Gas flow headers for internal combustion engines

Information

  • Patent Grant
  • 6467260
  • Patent Number
    6,467,260
  • Date Filed
    Tuesday, August 24, 1999
    25 years ago
  • Date Issued
    Tuesday, October 22, 2002
    22 years ago
Abstract
An exhaust header system for an internal combustion engine having improved exhaust gas flow characteristics. Primary pipes extend from openings in a flange bolted to the engines exhaust ports. The primary pipes come together at a collector pipe into which the primary pipes extend slightly. The ends of the primary pipes are substantially parallel, uniformly spaced around the collector pipe axis and have end surfaces lying substantially in a single plane. A generally pyramidal transition piece has a base corresponding to, and secured to, the primary pile end surfaces so as to cover the area between the pipe ends. The pyramid apex extends along the collector pipe centerline toward the exit end. The length and cross section of the transition piece is selected to provide a smooth transition from the greater combined internal cross section of the primary pipe ends to the lesser cross section of the collector pipe exit end.
Description




TECHNICAL FIELD OF THE INVENTION




The present invention relates to an improved exhaust header for an internal combustion engine having an improved transition from primary pipes to a collector pipe for improving exhaust gas flow through the header.




BACKGROUND OF THE INVENTION




A wide variety of header systems have been developed for exhausting combustion gases from the cylinders of internal combustion engines and directing the gases to an exhaust pipe in order to improve horsepower, vary the maximum torque band and improve fuel efficiency of the engine. Basically, a header includes a flange plate that bolts up to the engine's exhaust ports, primary tubes that extend from holes in the flange plate at the exhaust port locations to a collector tube which collects the exhaust and directs it into the exhaust pipe having a muffler, catalytic converter, etc.




In the past, automobile manufacturers have provided cast iron header manifolds because they are easier to manufacture and emit less noise. However, these header systems provided less than ideal emission control and gas milage, so that tube-type headers are now provided on many new production cars. After market tube-type headers have long been offered both for improving street performance and for racing.




A variety of header designs have been developed. The most common is the 4-into-1 design in which four primary tubes from the flange to a collector or transition pipe where the total cross sectional area of the primary pipes is collected and reduced to the cross section of the exhaust pipe. In other designs, pairs of primary pipes are brought together, then the combined primaries are brought together in a collector. In pure race cars, the primary pipes from the flanges may be brought outside the vehicle independently, functioning as individual exhaust pipes. In other designs, primary pipes from opposite banks of a V-8 or V-6 engine may be brought together in a selected configuration.




Each of the header components has an effect on performance. For example, using a smaller primary tube diameter tends to lower the torque peak, which is advantageous in a street vehicle but not in a full race car. Longer primary tubes also increase low-end torque, as will a larger collector. Equal length primary pipes assure that each cylinder is scavenged equally. Uniform flow and avoidance of turbulence in the primary pipe, collector and exhaust system are important in reducing back pressure and maximizing both power and fuel efficiency.




The point where the primary pipes come together and enter the collector has been found to be a problem area in assuring smooth, non-turbulent exhaust gas flow through the collector. The cross sectional area of the combined primary pipe ends transitions through the collector to the (generally smaller) exhaust pipe cross section. The cross sectional area that is formed between the bundled primary pipe ends, approximately square with four primary pipes and approximately triangular with three primary pipes, is a major cause of turbulence.




Attempts have been made to smooth this transition by cutting back the adjacent surfaces of adjacent primary pipes, then welding them together to substantially eliminate the area between the pipe ends. This is difficult, expensive in design and manufacture, and with a number of complex welds may actually add to turbulence in this transition region.




Thus, there is a continuing need for improvements in header design to reduce or eliminate turbulence caused by the joining of adjacent primary pipes at the collector and transitioning to the exhaust pipe diameter.




SUMMARY OF THE INVENTION




The above-noted problems, and others, are overcome in accordance with this invention by an exhaust system for an internal combustion engine which basically includes a plurality of primary pipes, each extending from one of the cylinders to an end at a collector pipe, the ends of the pipes being in contact, substantially parallel and uniformly arranged about a central axis and lying substantially in a single plane, and a transition piece having a generally pyramidal shape with the base covering the areas between the adjacent primary pipe ends. Where four primary pipes are brought together, as would be the case with one bank of a V8 engine, the base of the pyramidal transition piece would be approximately square, while with the three primary pipes of one bank of a V-6 engine, the base would be approximately triangular. While straight-sided bases are generally effective, if desired for optimum performance, the base edges are preferably slightly concave to more precisely match the edges of the primary pipes. Also, the pyramid base will approximate a square or rectangle where four primary pipes are brought together, and will approximate a triangle where three primary pipes are brought together. Other configurations are used where other numbers of pipes are brought together, as is apparent to one skilled in the art.




The pyramidal transition pieces may have any suitable height. A height substantially equal to the length of one side of the base has been found to be effective and can easily be installed in the collector, even with a very compact system. In some cases optimum results are obtained where the height of the pyramid is sufficient to extend to the end of the collector, to provide the most uniform, smooth, transition from the greater total cross sectional area of the combined primary pipe ends to the lesser cross sectional area of the exhaust system. That change in area is known to promote exhaust system efficiency. Depending upon the collector pipe configuration, optimally the sides of the pyramidal transition piece may be slightly concave or convex (along a line taken through the center of a side surface from tip to base) to aid in providing precisely uniform flow cross sectional area reduction through the collector.




The transition pieces may be formed from any suitable material. In general, it is preferred that the material be the same as that of the primary pipes, typically 1010 or 1020 carbon steel, 308 or 221 stainless steel, etc. The transition pieces may be manufactured in any suitable manner. Typically, they may be cast from the appropriate metal or machined from solid stock to final dimensions. In a method that is preferred for low cost and ease of manufacture, two pieces, each making up two adjacent sides of the pyramid, are formed by stamping from heavy sheet metal. The pieces are then joined by welding. This requires only simple and inexpensive tooling, and permits easy production of pyramids with concave base edges and/or concave or convex sides if desired.











BRIEF DESCRIPTION OF THE DRAWING




Details of the invention, and of certain preferred embodiments thereof, will be further understood upon reference to the drawing, wherein:





FIG. 1

is a perspective view of the header of this invention, partially cut-away to reveal the transition piece;





FIG. 2

is a section view taken on line


2





2


in

FIG. 1

;





FIG. 3

is a perspective view of a transition piece; and





FIG. 4

is a perspective view of a two-part transition piece.











DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS




Referring now to

FIG. 1

, there is seen a header


10


of the sort useful with a V-8 engine having four exhaust ports on each bank of four cylinders. A flange


12


bolts to the exhaust ports of a conventional engine with four holes (not seen) located in juxtaposition to the engine exhaust ports. Four primary pipes


14


extend from flange


12


at the hole locations to a collector


16


. In the case of a V-6 engine, there will be three primary pipes


14


.




Collector


16


has a multi-lobed entrance area, fitting closely around the primary pipe end region and secured thereto, such as by welding. Collector


16


transitions from a larger cross section corresponding to the combined cross-sections of pipes


14


and central area


22


to a lesser cross section at the collector exit


24


. Topically, exit


24


includes a flange


26


for bolting to a conventional exhaust pipe (not shown, for clarity) with a conventional spherical connection


28


for sealing to the exhaust pipe.




Primary pipes


14


preferably have equal lengths and are smoothly curved toward collector


16


. The ends of primary pipes


14


are arranged uniformly about a central point, so that there is an opening left between the pipes having a generally square shape, with somewhat concave walls as seen in FIG.


2


. The end portions of pipes


14


are substantially parallel and the ends lie substantially in a plane.




A generally pyramidal transition piece


18


having an approximately square base


20


is secured such as by welding base


20


to primary pipes


14


covering the central area


22


between the pipes. Base


20


may be square in the case of four primary pipes


14


so an equilateral triangle in the case of three primary pipes


14


. If desired, the sides of base


20


may be slightly concave as seen in

FIG. 3

to more precisely correspond to the portions of tubes


16


that form the boundaries of area


22


as seen in FIG.


2


.




While transition piece


18


may be formed in one piece, such as by casting or machining from solid stock, it can also be built up from piece parts. In one preferred arrangement, as seen in

FIG. 4

, two halves


30


of a pyramidal shell may be formed by press forming or the like, then welded together and to the primary pipe ends. Since the forming tooling is inexpensive, transition pieces of different sizes for different purposes may be easily made. Further, where concave base sides and/or concave or convex sides are desired, such shapes can be easily provided during the press forming operation.




we have also found that in many cases exhaust gas flow can be improved by the provision of a small, ball-like protuberance


22


at the apex of the transition piece, as shown in FIG.


3


. Optimum size of protuberance


22


will depend on he length and base diameter of the transition piece. In general, a protuberance having a cross-section of up to about 10% of the cross section of base


20


improves performance. Protuberance


22


may have any suitable shape, typically approximately spherical, elliptical or tear drop shaped, with the cross section in a plane perpendicular to the axis of the transition piece being substantially circular.




Transition piece


18


may have any suitable length. In general a length between a length equal to the length of a base side and a length equal to the length of collector


16


gives best results. Tests have shown improvements in both engine horsepower produced and fuel efficiency when a header using a transition piece according to this invention is used, when compared to the same header without the transition piece.




A particularly preferred embodiment of the present invention uses a modified and shortened header (or shorty header) having a transition piece as defined herein. A shorty header is approximately one third the length of a typical and conventional header such that the primary tube length from head to collector is an average of about 12 inches rather than the typical 36 inches found on conventional headers. The header in

FIG. 1

is such a shortened header. A shortened header provides increased horsepower, but contains greater turbulence in the collector region when compared to conventional headers. It is believed that the increased air flow turbulence arises because the shorty header does not have the longer directional air flow passage found in the conventional headers, and because the air is typically hotter, and therefore inherently more turbulent, than the air in a conventional header at the collector point because Where is less distance and attendant opportunity for air cooling.




It was found that the present invention was particularly preferred at increasing engine performance in shorty headers.




Engine horsepower (hp) was measured on various headers using an engine dynomometer to determine the effect of the present invention on engine performance. When a transition piece was utilized according to the present invention on a conventional header collecting four primary pipes from a V-8 engine, an increase of about 2 to 5 hp was observed over the conventional header without a transition piece, depending upon other performance factors such as displacement, carburetion, primary pipe diameter, and the like performance variables. When a transition piece was utilized on a shorty header as shown in

FIG. 1

, an increase of about 10 to 15 hp was observed over the performance of the same shorty header lacking the transition piece according to the present invention. Again, the variation in increased performance depended upon the other listed performance factors.




Thus, the present invention provides a exhaust system having directional device in the form of the transition piece in a header as described herein that improves (streamlines) airflow when the air transitions from a large area source to a small area, in particular where that transition is over a relatively short distance. The improved airflow results in reduced turbulence, increased scavenging and substantial gains in horsepower.




Other applications, variations and ramifications of this invention will occur to those skilled in the art upon reading this disclosure. Those are intended to be included within the scope of this invention, as defined in the appended claims.



Claims
  • 1. An exhaust system for an internal combustion engine which comprises:a flange adapted to be secured to exhaust ports of an internal combustion engine; three openings through said flange, each adapted to align with an engine exhaust port; three primary pipes secured at their first ends to said flange at said openings; a collector pipe surrounding the second ends of said primary pipes; the second ends of said pipes lying substantially parallel and in contact with each other, substantially equally spaced around the collector pipe centerline and having end surfaces substantially in a single plane defining a central area between the pipe ends; a transition piece having an essentially pyramidal shape; the base of said pyramid covering the area between the primary pipe ends and secured to said pipe end surfaces; said collector pipe having an entrance internal cross section with the transition piece at said pipe ends substantially equal to the combined internal cross sections of said primary pipe ends; said collector pipe gradually reducing in internal cross section over its length; and means at the exit of said collector pipe for connection to an exhaust pipe.
  • 2. The exhaust system of claim 1 wherein said central area has an approximately equilateral triangular shape and wherein transition piece has a triangular base sized to fit the central area and is secured to the portions of said primary pipes surrounding said central area.
  • 3. The exhaust system of claim 2 wherein said base has concave sides adapted to conform to the shapes of the portions of said primary pipes surrounding said central area.
  • 4. The exhaust system of claim 1 wherein the length and cross section of said transition piece along its length is sufficient to maintain the internal cross-section of said collector pipe over its length equal to or less than the combined internal cross sections of said primary pipe ends.
  • 5. The exhaust system of claim 1 wherein the length of said transition piece is from a length substantially equal to the length of one side of said base and to a length substantially equal to the length of said collector pipe between the plane of said primary pipe end surfaces and the exit end of said collector pipe.
  • 6. The exhaust system of claim 1 wherein said flange, primary pipes, collector pipe or transition piece comprise metal.
  • 7. The exhaust system of claim 6 wherein said metal is selected from the group consisting of carbon steel and stainless steel.
  • 8. The exhaust system of claim 7 wherein said carbon steel is selected from the group consisting of 1010 carbon steel and 1020 carbon steel.
  • 9. The exhaust system of claim 7 wherein said stainless steel is selected from the group consisting of 308 stainless steel and 321 stainless steel.
  • 10. The exhaust system of claim 1 wherein said transition piece comprises two piece parts, each piece making up one or two adjacent sides of said pyramid forming a two-part transition piece, wherein said two piece parts are joined by welding to form said transition piece.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of application Ser. No. 09/097,644, filed Jun. 16, 1998, now U.S. Pat. No. 5,940,968 which is a continuation of copending application Ser. No. 08/171,223, filed Dec. 21, 1993, which is a divisional application of Ser. No. 07/970,007, filed Nov. 2, 1992, now U.S. Pat. No. 5,299,419, issued Apr. 5, 1994, the disclosures of which are hereby incorporated by reference.

US Referenced Citations (8)
Number Name Date Kind
4796426 Feuling Jan 1989 A
5248859 Bolar Sep 1993 A
5299419 Bittle et al. Apr 1994 A
5678404 McManus Oct 1997 A
5765373 Bittle et al. Jun 1998 A
5816044 Biggs Oct 1998 A
5887428 Garisto Mar 1999 A
5940968 Bittle et al. Aug 1999 A
Continuations (2)
Number Date Country
Parent 09/097644 Jun 1998 US
Child 09/379879 US
Parent 08/171223 Dec 1993 US
Child 09/097644 US