This application claims the benefit of priority under 35 U.S.C. § 119 of German Utility Model Application 20 2015 103 787.2 filed Jul. 17, 2015, the entire contents of which are incorporated herein by reference.
The present invention pertains to a gas duct with a duct wall with an interior space enclosed by the duct wall, and with a heated porous metal structure arranged in the interior space of the gas duct for passing through gases, which has at least one electric heater.
The arrangement of heated porous metal structures in a gas flow is advantageous for various applications, in which an interaction of the gas with a porous metal structure, through which the gas flows, is desired. It may be, for example, a reaction of the gas with the metal, which preferably takes place at an elevated temperature, an increase in the gas temperature due to interaction with the large surface of the porous metal structure or cleaning or filtration of the gas stream, for example, removal of entrained water droplets or the transfer of such droplets into the gas phase.
Because of the good controllability of electric heaters, it is known that such heaters can be used to heat the porous metal structures. A concrete example of application, which teaches the use of an electric heater for this purpose, is known from DE 10 2007 024 563 A1. This document teaches the electric heating of the honeycomb structure of a catalytic converter, wherein the essential idea is that wall sections of the porous metal structure are heated by sending current through it.
This known approach leads to considerable problems in practice. On the one hand, the manufacture of such heated porous metal structures is associated with a relatively great effort, and, on the other hand, such systems are sensitive to vibrations, which are typically present especially in mobile applications in the area of motor vehicles, because disruption of contact and/or short circuits may occur.
An object of the present invention is to provide a gas duct with heated porous metal structure, which offers a more reliable possibility for heating the porous metal structure, which possibility is especially more insensitive to vibrations.
The gas duct according to the present invention has a duct wall; an interior space, which is enclosed by the duct wall, i.e., in all directions except in the direction in which the gas duct extends and in the direction opposite hereto; and a heated, porous metal structure, which is arranged in the interior space of the gas duct for passing through gases, and which has at least one electric heater. A porous metal structure is defined here as structures that have at least one surface consisting of metal and which structures permit, if the porous metal structure forms a wall, the passage of gas through this wall, i.e., especially grid structures and rolled grid structures, grid structures prepared by bending a strand-like or tubular metal pipe, honeycomb structures and metal nonwovens.
It is essential for the present invention that the electric heater is a mineral-insulated heater with a heat conductor, at least one front-side connection opening and at least one outer metal jacket, wherein the mineral-insulated heater has at least one section that is passed through the mineral-insulated heater, so that all front-side connection openings are arranged outside the interior space of the gas duct and the outer metal jacket of the mineral-insulated heater is welded or soldered in this section to the duct wall directly or via a mineral-insulated, vacuum-tight duct, and wherein the heat conductor is completely embedded, at least in the sections of the mineral-insulated heater, which are arranged in the interior space of the gas duct, in an insulation, which is preferably compacted. A ceramic material is an especially suitable material for the insulation.
By using a mineral-insulated heater with an outer meal jacket with a front-side connection opening, which is arranged outside the gas duct, it is ensured that the desired electrical insulation is given, while the outer metal jacket and the welding or soldering thereof to the duct wall at the same time ensure a dimensionally stable and vibration-resistant arrangement of the electric heater.
Uniform heating of the porous metal structure can be achieved by at least one section of the mineral-insulated heater being rolled into the porous metal structure. This is given especially if the mineral-insulated heater has a helical configuration, for example, in the form of a coil spring with concentric windings with different radii.
A further improvement of vibration stability can be achieved if the mineral-insulated heater is soldered, especially vacuum-soldered to the porous metal structure.
A special advantage of the use of a mineral-insulated heater with metal jacket is achieved if the cross-sectional shape of the mineral-insulated heater can be modeled as desired. The gas stream can thus be influenced in an especially simple manner in the sections of the porous metal structure, in which the mineral-insulated heater is arranged, by adapting this shape and by homogenizing the heating by shape adaptation.
It proved to be especially advantageous if the mineral-insulated heater has a smaller cross section in the direction in which the gas flows than in the direction facing the walls of the pores of the porous metal structure and if the extension—it should be stressed, to avoid misinterpretation even though it would be remote, that the geometric extension rather than thermal working of the heater is meant—of the mineral-insulated heater is at least four times and preferably at least 10 times in the direction in which the gas flows than in the direction facing the walls of the pores of the porous metal structure.
Also conceivable is an embodiment in which the heating element of the mineral-insulated heater is connected at one end to the duct wall, which is configured as an electrically conducting duct wall, so that the duct wall acts as a return conductor. This reduces the effort needed for cabling.
It is especially advantageous if the duct wall consists of an Inconel alloy material with a nickel content of at least 25% and preferably at least 50%.
A plurality of mineral-insulated heaters may be arranged in the porous metal structure depending on the desired heat distribution.
The present invention will be explained in more detail below on the basis of drawings. The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying drawings and descriptive matter in which preferred embodiments of the invention are illustrated.
In the drawings:
Referring to the drawings, identical reference numbers are used for identical components of the same exemplary embodiments in all figures.
To better illustrate the arrangement and the meandering course of the mineral-insulated electric heater 102, the view shown in
As can best be seen in the detail views of details A and B from
The heat conductor 104 is embedded completely, i.e., in all directions that are at right angles to the direction in which it extends, in the compacted insulation 106, which may consist, e.g., of MgO and is represented by crosses. Further, the mineral-insulated heater 102 has an outer metal jacket 108 and connection wires 103a, 103b.
The alternative, second embodiment, which is shown in
As can be seen especially in
The third embodiment according to
Further differences arise in respect to the shape of the mineral-insulated electric heater 302 and due to the fact that, as can especially easily be seen in the part of the mineral-insulated electric heater shown as a cut-open view, the heat conductor 304 does not run to and fro in the interior of the mineral-insulated electric heater 302. The mineral-insulated electric heater 302 correspondingly passes through the duct wall 310 of the gas duct 300 at two points.
The fourth embodiment shown in
Instead of providing the weld seam 515, any other possibility of gas-tight fixation, e.g., also soldering, may be employed as well.
To illustrate the design of the mineral-insulated electric heater 502, this heater is shown in
The heat conductor 504 is embedded completely, i.e., in all directions that are at right angles to the direction in which it extends, in the compacted insulation 506, which may consist, e.g., of MgO and is indicated by crosses, and has, next to the outer metal jacket 508, connection wires 503a, 503b, which lead out of the electric heater 502 through a front-side connection opening 516, which is located outside the interior space 520 of the gas duct 500 and make possible the electric connection of the electric heater 502.
Thus, the mineral-insulated electric heater 502 obviously also has a section 502a, which is passed through the duct wall 510, so that the front-side connection opening 516 of the mineral-insulated electric heater 502 is arranged outside the interior space 520 of the gas duct 500 and the outer metal jacket 508 of the mineral-insulated electric heater 502 is welded or soldered in this section to the duct wall 510.
Especially the sensitive area of a probe or of a sensor 550 is arranged in the interior of the porous metal structure 513 formed by the helically wound section of the electric heater 502, especially by sections of the outer metal jacket 508 of said heater, which said interior is located in the interior space 520 of the gas duct 500, and said probe or sensor can then be used to measure properties of a gas flowing through the gas duct 500, which gas is cleaned, especially, e.g., dried, by an interaction with the heated porous metal structure.
Such a probe or such a sensor or the sensitive section thereof may, of course, also be arranged in the interior space of a porous metal structure having a different configuration and especially in the interior space of all other above-described porous metal structures.
While specific embodiments of the invention have been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles.
Number | Date | Country | Kind |
---|---|---|---|
20 2015 103 787 U | Jul 2015 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4523935 | Takagi | Jun 1985 | A |
5456890 | Tsai | Oct 1995 | A |
5585073 | Swars et al. | Dec 1996 | A |
5695722 | Myers | Dec 1997 | A |
5744104 | Sakurai | Apr 1998 | A |
6562305 | Swars | May 2003 | B1 |
Number | Date | Country |
---|---|---|
1116867 | Feb 1996 | CN |
1116868 | Feb 1996 | CN |
2 516 702 | Oct 2002 | CN |
195 20 758 | Dec 1996 | DE |
10 2007 024 563 | Nov 2008 | DE |
H0559939 | Mar 1993 | JP |
Number | Date | Country | |
---|---|---|---|
20170016371 A1 | Jan 2017 | US |