various modifications are contemplated.
As various modifications could be made in the constructions herein described and illustrated without departing from the scope of the invention, it is intended that all matter contained in the foregoing description or shown in the accompanying drawings shall be interpreted as illustrative rather than limiting.