The present invention relates to a gas collection method and an apparatus capable of selectively singling out and collecting specific gases from gas to be processed containing plural kinds of gases. More particularly, the present invention relates to a gas collection method and an apparatus capable of selectively separating and collecting CO2 gas from gas to be processed with the use of an ionic liquid.
As technology for selectively separating and collecting from gas containing plural kinds of gases specific gases represented by CO2 gas, a variety of methods such as, for example, an alkanolamine method, a membrane separation method, and a chemical absorption method have been already made available. Recently, from the viewpoint of preventing global warming, technologies have been developed for collecting and removing CO2 gas effectively from exhaust gas emitted from facilities such as incinerator, and power plants.
Although the alkanolamine method (see, for example, Japanese Patent Application Laid-Open No.7-100334) represented by a scrubber is easy to develop on a large scale, and its use has become increasingly widespread, a problem exists insofar that there is a substantial loss of energy in the reproduction of a gas absorption liquid for use, and that accordingly the quality of the gas absorption liquid deteriorates to a significant degree. Further, the membrane separation method gives rise to a problem insofar that, while the membrane is expensive, its rate of gas collection is low. Moreover, the chemical absorption method entails a problem insofar that an absorption member made of a material like ceramics deteriorates easily, and the service life of the absorption member is correspondingly short.
Accordingly, an object of the present invention is to provide a gas collection method and an apparatus that is capable of collecting specific gases from gas to be processed effectively, in a high concentrations and with a modest loss of energy, a method and an apparatus that can further be applied widely to a variety of apparatuses ranging from a small scale to a large scale.
The gas collection method of the present invention for achieving the above-mentioned object is a gas collection method for separating and collecting specific gases from gas to he processed containing plural kinds of gases, characterized insofar that a liquid film is formed on a surface of a porous body in which a hydrophobic layer and a hydrophilic layer are formed, by means of moving thereon an ionic liquid that has a selective absorption capacity of specific gases; insofar that specific gas in the gas to be processed is absorbed into the liquid film by bringing pressurized gas to be processed into contact with the liquid film; insofar that by use of time difference in pressure the specific gas that has been absorbed into the liquid film is passed through the porous body and collected at a low pressure side; and insofar that once the liquid film has finished moving along the surface of the porous body it is collected in such a way as to release and collect the specific gas that has been absorbed into the liquid that has been collected.
The gas collection apparatus of the present invention for achieving the above-mentioned object is a gas collection apparatus for separating and collecting specific gas from gas to be processed containing plural kinds of gases, characterized insofar that it comprises: a collection apparatus main body supplied with pressurized gas to be processed; a porous body having a hydrophobic layer and a hydrophilic layer formed on a surface provided in the collection apparatus main body; and an ionic liquid supply means for forming thereon a liquid film by moving along the surface of the porous body an ionic liquid that has a selective absorption capacity of the specific gas.
According to the present invention, the liquid film is formed on the surface of the porous body by moving thereon an ionic liquid that has a selective absorption capacity of the specific gas, and specific gas in the gas to be processed is absorbed into the liquid film by bringing pressurized gas to be processed into contact with the liquid film. The specific gas absorbed into this liquid film is passed through the porous body by use of a difference in pressure and collected on a low pressure side, and once the liquid film has finished moving along the surface of the porous body it is collected, and the specific gas that has been absorbed into the liquid that has been collected is released and then collected. By means of a combination of the liquid film separation method and the physical absorption method the present invention enables the specific gas to be collected from the gas to be processed effectively in high concentrations. Further, because dissolution of the specific gas into the ionic liquid is a physical dissolution rather than a chemical dissolution, heating is not required for reproduction of the ionic liquid that has absorbed gas. In contrast, because nothing other than releasing the pressure is involved, the degree of loss of energy in the course of reproduction can be confirmed to a modest level. Moreover, the porous body is protected from clogging, and effective gas separation processing becomes possible.
Hereinafter, the preferred embodiment of the present invention will be described with reference to the accompanying drawings.
In
As shown in
The ionic liquid used in the present invention is a liquid called an ambient temperature molten salt, which is a solvent that is different from water or organic solvents. The ionic liquid exists in the form of a liquid in a range of 10-100° C. which is the ambient temperature, and the vapor pressure of the liquid is zero. The ionic liquid has a capacity of selective absorption on a gas/liquid contact face and in a dissolved state is capable of absorbing only a specific gas.
As such an ionic liquid, salts such as imidazolium salt, and pyridinium salt, pyrimidinium salt maybe used. For example, an imidazolium salt expressed by the chemical formula described below can display a selective absorption performance on CO2 because its anicn (PF6—) component is close to CO2. If an ionic liquid close to a specific gas whose anion component is nitrous oxide, methane or the like is selected, only that gas can be absorbed selectively from the gas to be processed, and thus only that specific gas can be separated from the gas to be processed containing plural gases. In the meantime, U.S. Pat. No. 6,579,343 has described ionic liquids which can be used and which have a selective absorption capacity of CO2.
Chemical formula for imidazolium
The present invention directs attention to the selective gas absorption capacity possessed by an ionic liquid and uses the ionic liquid as a medium for separating a specific gas. For example, because an imidazolium salt can secure a degree of dissolution that is about 100 times that of water, an imidazolium salt can enable CO2 with a molar ratio of 0.2 to be dissolved physically when it is brought into contact with CO2 at 10 atm. Thus, a large amount of CO2 can be absorbed by a small amount of imidazolium salt. Although, because conventional gas absorption with an amine solution or the like depends on chemical dissolution, a large amount of heating energy is required for heating and releasing gas that has been absorbed, because an ionic liquid executes dissolution physically, an ionic liquid can enable absorbed gas to be released only for example by releasing the pressure, and loss of energy is negligible.
According to the present invention, by moving ionic liquid that has a selective absorption capacity of a specific gas along the surface of the porous body 2 that has the hydrophobic layer 6a and the hydrophilic layer 6b, a liquid film 7 is formed and the specific gas in the gas to be processed is absorbed into the liquid film 7 by the selective absorption capacity of the ionic liquid by bringing pressurized gas to be processed into contact with this liquid film 7.
Next, the specific gas that has been absorbed into the liquid film 7 is induced to pass through the porous body 2 by use of a difference of pressure between the higher pressure side, in which pressurized gas to be processed flows to maintain a high pressure, and the lower pressure side, which is separated by the liquid film 7 and the porous body 2, and collection by the collection portion 10.
In contrast, after the liquid film 7 finishes moving along the surface of the porous body 2, it is collected by a collection portion 5b on the bottom portion and by releasing the pressure to release and collect specific gas the liquid thus collected is separated into gas and liquid by a separator 8. The ionic liquid thus collected is circulated through a feedback passage 9 so as to be used for formation of the liquid film 7 again.
According to the present invention, by means of a combination of the liquid film separation method and the physical absorption method specific gas can be collected effectively in high concentrations. In these circumstances, because the liquid film 7, formed in such a way that it moves along the surface of the porous body 2, is flowing, it always remains a fresh film condition and is able to separate specific gases effectively. Further, foreign matter, such as dust and dirt, in the gas to be processed never adheres to or is deposited on pores of the porous body 2 because it flows out, and stable liquid film separation processing can thus be secured over a long period of time.
With regard to the provision on the surface of the porous body 2 of the hydrophobic layer 6a and the hydrophilic layer 6b, a uniformly thin liquid film can be formed because a side of the surface that makes contact with the liquid film 7 has hydrophilic properties and a side that makes contact with the porous body 2 can block the ionic liquid that forms the liquid film 7 from passing through the porous body 2 because It demonstrates hydrophobic properties.
In the example illustrated in the drawings, gas to be processed is an upward flow which flows upwards within the porous body 2. In contrast, the ionic liquid is supplied from the supply portions 5a located on the top portion and as it forms the liquid film on the surface of the porous body 2 becomes a downward flow which moves downward by force of gravity. However, the movement of the ionic liquid along the surface of the porous body can also be achieved by blowing the liquid upwards by means of the gas to be processed.
The present invention enables a large amount of gas to be processed with only a small amount of ionic liquid because the liquid film 7 is formed by circulating the ionic liquid, thereby leading to a reduction in running costs.
As is evident from the above description, the present invention uses a combination of the liquid film separation method and the physical absorption method, according to which liquid film is formed on the surface of the porous body by moving thereon ionic liquid having a selective absorption capacity of specific gas, and the specific gas in the gas to be processed is absorbed into the liquid film by bringing pressurized gas to be processed into contact with the liquid film. After that, this specific gas that has been absorbed into the liquid film is passed through the porous body by use of a difference of pressure and collected, and after the liquid film finishes moving along the surface of the porous body, it is collected. The specific gas is released from this collecting liquid and collected. As a result, specific gas can be collected effectively in high concentrations and loss of energy can be limited to a modest level. Further, clogging of the porous body can be prevented and stable liquid film separation processing can thus be secured. A further advantage is that recovery processing can be carried out at a low cost because only a modest amount of ionic liquid needs to be recovered.
With use of the gas collection apparatus shown in
The concentrations of exhaust gas in (A)-(E) in the Figure were as follows.
It was verified that although N2 concentrations of gas to be processed (A) and exhaust gas (C) were both 4.25 L/min, the CO2 concentration the gas to be processed (A) was 0.75L/min while that of the exhaust gas (C) was 0.14L/min and that N2 gas was not absorbed but only CO2 gas selectively absorbed. As for the CO2 gas, it was verified that this could be collected effectively in high concentrations so that the CO2 gas concentration by liquid film separation with the porous body was 0.41 L/min (see collected gas (1)), and that by physical absorption was 0.2 L/min (see collected gas (2)).
Number | Date | Country | Kind |
---|---|---|---|
2005-301114 | Oct 2005 | JP | national |