The present invention relates to water heaters, and more particularly to gas-fired water heaters with exhaust assemblies.
Typical gas-fired water heaters produce exhaust gases or products of combustion that must be exhausted outside of the residence or other building in which the water heater is installed. An exhaust assembly, blower, or fan moves the exhaust gases generated by the water heater from the water heater to the atmosphere outside the building.
The present invention provides, in one aspect, an exhaust assembly for use with a gas-fired water heater. The exhaust assembly includes a hood for receiving exhaust gas from the gas-fired water heater, a housing, and a fan positioned in the housing to move exhaust gas from the hood out of the exhaust outlet. The hood includes a first hood mounting location and a second hood mounting location. The housing includes an exhaust outlet and a housing mounting location. In a first configuration, the exhaust outlet faces a first direction and the housing mounting location is aligned with and secured at the first hood mounting location. In a second configuration, the exhaust outlet faces a second direction different than the first direction and the housing mounting location is aligned with and secured at the second hood mounting location.
The present invention provides, in another aspect, an exhaust assembly for use with a gas-fired water heater. The exhaust assembly includes a hood for receiving exhaust gas from the gas-fired water heater, a back plate coupled to the hood, a housing, multiple tabs, and a fan positioned in the housing to move exhaust gas from the hood out of the exhaust outlet. The hood includes a first hood mounting location and a second hood mounting location. The back plate includes a rearwardly extending cylindrical rim with a locking groove formed in the outer surface of the rim. The housing includes an exhaust outlet, a housing mounting location, and a cylindrical collar with multiple slots through the collar. The rim is positioned within the collar. Each of the tabs is coupled to the housing and extends through a corresponding slot and into the locking groove, thereby rotatably coupling the housing to the hood. In a first configuration, the exhaust outlet faces a first direction and the housing mounting location is aligned with and secured at the first hood mounting location. In a second configuration, the exhaust outlet faces a second direction different than the first direction and the housing mounting location is aligned with and secured at the second hood mounting location.
The present invention provides, in another aspect, a gas-fired water heater. The gas-fired water heater includes a storage tank, a combustion chamber, a burner for producing products of combustion, the burner positioned in the combustion chamber, a flue extending from the combustion chamber through the storage tank, and an exhaust assembly positioned above the flue. The exhaust assembly includes a hood for receiving the products of combustion from the gas-fired water heater, a housing, and a fan positioned in the housing to move the products of combustion from the hood out of the exhaust outlet. The hood includes a first hood mounting location and a second hood mounting location. The housing includes an exhaust outlet and a housing mounting location. In a first configuration, the exhaust outlet faces a first direction and the housing mounting location is aligned with and secured at the first hood mounting location. In a second configuration, the exhaust outlet faces a second direction different than the first direction and the housing mounting location is aligned with and secured at the second hood mounting location.
Other features and aspects of the invention will become apparent by consideration of the following detailed description and accompanying drawings.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.
As shown in
As shown in
As shown in
The outer wall 305 is generally cylindrical and the exhaust outlet 315 extends tangentially from the outer wall 305. Exhaust gases exit the blower housing 175 through the opening 380 along an outlet axis 385. The exhaust outlet 315 faces in the direction of the exhaust gases exiting the blower housing 175 along the outlet axis 385.
As shown in
As shown in
As shown in
The hood 570 includes four hood mounting locations 445, 450, 455, and 460. Each of the hood mounting locations 445, 450, 455, and 460 includes an opening, aperture, or hole 465 through the housing mounting flange 620. Each of the four hood mounting locations 445, 450, 455, and 460 is positioned at a corner of a quadrilateral, for example, a square or rectangle. The exhaust assembly 565 does not include a back plate 172. Instead, the back plate bracket 840 of the base plate 835 is coupled to the hood 570 and partially covers the open rear portion 600. The back plate bracket 840 includes an opening 470. The blower housing 575 does not include a collar 725. The front wall 700 of the blower housing 575 includes four housing mounting locations 475, 480, 485, and 490. Each of the housing mounting locations 475, 480, 485, and 490 includes a boss 495 and an opening 500 extending into the boss 495. In some embodiments, the openings 500 are threaded. In other embodiments, a threaded insert is positioned in each opening 500 extending into a boss 495. Each of the four housing mounting locations 475, 480, 485, and 490 is positioned at a corner of a quadrilateral, for example, a square or rectangle. The size and shape of the quadrilateral formed by the four housing mounting location 475, 480, 485, and 490 is substantially identical to the size and shape of the quadrilateral formed by the four hood mounting locations 445, 450, 455, and 460.
The blower housing 575 is secured to the hood 570 by inserting a fastener through each of the openings 465 and into a corresponding opening 500. In a first configuration, the exhaust outlet 715 faces in the first direction 400 that is angled ninety degrees from the longitudinal axis 145 of the flue 140 and the first housing mounting location 475 is aligned with the first hood mounting location 445. In a second configuration, the exhaust outlet 715 faces in the second direction 405 that is angled ninety degrees from the first direction 400 (parallel to the longitudinal axis 145 of the flue 140) and the first housing mounting location 475 is aligned with the second hood mounting location 450. In a third configuration, the exhaust outlet 715 faces in the third direction 410 that is angled one hundred eighty degrees from the first direction 400 and the first housing mounting location 475 is aligned with the third hood mounting location 455. The opening 470 through the back plate bracket 840 is coaxial with the opening 720 through the front wall 700 of the blower housing 575 when the blower housing 575 is secured to the hood 570.
The air inlet 1015 is a grate formed by a series of slots or elongated openings 505 rather than a tube. A ring-shaped plate 510 is positioned between the blower housing 975 and the back plate bracket 1240. The plate 510 includes a central opening 515 that is smaller in diameter than the opening 870 through the back plate bracket 1240. Alternatively, the plate 510 is positioned between the hood 970 and the back plate bracket 1240. The motor mount 1220 secures the motor 985 to the blower housing 975 and also serves to cover the open rear portion 1110 of the blower housing 575. The opening 1180 in the exhaust outlet 1115 is square. A transition collar 520 connected to the exhaust outlet 1115 changes the cross section of the exhaust gas flow path from a square to a circle.
In a first configuration, the exhaust outlet 1115 faces in the first direction 400 that is angled ninety degrees from the longitudinal axis 145 of the flue 140 and the first housing mounting location 875 is aligned with the first hood mounting location 845. In a second configuration, the exhaust outlet 1115 faces in the second direction 405 that is angled ninety degrees from the first direction 400 (parallel to the longitudinal axis 145 of the flue 140) and the first housing mounting location 875 is aligned with the second hood mounting location 850. In a third configuration, the exhaust outlet 1115 faces in the third direction 410 that is angled one hundred eighty degrees from the first direction 400 and the first housing mounting location 875 is aligned with the third hood mounting location 855. The opening 515 through the plate 510, the opening 870 through the back plate bracket 1240, and the opening 1120 through the front wall 1100 of the blower housing 975 are all coaxial when the blower housing 975 is secured to the hood 970.
The three configurations of the exhaust assemblies 165, 565, and 965 allow an installer to configure an exhaust assembly 165, 565, and 965 to best meet the spacing limitations of the installation location of the water heater 100. Known exhaust assemblies only allow for an upward orientation of an exhaust outlet when the exhaust assembly is installed for use in the intended manner. This can complicate or limit the installation of an exhaust assembly if the installation location has a low clearance above the water heater, if the installation location is crowded with other appliances or ductwork, or if the installation location includes other obstacles. By allowing the exhaust outlet 315, 715, and 1115 to be oriented in three different directions 400, 405, and 410, each exhaust assembly 165, 565, 965 allows the installer to select the best configuration for use with a specific installation location. Once the installer has chosen one of the three configurations, the exhaust outlet 315, 715, and 1115 can be connected to an exhaust duct that connects the exhaust assembly 165, 565, and 965 to the atmosphere outside the building. Additionally, selecting the best configuration for use with a specific installation location can eliminate an elbow in the exhaust duct, thereby reducing the length of duct needed between the water heater and the outside of the building.
A hood mounting location is the location on the hood with which a housing location is aligned in a specific configuration of the exhaust assembly and to which the housing mounting location is secured. The hood mounting locations and housing mounting locations described above are illustrative of a variety of possible hood mounting location and housing mounting locations. In some embodiments, more or fewer openings are provided at each hood mounting location and housing mounting location. In other embodiments, a hood mounting location is a specific portion of the housing mounting flange and the housing mounting location is a specific portion of the front wall that are aligned and secured together by a fastener including, for example, a self-tapping fastener, an adhesive, a clip, or a clamp.
Various features of the invention are set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2349668 | Marker et al. | May 1944 | A |
2710573 | Marker | Jun 1955 | A |
3407993 | Bostrom | Oct 1968 | A |
4672919 | Staats | Jun 1987 | A |
4856982 | Olson | Aug 1989 | A |
5197665 | Jenson et al. | Mar 1993 | A |
5255665 | Windon | Oct 1993 | A |
5352099 | Anstine et al. | Oct 1994 | A |
5950573 | Shellenberger et al. | Sep 1999 | A |
6053130 | Shellenberger | Apr 2000 | A |
D439648 | Jones et al. | Mar 2001 | S |
6398512 | Stewart | Jun 2002 | B2 |
6602058 | Stewart et al. | Aug 2003 | B1 |
6622660 | Bajic et al. | Sep 2003 | B1 |
D491259 | Garrison et al. | Jun 2004 | S |
6745724 | Hughes et al. | Jun 2004 | B2 |
6827560 | Gatley, Jr. et al. | Dec 2004 | B2 |
7159540 | Garrabrant et al. | Jan 2007 | B2 |
7354244 | Hasbargen et al. | Apr 2008 | B2 |
7363882 | Brown et al. | Apr 2008 | B2 |
20020178980 | Gatley, Jr. | Dec 2002 | A1 |
20040258546 | Gatley, Jr. | Dec 2004 | A1 |
20050058560 | Gatley, Jr. et al. | Mar 2005 | A1 |
20060065211 | Hasbargen et al. | Mar 2006 | A1 |
20060099072 | Lyons | May 2006 | A1 |
20060191497 | Garrabrant et al. | Aug 2006 | A1 |
20060213912 | Zaytoun | Sep 2006 | A1 |
20090084328 | Lyons et al. | Apr 2009 | A1 |
20090211540 | Yin et al. | Aug 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20120180737 A1 | Jul 2012 | US |