Information
-
Patent Grant
-
6373185
-
Patent Number
6,373,185
-
Date Filed
Friday, January 22, 199925 years ago
-
Date Issued
Tuesday, April 16, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Day; Michael H.
- Williams; Joseph
-
CPC
-
US Classifications
Field of Search
US
- 313 491
- 313 493
- 313 634
- 313 494
- 313 609
- 313 600
- 313 631
- 313 492
- 313 317
- 313 567
- 313 238
- 313 326
- 313 601
- 206 06
- 220 21
-
International Classifications
-
Abstract
A flat panel lamp has internal walls forming a serpentine discharge path between two internal electrodes. Two glow mode electrodes in the form of interdigitated combs are laid on the outside of the front panel of the lamp, on top of the walls. The internal electrodes are connected to a first drive circuit; the glow mode electrodes are connected to a second drive circuit, which drives them at a frequency of about 10 MHz. At high brightness, only the internal electrodes are operative; at low brightness, only the glow mode electrodes are operative; and at intermediate brightness the two sets of electrodes are alternately energized.
Description
BACKGROUND OF THE INVENTION
This invention relates to gas discharge lamps and systems.
The invention is more particularly concerned with gas discharge lamps and systems including control circuits for such lamps that enable them to be dimmed.
Gas discharge lamps, such as fluorescent lamps, have advantages of being able to produce high intensity light with a low power dissipation, they also have a relatively long life and are relatively robust. One disadvantage, however, with these lamps is that their brightness cannot be well controlled over a wide range. Most commercially-available fluorescent lamp dimmers operate by varying the mark-to-space ratio of the drive signal applied to the lamp and can only control brightness over a range of about 150:1, although some dimmers for aerospace applications are capable of controlling light output in the range 2000:1. In U.S. Pat. No. 5420481 there is described a fluorescent lamp system having glow mode electrodes in addition to the two normal electrodes at opposite ends of the lamp. These electrodes extend externally along the length of the lamp and are used to produce low level light output, which enables the output range to be considerably increased. One problem, however, with these glow mode electrodes is that any irregularity or misalignment in the walls of the lamp can lead to a non-uniform field from the glow electrodes and, hence, to a non-uniform light output. Some fluorescent lamps used to backlight displays are bent into a serpentine shape, so as to give a more even illumination over the surface of the display. This form of lamp presents substantial problems in achieving an even illumination using the previous form of glow mode electrodes.
EP-A-653903 describes a fluorescent tube in which one of the discharge electrodes is connected to the end of a single helical wire extending about the tube. As voltage is increased, the discharge moves gradually along the length of the tube. GB 2305540 describes a system for dimming fluorescent tubes by applying a voltage between two parallel helical wires, so that the voltage is applied across the diameter of the tube. This latter arrangement can enable a very good control of dimming at low intensities.
Where displays or the like are backlit, it is necessary to produce even illumination across the display. To produce even illumination efficiently using tubular lamps requires complex and expensive diffuser optics. It is also expensive to bend the tubular lamps by hand into a serpentine shape. Because of this, there has been a move towards using flat panel, planar, fluorescent lamps. Such lamps comprise a box-like structure with parallel internal walls defining a serpentine, or similar path between the two cathodes. These planar lamps can produce an even illumination across their surface at relatively high levels of illumination but the illumination becomes more uneven at low levels. It has been found that, at low levels, there is a tendency for the discharge plasma to adhere to the dividing walls within the lamp. In aircraft applications, it is particularly important, for night-time viewing that there is an even illumination across the display at low brightness levels.
BRIEF SUMMARY OF THE INVENTION
It is an object of the present invention to provide an improved planar gas discharge lamp and system.
According to one aspect of the present invention there is provided a gas discharge lamp including a planar envelope filled with a discharge gas, means defining an elongate discharge path within the envelope, and a first pair of electrodes located at opposite ends of the discharge path for causing discharge within the envelope, the lamp including two glow mode electrodes spaced from one another across the discharge path so that a voltage can be applied between the glow mode electrodes across regions of the discharge path.
The discharge path is preferably a serpentine path defined by a plurality of parallel walls extending part way across the width of the envelope. The glow mode electrodes preferably extend in alignment with the walls and along the same surface of the envelope. The glow mode electrodes are preferably on a front side of the envelope through which light is transmitted. The glow mode electrodes may take the form of two interdigitated combs. Alternatively, the glow mode electrodes may extend along opposite surfaces of the envelope. The glow mode electrodes preferably extend on an external surface of the envelope and may be of a transparent material.
According to another aspect of the present invention there is provided a gas discharge lamp system including a lamp according to the above one aspect of the invention, a first circuit for driving the first pair of electrodes and a second circuit for driving the glow mode electrodes.
The system is preferably arranged such that at high brightness only the first circuit drives the lamp, at low brightness only the second circuit drives the lamp, and at intermediate brightness the first circuit drives the first pair of electrodes for successive periods separated by spaces and the second circuit drives the glow mode electrodes only during the spaces between the periods when the first pair of electrodes are being driven. The first circuit is preferably arranged to reduce the space between the periods of its output, the second circuit being arranged to increase the space between the periods of its output when an intermediate brightness of the lamp is to be increased. The second circuit is preferably arranged to drive the glow mode electrodes at a frequency of the order of at least 5 MHz, which may be of the order of 10 MHz.
According to a further aspect of the present invention there is provided a method of driving a gas discharge lamp of the kind having a planar envelope filled with a discharge gas, means defining an elongate discharge path within the envelope, a first pair of electrodes located at opposite ends of the discharge path for causing discharge within the envelope and two glow mode electrodes spaced from one another across the discharge path so that a voltage can be applied between the glow mode electrodes across regions of the discharge path, the lamp being driven by energizing only the first pair of electrodes at high brightness levels, energizing only the glow mode electrodes at low brightness levels, and at intermediate brightness levels energizing the first pair of electrodes for successive periods separated by spaces, and energizing the glow mode electrodes only during the spaces between the periods when the first pair of electrodes are driven.
The method may include driving the glow mode electrodes at a frequency of the order of at least 5 MHz. The method may include the steps of reducing the space between periods of signals supplied to the first pair of electrodes and increasing the space between periods of signals supplied to the glow mode electrodes when an intermediate brightness of the lamp is to be increased.
A fluorescent lamp system for backlighting a display, in accordance with the present invention, will now be described, by way of example, with reference to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a schematic view of the lamp system;
FIGS. 2A
to
2
F illustrate the outputs from the driving circuit of the system at different brightness; and
FIG. 3
is a plan view of a part of the lamp in greater detail.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
The lamp
1
is shown, for simplicity as being rectangular although it could be formed into other planar shapes, such as square, or circular, to suit its particular application. The envelope of the lamp
1
is provided by a solid rectangular block
10
of ceramic, glass or the like, which is milled or otherwise machined on its upper surface to form four outer walls
11
to
14
, and eight, straight, parallel channels
15
to
22
separated from one another by internal dividing walls
23
to
29
. The walls
23
,
25
,
27
and
29
extend from the lower wall
11
(as viewed in
FIG. 3
) of the block
10
but terminate a short distance before the opposite, upper wall
13
, leaving a gap
30
between the end of each dividing wall and the opposite side wall. Similarly, the other walls
24
,
26
and
28
extend from the upper wall
13
and terminate a short distance before the lower wall
11
, leaving a gap
31
between the end of each dividing wall and the side wall
11
. The dividing walls
23
to
29
, therefore, define a serpentine path between the walls extending from side to side of the block
10
.
The lamp
1
has two internal electrodes
40
and
41
located at opposite ends of the serpentine path. The electrodes
40
and
41
, which may be hot or cold cathodes are located in pods
42
and
43
beneath the block
10
, which communicate with the interior of the block towards opposite ends of the lower wall
11
. The lamp
1
also has a transparent glass plate
44
sealed to the top of the block
10
, along the top surfaces of the side walls
11
to
14
and the dividing walls
23
to
29
, such as by means of a glass frit, so as to form an enclosed envelope. The envelope formed by the block
10
, the electrode tubes
42
and
43
and the glass plate
44
contains a conventional gas discharge mixture and is coated on its inner surfaces with a conventional phosphor material. As so far described, the lamp is conventional.
The lamp
1
also has two glow mode electrodes
45
and
46
arranged in a manner that will be described more fully later. The lamp
1
is located behind a liquid crystal display
2
or some other similar transparent display
The system includes a lamp driver unit
50
of the kind described in GB 2305540. The unit
50
has two separate driver circuits
51
and
52
connected respectively to the internal electrodes
40
and
41
, and to the glow mode electrodes
45
and
46
. The first drive circuit
51
is an a.c. current source similar to those used in conventional fluorescent lamp drive circuits. The circuit
51
supplies a fixed frequency, square wave or sine wave output in the range 20-100 kHz. The output of the drive circuit
51
comprises bursts of pulses separated by spaces without pulses, as shown in FIG.
2
A. The repetition rate of the bursts and spaces is chosen to be the lowest at which the eye will not perceive a flicker.
The second, glow mode electrode drive circuit
52
is a sine wave voltage source, which produces a much higher frequency than that of the first drive circuit
51
, of around 10 MHz with a voltage of 200-300V rms. The drive circuit
52
has an output transformer
54
with its secondary winding connected at opposite ends to the glow mode electrodes
45
and
46
.
Both the first and second drive circuits
51
and
52
are connected to a brightness control unit
55
, which receives an input on line
56
indicative of the desired brightness of the lamp. The control unit
51
appropriately controls the first and second drive circuits
51
and
52
to produce the desired level of brightness.
For high levels of brightness of the display, such as around 200 FtL, only the internal electrodes
40
and
41
of the lamp
1
are energized, the control unit
55
holding the second drive circuit
52
off. The control unit
55
controls the magnitude of light output from the lamp
1
, in the higher range of illumination, solely by changing the way in which the internal electrodes
40
and
41
are energized. More particularly, the ratio of the length of the bursts of pulses supplied by the first drive circuit
51
to the length of the spaces between the bursts is varied. For maximum illumination, the length of the bursts of pulses is long and there is only a very short space between the pulses. For reduced illumination, the space between the bursts of pulses is increased.
FIG. 2B
shows that there is no output from the glow mode electrode drive circuit
52
when a high level of brightness is needed.
When only a low level of brightness is needed, such as around 0.01 FtL, the control unit
55
holds off the first drive circuit
51
, as shown in FIG.
2
E. For these low levels of brightness, only the second drive circuit
52
is operative, as shown in FIG.
2
F. This circuit
52
supplies bursts of the high frequency sine wave signal to the glow mode electrodes
45
and
46
separated by spaces. Again, the level of brightness at these low levels is varied by altering the ratio between the length of the bursts of high frequency signal and the length of the spaces between them.
For medium levels of brightness, around 1 FtL, the control unit
55
enables both the drive circuits
51
and
52
, and more particularly, the control unit is arranged to ensure that only one or other of these circuits is on at any one time, and that they are not both on together, as shown in
FIGS. 2C and 2D
. To increase brightness within this range of medium brightness, the length of the bursts of pulses from the first drive circuit
51
is increased and the length of time for which the high frequency signals are supplied to the glow mode electrodes
45
and
46
is correspondingly reduced. To reduce brightness, the length of the bursts of pulses from the first drive circuit
51
is reduced and the length of the bursts of high frequency signals supplied to the glow mode electrodes
45
and
46
is correspondingly increased.
It can be seen, therefore, that as brightness is increased from a minimum, the glow mode will gradually increase until the normal mode comes into operation, following which the glow mode will decrease as the normal mode increases. There may be a jump in brightness when the normal mode first comes into operation but, by making the glow mode peak drive level about ten times the minimum normal mode drive level, it ensures that the jump in brightness is only about 10%, which is barely noticeable to the user. Alternatively, the brightness of the lamp could be actively monitored in the different modes and the relative width of the pulse bursts in the different modes altered to reduce the change in brightness at the transition.
In the arrangement described above, the normal mode and glow mode drive signals are never on at the same time. This is because it has been found that the lamp can flicker when both drive signals are on. However, it is possible to reduce flicker when both signals are on if the high frequency signal applied to the glow mode electrodes
45
and
46
is synchronized to the lower frequency supplied to the internal electrodes
40
and
41
.
The glow mode operation gives a dimming range of about 150:1, whereas the normal mode operation gives a dimming range of about 2000:1. Because of the overlap between the two modes, which is about 10:1, this gives a total dimming range of about 30000:1.
The relatively high frequency drive signal supplied to the glow mode electrodes
45
and
46
of 10 MHz prevents the spectrum of the lamp being shifted towards the near infra-red end of the spectrum compared with the normal mode. At lower frequencies, of 100's kHz, the glow mode spectrum contains high levels of near infra-red radiation, making a display illuminated with such a lamp difficult to use with night vision aids, which amplify radiation in this range. Also lamps with a lower frequency glow mode would tend to look much pinker at low brightness compared with the normal mode operation at higher brightness. It has been found that, providing the glow mode drive signal is 5 MHz or greater, there is no noticeable change in colour as the lamp is dimmed.
The glow mode electrodes
45
and
46
are formed by two metal tracks on the upper surface of the glass plate
44
, which are uninsulated so that there is a maximum efficiency in the glow mode.
One electrode
45
comprises a base
47
extending alongside the edge of the envelope in alignment with the top of the outer wall
13
. The electrode
45
also has five parallel arms
48
to
52
extending at right angles to the base
47
, the outer arms
48
and
52
extending along opposite sides of the block
10
, along its entire length, and aligned above the outer walls
12
and
14
. The other three arms
49
to
51
are equally spaced between the outer arms
48
and
52
and are aligned directly above the walls
24
,
26
and
28
. These arms
49
to
51
terminate at the ends of the walls
24
,
26
and
28
, so they do not extend along the entire length of the block.
The second glow mode electrode
46
comprises a base
53
aligned with the top of the wall
11
and extending parallel to the base
47
of the first electrode
45
. The base
53
does not extend along the entire width of the block
10
but terminates level with the outer ones of the internal dividing walls
23
and
29
. The second electrode
46
has four parallel arms
54
to
57
extending at right angles to the base
53
and parallel to the arms of the first electrode
45
. The arms
54
to
57
extend from the base and are aligned along the top of the dividing walls
23
,
25
,
27
and
29
for the extent of the wall so that they terminate before the side wall
13
. In this way, the two electrodes
45
and
46
form two interdigitated combs, which do not make electrical contact with one another. Electrical connection is made with the respective electrodes
45
and
46
at terminals
58
and
59
. The terminal
58
for the first electrode
45
is located at the free end of the outer arm
52
; the terminal
59
for the second electrode
46
is located at the junction between its base
53
and an outer arm
57
.
When a voltage is applied between the two glow mode electrodes
45
and
46
, an electric field is produced primarily between adjacent arms of the two electrodes. This produces a substantially even electric field within the channels
15
to
22
between the dividing walls. This gives an even illumination when the lamp is used with a conventional diffuser. Such a diffuser will also help smooth variations in light output close to the tops of the walls.
The electrode tracks
45
and
46
do not substantially obscure the light produced by the lamp I because they are aligned with the tops of the dividing and outer walls, where there is lower light emission. To reduce any shadowing effect, the electrodes could be of a transparent material, such as a thin film of indium tin oxide. The electrodes could be made of various different materials such as of conductive inks, which may be applied by screen printing. The glow mode electrodes could be conductive tracks or wires on a transparent insulating film similar to a flexible PCB, which is adhered to the surface of the envelope. Flat panel lamps can be formed with many different external shapes and with discharge paths of various different shapes. It will be appreciated that the pattern of the glow mode electrodes can be changed to give the best performance with these different shapes. The electrodes need not be mounted on the front, viewing side of the lamp but could be on the back surface, although this has been found not to produce such an even illumination, because the plasma is closer to the phosphor on the front plate
44
of the lamp. In another arrangement, one electrode could be on the front and one on the back. Where an electrode is mounted on the back of the lamp, this could still be used with a heater, the tracks of a heating element being aligned with the midline of the discharge path and the or each electrode being aligned with the base of the dividing walls. Alternatively, the glow mode electrodes could be located internally of the envelope.
It has been found that the lamp system of the present invention can produce an even illumination over a wide range of brightness and can be smoothly faded or increased in brightness.
Claims
- 1. A gas discharge lamp comprising: a planar envelope filled with a discharge gas; a plurality of parallel walls extending part way across the width of said envelope defining a discharge path of serpentine shape within said envelope; a first pair of electrodes located at opposite ends of said discharge path for causing discharge within said envelope; and two glow mode electrodes, said glow mode electrodes being spaced from one another across the discharge path and extending in alignment above said walls so that a voltage can be applied between said glow mode electrodes across regions of said discharge path.
- 2. A gas discharge lamp according to claim 1, wherein both said glow mode electrodes extend along the same surface of said envelope.
- 3. A gas discharge lamp according to claim 2, wherein said glow mode electrodes are on a front side of said envelope through which light is emitted.
- 4. A gas discharge lamp according to claim 2, wherein said glow mode electrodes take the form of two interdigitated combs.
- 5. A gas discharge lamp according to claim 2, wherein said glow mode electrodes extend on an external surface of said envelope.
- 6. A gas discharge lamp according to claim 1, wherein said glow mode electrodes are of a transparent material.
- 7. A gas discharge lamp comprising: a planar envelope filled with a discharge gas; a plurality of parallel walls in said envelope forming a serpentine discharge path; a first pair of electrodes located at opposite ends of said discharge path for causing discharge within said envelope; and two glow mode electrodes, said glow mode electrodes being in the form of two interdigitated combs extending in alignment with the tops of the walls so that a voltage can be applied between said glow mode electrodes across regions of said discharge path.
Priority Claims (1)
Number |
Date |
Country |
Kind |
9803587 |
Feb 1998 |
GB |
|
US Referenced Citations (4)
Foreign Referenced Citations (5)
Number |
Date |
Country |
0 550 047 |
Jul 1993 |
EP |
0 653 903 |
May 1995 |
EP |
2217515 |
Oct 1989 |
GB |
2305540 |
Apr 1997 |
GB |
WO 9617375 |
Jun 1996 |
WO |