This application is a continuation of and claims priority to PCT Application No. PCT/GB/2007/002731 titled Improvements in or Relating to Gas Container Assemblies and Couplings Therefor, filed Jul. 18, 2007, which claims priority to Great Britain Application No. 0614239.2, filed Jul. 18, 2006.
1. Field of the Invention
The present invention relates generally to gas container assemblies, and particularly to an improved coupling for interconnecting a gas container having an integral regulator with other equipment such as a flow meter, flow indicator or delivery apparatus.
2. Related Art
The present invention finds particular utility in the medical field, where it is frequently required to deliver a gas, such as oxygen, or a mixture of gases to a patient for inhalation. In such circumstances a large volume of gas is required, for which reason the container (usually in the form of a cylinder) is filled with gas under considerable pressure (for example between 137 and 300 bar) and the outlet is provided with a pressure regulator which delivers the gas to the delivery apparatus at a pressure suitable for such apparatus, typically in the region of 4 bar.
Basic gas cylinders for this purpose are simple containers or vessels with an on/off valve and a connection port by which the pressure regulator can be fitted thereto. The pressure regulator itself has an outlet connection to allow the delivery apparatus to be connected thereto.
One problem which has occurred frequently in the use of pressurized gas containers of this type, especially those delivery oxygen, is the risk of fires which are generally initiated by the introduction of hydrocarbons and/or debris at the high pressure interface between the cylinder and the external regulator. For this purpose gas canisters or cylinders with permanently fitted or integral regulators and flow meters have been developed over recent years. In this context, the term “integral” as applied to pressure regulators will be understood to include those which are attached in such a way that they are difficult to remove or impossible to remove without specialist equipment. The flow meter is required for many uses as it provides an accurate, metered flow of the gas based upon the stable pressure derived from the regulator downstream from which the flow meter is fitted. It will be appreciated that in the medical environment patients are prescribed a specific flow rate of gas not a specific pressure of gas, and the flow meter provides this controlled flow rate.
Although this meets the fire risk it has attendant disadvantages, not least of which are the economic penalties of complex equipment. A gas canister fitted with an integral regulator and flow meter is obviously more expensive to produce and involves a greater ongoing “carrying” cost than merely a plain gas canister or cylinder since the additional cost of providing the regulator and flow meter must be borne over the length of the life of the container. In this connection it will be appreciated that such gas canisters or cylinders are very robust and intended for repeated filling, for which purpose an infrastructure of refill stations and delivery and return operations have been developed. At the refill stations a large quantity of empty canisters are stored, filled, or ready for refill, and subsequent delivery to fresh destinations. Because there is a wide range of flow rates required for different gases and different medical conditions, as well as a range of differences between gas cylinders, such as those designed for infant use and those designed for adult use (infants typically require flow rates in the region of one tenth of the flow rates required by adults) as well as different capacities, this involves maintaining a wide range of cylinders of different sizes fitted with flow meters having different ranges of flow rates, and this naturally results in an increase in the costs of the operation.
It would be a valuable advantage, therefore, to be able to interchange at least the flow meter component of a gas cylinder in order to be able to make use of a standardized cylinder and regulator combination whilst nevertheless maintaining the opportunity to provide a wide range of flow rates without compromising the fire safety inherent in the use of an integral regulator.
According to one aspect of the present invention, therefore, a modular coupling system for pressurized gas containers, comprises a first coupler part adapted to be fixedly secured to a pressurized gas cylinder in a substantially non-removable manner and a second coupler part adapted to be fixedly secured to, or integrally formed with, a gas utilizer device or equipment such as a flow meter, conservor or other delivery apparatus, the said first coupler part being provided with valve closure means and the coupling system having venting means allowing escape of trapped pressurized gas upon removal of a gas utilizer device or equipment from a pressurized gas container before separation of the said two coupler parts takes place.
A conservor is a device which acts somewhat like a demand valve to deliver gas at a metered flow rate only during inhalation intervals thereby conserving the gas which would be wasted by a flow meter during exhalation.
It is considered important in the gas canister industry that the coupling between the cylinder and the regulator is maintained permanently connected in order to avoid contamination by being exposed to the atmosphere, and to avoid the leakage risk since the coupling between the regulator and the gas cylinder is a high pressure coupling. Because the coupling of the present invention vents to atmosphere before being released, it ensures that any dust or detritus in the area is blown clear before the final separation of the removable coupling part from the container assembly. It is also possible that the dimensions of the coupling parts may be so chosen that during the connection operation for connection of a utilizer device to the container assembly, the connecting motion acts to open a main closure valve of the assembly just before the seal is made so that a small escape of gas from the container (albeit at the regulated pressure in the region of 4 bar) flowing through the coupling can act to dislodge and remove any items of dust or detritus which might otherwise interfere with the operation of the unit.
In order to obtain permanent fixing of the first coupler part to a pressurized gas container, this latter may be fixable to a pressurized gas container by screw fixing means, welding or any other suitable technique.
Preferably the said first coupler part has a gas delivery valve resiliently biased to a closure position, the gas delivery valve having a valve-operating member in use by the second coupler part upon coupling together of the said two coupler parts. Conveniently, the said valve-operating member is a valve stem, the displacement of which causes opening or closing of the valve.
In one embodiment of the invention the coupler parts have a common axis and the said valve-operating member is displaceable axially thereof to effect opening or closure of the gas delivery valve, and the said second coupler part has a helical cam face causing relative axial movement of the said first and second coupler parts as they are turned with respect of one another about the said common axis.
In a preferred embodiment of the invention the coupler parts have a common axis and the valve-operating member is displaceable transversely thereof to effect opening or closure of the gas delivery valve as the two coupler parts are turned with respect to one another about the said common axis.
In either of the two above-mentioned embodiments the gas delivery valve is oriented in such a way that the closing displacement of the said valve-biasing means is reinforced by the pressure of the gas within the container.
The venting means is preferably linked to the gas delivery valve in such a way as to be opened by the same valve movement as closes the gas delivery valve itself. In this way a single action to separate the first and second coupler parts will both vent the coupling and close the valve, the venting taking place prior to mechanical separation of the two closure parts.
For this purpose the venting means may comprise a valve sealing member carried on a stem of the gas delivery valve such that opening of the gas venting means and closure of the gas delivery valve take place substantially simultaneously upon displacement of the single valve-operating member constituted by the safety valve stem. In a preferred embodiment this takes place in sequence; that is the valve closes, then ventilation takes place, and finally separation of the coupling parts occurs.
Since a single separating motion is able to remove the releasable part of the coupling (the said second coupler part) it is useful to have a further safety interlock member which retains the said first and second coupler members in their coupled positions against inadvertent separation thereof. This may take the form of a latch which may be manually displaceable from a latching position to a release position in order to allow relative displacement of the said two coupler parts to commence separation thereof for uncoupling.
According to a second aspect of the present invention, there is provided a pressurized gas container assembly of the type comprising a container with an integral flow regulator, having means for releasably coupling it to utilize equipment such as a flow meter, conservor, or delivery apparatus, the releasable coupling means comprising a first coupling part fixedly connected to or integrally formed with the gas container and a second coupling part fixedly connected to or integrally formed with the said utilizer equipment and being so formed that upon release of the second coupling part from the first coupling part a closure valve is automatically closed and the pressure within the releasable coupling means is automatically vented to substantially atmospheric pressure prior to mechanical separation of the two coupling parts of the releasable coupling means and removal of the utilizer device from the gas container assembly.
Preferably the first part of the releasable coupling means has a closure valve resiliently biased to a closed position and a valve-operating member connected by the second coupling part on connection thereof to the said first coupling part.
In a preferred embodiment of the invention the closure valve has a stem which is engaged by the second coupling part and displaced axially upon connection of the second coupling part to the first coupling part.
It is also preferred that the said second releasable coupling means has a first interlock device comprising an abutment member resiliently biased to an inoperative position in which it allows relative movement of the two parts of the coupling means in relation to one another, and displaceable against the resilient bias by gas under pressure within the second coupling part arriving from the closure valve upon opening thereof as a utilizer device is connected to the gas container.
The first interlock means ensures that the utilizer equipment cannot be inadvertently removed whilst the main closure valve of the container assembly is still open, as this could cause unwanted escape of a large amount of gas (itself creating a fire risk if the gas is combustible or a supporter of combustion, such as oxygen) and the forces involved could cause injury if coupling components were allowed to separate violently as by the rapid escape of gas. For this reason the coupling means includes cooperating components which will be described in more detail below, having flange and/or shoulder surfaces which remain in contact to hold the utilizer equipment to the container assembly until such time as the pressure within the coupling means has vented to substantially atmospheric pressure.
Thus, in this embodiment the said first interlock device comprises a pin one end of which enters a cavity or recess in the first part of the coupling means to limit the relative rotation of the first and second coupling parts about a common axis thereof when the gas pressure within the coupling means exceeds a threshold value set by the resilient bias acting on the pin.
It will be appreciated that the separating motion involves rotation of the body of the coupling unit, for which purpose it is turnable about an axis of relative rotation between a released position and an engaged position.
Such relative rotation between the two coupling parts between a released position and an engaged position may also involve an axial component of motion, and the mechanical interconnection of the two coupling parts is preferably such that relative axial displacement between these two takes place as the coupling is turned about the said axis of relative rotation between the two coupling parts. As mentioned above the seal between the two coupling parts is preferably brought into gas tight sealing operation as the utilizer equipment is turned about the said axis of relative rotation of the two coupling parts with respect to the container assembly between the said released position and the said engaged position of the coupling
A second interlock means may comprise a mechanical interlock member resiliently biased to an operative position and brought into engagement upon connection of the utilizer equipment to the container assembly at the engaged position which defines the connected condition of the equipment.
The said mechanical interlock member conveniently comprises a lock pin which, in use, enters a cooperating opening in one coupling part upon connection thereof and is manually displaceable, against the action of the resilient biasing means, to allow the coupling parts to turn with respect to one another about the said axis of relative rotation until further such relative rotation is prevented by the pressure sensitive first interlock means. The lock pin thus is provided on or carried by the first part of the two-part coupling.
In the preferred embodiment the said lock pin lies with its longitudinal axis in a substantially transverse orientation with respect to the said axis and one end thereof projects through an opening in a skirt portion of one coupling part until the coupling is in the engaged position.
Axial separation of the two coupling parts is resisted while the coupling is moving between the engaged and released positions thereof (as previously defined), by the interengagement of a part-circumferential radially outwardly projecting flange or shoulder on one part with a part-circumferential radially inwardly projecting flange or shoulder on the other part. At least a part of the contacting faces of these said flanges or shoulders on respective coupling parts are preferably inclined with respect to a plane orthogonal to, the said axis of relative rotation whereby to provide the said axial component of movement upon relative turning of the coupling parts with respect to one another.
According to one aspect of the present invention, therefore, a coupling for a pressurized gas container of the type comprising a container assembly having an integral flow regulator, for releasably coupling the container assembly to associated equipment such as a flowmeter, flow indicator or delivery apparatus, is provided with interlock means operable to prevent removal thereof from the container assembly until a closure valve of the container assembly has closed and the pressure within the coupling unit has vented to substantially atmospheric pressure.
Other systems, methods, features and advantages of the invention will be or will become apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the accompanying claims.
The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. Various embodiments of the present invention will be more particularly described, by way of example, with reference to the accompanying drawings, in which:
In the following description, numerous specific details are set forth in order to provide a more thorough description of the present invention. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without these specific details. In other instances, well-known features have not been described in detail so as not to obscure the invention.
Referring first to
The base unit 12 has a main body 16 from which the skirt portion 14 depends, and the main body 16 is provided with a central passage 17 (see
As can be seen in
The upper flat surface of the turret 57 of the base unit 16, through which the stem 19 of the main delivery valve 18 projects, also has an arcuate slot 31 for a purpose which will be described in more detail below.
As can be seen in
The skirt portion 34 of the coupling unit 13 also has a radial aperture 40 which interengages with a resiliently biased manually-operable lock pin 41 carried on the body portion of the base unit 12. This pin 41 is shown in more detail in
The coupling unit 13 also carries a pressure-sensitive interlock device which can be seen best in
The upper end of the cylindrical chamber 47 communicates via a passage 53 with a gallery 54 in communication with a central opening 55 through the body 33 of the coupling unit 13 leading to an outlet connector 56.
In use the coupling can be made by depressing the pin 41 manually to a position where the bull-nose portion 42 is approximately radially in register with the curved arcuate surface of the flange 26 of the turret 57 on the base unit allowing the coupling unit 13 to be lowered over the base unit 12 with the radially inwardly directed flanges 35, 36 in register with the rectilinear portions 27, 28 which are slightly asymmetrical so that the coupling unit 13 can be fitted in position in only one of the two possible orientations. Then, by rotating the coupling unit 13 with respect to the base unit 12 in a clockwise direction as viewed from above (illustrated by the arrow A in
In order to release the coupling unit 13 from the gas container assembly comprising the cylinder 10 and the base unit 12 it is necessary first to depress the bull-nose 42 with a thumb or finger whereupon the coupling unit 13 can be rotated in an anticlockwise direction opposite that of the arrow A in
The connector spigot surrounding the passage 56 on the coupling unit 13 has been illustrated schematically simply for convenience although the precise form of this connector will depend on the nature of the apparatus to be connected to the container assembly.
The operation for separation of the coupling unit 13 thus involves manual depression of the pin 41, a first partial twist of the coupling unit 13 at which point gas escape will be heard, and once this gas has escaped further rotation of the coupling unit 13 is possible allowing the coupling unit 13 to be lifted and separated from the base unit 13 quickly and safely.
Referring now to
Permanently secured to the pressure regulator 61 is a first part 63 of a modular coupling system the form of which will be described in greater detail below. As can be seen in
As with the first embodiment, the utilizer device 64 with incorporated second part of the modular coupling system can be removed quickly and easily from the gas bottle, in this embodiment by means of a simple, single twist operation. This operation closes a main gas delivery valve in the first coupling part 63 and vents to atmosphere the gas pressure within the utilizer device 64 and (if fitted) the ultimate consumer device connected to the outlet spigot 67. A manually operable latch 68 is provided to lock the two coupling parts against relative rotation and therefore inadvertent separation. The latch 68 is spring loaded into its engaged position, and can be lifted with a finger or thumb, to be urged axially of the utilizer device 64 away from the canister 60 releasing the two coupling parts for predetermined limited relative twisting motion as will be described in more detail below.
Turning now to
The bottom of the cup-shape body 69 (which is uppermost in
The passage 74 has an intermediate narrowed section 86 into which the sealing ring 76 enters when the bull nose end 78 is pressed (to the right as viewed in
As can be seen in
The second coupling part illustrated in
As can be seen in
The pin 87 engages in an arcuate slot 110 in the end face of the inner cavity of the second coupling member to determine the relative orientation of the two components as they are fitted together and to limit the relative angular twisting movement which can take place. This pin 87 and slot 110 combination also serves another function, namely that of ensuring that gas cylinders containing a given gas can only be fitted with utilizer devices intended for use with that gas. By suitably selecting the dimensions of the pin 87 and the slot 110 to match one another the connector can be made gas-specific and incorrect connection of, for example, oxygen utilizer devices to propane gas cylinders can be avoided.
The assembled unit as shown in
Although specific reference has been made herein to the use of the coupling system with gas canisters containing a gas suitable for medical use (such as oxygen), it will be appreciated that the invention is not limited to such applications and can be used in any environment where a number of gas containers may need to be coupled to a variety of gas utilizer devices, or even where a single utilizer device is used but needs to be removed periodically, such as for recharging the container.
While various embodiments of the invention have been described, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible that are within the scope of this invention. In addition, the various features, elements, and embodiments described herein may be claimed or combined in any combination or arrangement.
Number | Date | Country | Kind |
---|---|---|---|
0614239.2 | Jul 2006 | GB | national |
PCT/GB2007/002731 | Jul 2007 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
3646965 | Swartz | Mar 1972 | A |
4235267 | Brake et al. | Nov 1980 | A |
4479520 | Holben | Oct 1984 | A |
4586634 | Minter et al. | May 1986 | A |
4809747 | Choly et al. | Mar 1989 | A |
5290009 | Heilmann | Mar 1994 | A |
5445358 | Anderson | Aug 1995 | A |
6739578 | Barton et al. | May 2004 | B2 |
7153296 | Mitchell | Dec 2006 | B2 |
7174914 | Ooishi et al. | Feb 2007 | B2 |
20050253105 | Gardner, Jr. et al. | Nov 2005 | A1 |
Number | Date | Country |
---|---|---|
1 455 131 | Sep 2004 | EP |
2724709 | Mar 1996 | FR |
1047122 | Nov 1966 | GB |
2 111 154 | Jun 1983 | GB |
2000-120964 | Apr 2000 | JP |
WO 8601871 | Mar 1986 | WO |
Number | Date | Country | |
---|---|---|---|
20090166226 A1 | Jul 2009 | US |