This invention relates to gas diffusion arrangements. More particularly, the invention relates to gas diffusion arrangements for gas turbine engines.
There is a desire in the aerospace industry to move towards gas turbine engines which reduce the amount of NOx emissions. In order to achieve this, lean burn combustion processes are required, so as to limit the flame temperature in the combustor, and hence limit NOx production. In order to achieve these reduced temperatures, most of the combustion air has to be burnt in the combustor, with little remaining for cooling the combustor walls.
The fuel injectors required for such lean burn combustors are larger than the injectors for conventional combustors. As a result, the conventional diffuser for feeding the air from the compressor to the combustor is inadequate.
According to one aspect of this invention there is provided a gas diffusion arrangement for a gas turbine engine, the diffusion arrangement having an inlet and an outlet for the gas and comprising diffusion means having an upstream inlet region and a downstream outlet region, and distribution means arranged between the downstream outlet region of the diffusion arrangement and said outlet to distribute the gas into a desired flow pattern.
Preferably, the area ratio of the cross-sectional area of the downstream region to the cross-sectional area of the upstream region is greater than 1.5 to 1.
Desirably, the aforesaid area ratio is greater than 2 to 1, and preferably greater than 3 to 1. The aforesaid area ratio is desirably 4 to 1, and may be greater than 4 to 1.
Preferably, the diffusion means comprises an expansion chamber. In the expansion chamber gas from an upstream region preferably undergoes major expansion. The diffusion means is preferably annular in configuration.
The gas distribution arrangement may comprise a pre-diffuser upstream of the gas diffusion member.
Preferably, the walls of the diffusion means flare outwardly from each other. Advantageously, the walls of the diffusion means flare outwardly to a greater degree than the walls of the pre-diffuser.
Preferably, the distribution means defines a plurality of pathways for the gas. The distribution means may define a plurality of apertures, wherein said apertures define the pathways. Preferably, the distribution means comprises a grid member.
Preferably, the distribution means comprises an annular array of said apertures and may be annular in configuration. The distribution means may be formed of a plurality of segments, for example four. The distribution means may comprise a plate, which may have a thickness which is equal to the length of said pathways.
The apertures may be of constant cross-section, or they may be of aerodynamic configuration. In the case of apertures being of aerodynamic configuration, the apertures are preferably of a generally frustoconical configuration, where the cross-sectional area of the pathways increases in a downstream direction.
Preferably, the apertures have a convergent upstream region. The apertures may have a divergent downstream region. The distribution means may include portions between adjacent apertures. Each portion may comprise an upstream nose which may be convex. Preferably, the convergent region of each aperture is adjacent the respective noses of the distribution means. In another embodiment, the aperture may have a convergent upstream region and a parallel downstream region.
The distribution means may define apertures which have differing cross-sectional configurations to each other. In one embodiment, some of the apertures may be of a constant cross-section and others may be of a frustoconical configuration. Preferably, the apertures of constant cross-section extend centrally around the annular part of the distribution means, and the apertures of frustoconical configuration may be arranged at inner and outer regions of the annular grid.
The size of the apertures may vary across the distribution means. In one embodiment, the apertures may be of a smaller size in a central region of the annular part, and may be of a larger size at inner and outer regions of the annular part.
In one embodiment, the distribution means may comprise a protruding portion which extends in an upstream direction. In this embodiment, the annular grid member is of an ogive configuration.
In the preferred embodiment, the cross-sectional area of the downstream region of the diffusion means is greater than the cross-sectional area of an injection module for a combustor. Preferably, the cross-sectional area of the downstream region of the diffusion member is at least two times the cross-sectional area of the injection module for the combustor.
According to another aspect of this invention, there is provided a combustion arrangement comprising a combustor, a fuel injection module and a gas diffusion arrangement as described above.
According to another aspect of this invention, there is provided a gas turbine engine incorporating a combustion arrangement as described above.
Embodiments of the invention will now be described by way of example only, with reference to the accompanying drawings, in which:
With reference to
The gas turbine engine 10 works in the conventional manner so that air entering the intake 11 is accelerated by the fan to produce two air flows: a first air flow into the intermediate pressure compressor 13 and a second air flow which provides propulsive thrust. The intermediate pressure compressor 13 compresses the air flow directed into it before delivering the air to the high pressure compressor 14 where further compression takes place.
The compressed air exhausted from the high pressure compressor 14 is directed into the combustor 15 where it is mixed with fuel and the mixture combusted. The resultant hot combustion products then expand through, and thereby drive the high, intermediate and low pressure turbine 16, 17 and 18 before being exhausted through the nozzle 19 to provide additional propulsive thrust. The high, intermediate and low pressure turbines 16, 17 and 18 respectively drive the high and intermediate pressure compressors 14 and 13 and the fan 12 by suitable interconnecting shafts 118. Each of the shafts connecting the respective turbines with the respective compressors is formed of a plurality of shaft segments which are axially coupled together.
Referring to
The gas diffusion arrangement 22 comprises an inlet 26 and an outlet 28. A prediffuser 30 extends from the inlet 26 to diffusion means 32. The prediffuser 30 acts to direct air from the compressor arrangement 113 into the diffusion means 32, as shown by the arrows A. The velocity profile of air passing through the prediffuser 30 is shown by the dotted lines designated 34. A distribution means 41 is provided downstream of the diffuser means 32 to receive air therefrom.
The diffusion means 32 comprises an expansion chamber 36 having inner and outer annular outwardly flared walls 37A, 37B respectively. The inner and outer walls 37A, 37B extend around the principal axis X—X of the gas turbine engine 10A The expansion chamber 36 has an upstream inlet region 38 and a downstream outlet region 40. The upstream region 38 is provided adjacent the prediffuser 30, and the downstream region 40 is provided adjacent the distribution means 41. Air flowing through the diffuser means 32 is shown by the arrows B.
The area ratio of the cross-sectional area of the downstream outlet region 40 to the cross-sectional area of the upstream inlet region 38 is about 4 to 1. As can be seen from
The distribution means 41 is in the form of a grid member 46 defining a plurality of apertures 48 defining pathways for the air through the distribution means 41.
The distribution means 41 acts to distribute the air impinging upon it generally uniformly across its surface at the downstream region of the diffusion member 32. Each of the apertures 48 shown in
A major proportion of the air exiting the diffusion arrangement 22 is directed through the fuel injection module 20. However, some of the air exiting from the diffusion arrangement 22 at the edge regions thereof, as shown by the arrows D are directed inwardly and outwardly of the combustor 15 to inner and outer annuli 54, 56 and can be used for other purposes, for example as cooling air. The provision of the diffusion arrangement 22 allows the flow of air as indicated by the arrows B to be more uniform than with the prior art. The air directed into the combustor 15 is designated by the arrow C.
The grid member 46 comprises regions between the apertures 48 which are in the form aerodynamic convex noses 52. The purpose of the convex noses 52 is to attempt to accommodate flow mis-matches and to minimise pressure loss. The noses 52 also act to redistribute air across the downstream region 40 of the diffusion means 32 so that there is a substantially uniform flow of air through the apertures 48. The noses 52 provide the apertures 48 in
Referring to
The distribution member 41A shown in
Referring to
As shown in
Also shown in
The grid member designated 46D defines apertures 48D, which comprise a divergent upstream region 53D adjacent the noses 52, and a generally parallel region 55D downstream of the divergent region 53D. Thus, the downstream regions 55D are of a generally constant cross-section and constant distance from each other across the grid member 46D.
The grid member 46E comprises apertures 48E, which are a combination of the configurations of the apertures 48B of the distribution member 41B and the apertures 48D of the grid member 46D, i.e. the apertures 48B are of a generally constant cross-section closer to the centre line X, but become of a frustoconical configuration towards the inner and outer edges of the grid member 46E.
Referring to
The grid member shown in
By providing a distribution member of the shape shown in
The grid members 46 to 46H have the advantage that they can carry structural loads. Thus, the overall weight of using the grid diffusers is not significantly different from prior art arrangements.
Various modifications can be made without departing from the scope of the invention.
It will be appreciated that the distribution of air exiting the distribution means 41 need not be uniform circumferentially. In certain circumstances it may be advantageous to increase the flow are per unit length at the exit to the distribution means 41 in line with the fuel injection module 20.
Whilst endeavouring in the foregoing specification to draw attention to those features of the invention believed to be of particular importance it should be understood that the Applicant claims protection in respect of any patentable feature or combination of features hereinbefore referred to and/or shown in the drawings whether or not particular emphasis has been placed thereon.
Number | Date | Country | Kind |
---|---|---|---|
0301185.5 | Jan 2003 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
2570155 | Redding | Oct 1951 | A |
4315405 | Pidcock et al. | Feb 1982 | A |
4356693 | Jeffery et al. | Nov 1982 | A |
4380895 | Adkins | Apr 1983 | A |
5077967 | Widener et al. | Jan 1992 | A |
5211003 | Samuel | May 1993 | A |
5246338 | Takayanagi et al. | Sep 1993 | A |
5335501 | Taylor | Aug 1994 | A |
5592821 | Alary | Jan 1997 | A |
5619855 | Burrus | Apr 1997 | A |
6082966 | Hall et al. | Jul 2000 | A |
6286298 | Burrus et al. | Sep 2001 | B1 |
6295801 | Burrus et al. | Oct 2001 | B1 |
6651439 | Al-Roub et al. | Nov 2003 | B1 |
Number | Date | Country |
---|---|---|
2 054 047 | Feb 1981 | GB |
1 594 463 SP | Jul 1981 | GB |
2 109 103 | May 1983 | GB |
Number | Date | Country | |
---|---|---|---|
20040195396 A1 | Oct 2004 | US |