The valve segment 50 may be a plate having an arc shaped in cross section. The valve segment 50 forms an arc of preferably about 130 degrees and extends preferably from the 1:00 to 5:00 positions with respect to the rotation of the vacuum drum. The valve segment is juxtaposed with the drainage outlets of the ribs 20 and extends into the filtrate chamber 28 in the drum 12. The valve segment is off-set from the centerline 54 of the trunnion conduit 34. The plate that forms the valve segment 50 includes one or more gas inlet apertures 58 arranged to be in alignment with the discharge of the ribs 20 in the drum. In the arrangement shown in
The cantilever support 51 for the valve segment has a closed passageway 56 that extends from the valve segment plate 50 through the trunnion conduit 34 and into the elbow conduit 52. The passageway 56 allows gas and foam collected from the ribs 20 to be exhausted out of the filtrate drum and out of the elbow. The outlet of the passageway 56 includes an upper gas vent 68 and a liquid filtrate drain 70.
The gas aperture(s) 58 of the valve segment preferably extend collective a majority of the arc of the valve segment 50, as is shown in
Further, the gas aperture(s) 58 may extend from a near top drum position of the valve segment 50 to a lower position 60 on the valve segment that corresponds to where the ribs have been fully vented of gas and foam, and are entirely filled with liquid filtrate. The elevation of the liquid level in the vat typically corresponds to the centerline 54 of the drum 12. As the drum surface moves further into vat, liquid filtrate fills the ribs 20 and forces air and foam out of the ribs and into the aperture 58 of the valve segment. Preferably, the lower edge 60 of the aperture(s) 58 is at or below the angular drum position at which the ribs have been purged of air and foam. As shown in
The large cross-sectional area of the gas aperture(s) 58 in the valve segment 50 ensures that substantially all gases vented from the ribs enter the gas passage 56 in the valve segment even for relatively fast rotating drums. The aperture(s) 58 are relatively long (AW) in the direction of drum rotation. This length facilitates the venting of gases from the ribs 20 into the passage 56 as the ribs move across the length (AW) of the aperture 50. The low position, e.g., 4:00 to 5:00 position, of the lower edge 60 of the aperture 58 ensures that all air and foam are discharged from the ribs and into the passage 56.
The plate of the valve segment 50 may be mounted on an outer plate 64 of the valve segment support 51. The outer plate may have an arc cross-sectional shape that faces and conforms to the inside wall surface of the trunnion conduit. The valve segment 50 may be a plate that has an arc cross-sectional shape that conforms to the outer plate 64. The valve segment 50 is mounted, e.g., bolted, to the outer plate 64 and fits over an opening (not shown) in the outer plate 64.
The position of the valve segment 50 on the outer plate 64 may be adjustable, such as thorough the use of oval or race-track slots 66 in the plate that receive the bolts that attach the plate 62 to the outer plate 64 of the valve segment support 51. Alternatively, the valve segment 50 may be welded to the outer plate 64 once the valve segment has been properly positioned with respect to the outlets to the ribs 20 in the drum.
By adjusting the position of the valve segment 50 on the outer plate 64, the apertures 58 can be optimally positioned with respect to the angular movement of the drum and the outlet of the ribs 20. The ribs pass filtrate from the drum surface to a filtrate chamber 28. The ribs serve as drainage pipes for the drum. For example, the valve segment 50 may be moved slightly up or down on the support plate 64 to align the lower edge 60 of the aperture 58 to be sufficiently below the elevation at which the ribs 20 have fully discharged air and foam, and are discharging liquid filtrate. The valve segment 50 may also be positioned laterally, e.g., parallel to the axis 54 of the drum axis, to be aligned with the discharge of the ribs 20.
The valve segment 50 may include a plurality of openings that define the gas aperture 58. Between the openings may be a support bar 66 integral with the plate of the valve segment and bisecting the plate. The support bar 66 provides structural stiffness for the valve segment and the apertures 58. The solid portions 65 of the valve segment (including the support bar) are relatively narrow (in the direction of AW) and have a relatively small cross-sectional area. Reducing the solid areas 65, 66 of the valve segments avoids unduly reducing the area of the aperture 58 or adversely disrupt the flow of gases into the gas vent passage 56.
The internal passage 56 in the valve segment support 51 vents gases that pass through the aperture(s) 58 of the valve segment and are from the ribs and filtrate chambers. The passage 56 is offset from and extends above and below the centerline 54 of the trunnion conduit and drum axis. The lower portion of the passage is preferably at or just below the bottom edge 60 of the apertures 58. Similarly, the lower portion of the passage 56 should be at or just below the angular position of the drum in which the ribs are filled with filtrate and gases and foam have been exhausted from the ribs.
The internal passage 56 may extend from the inlet aperture(s) 58 of the valve segment 50 and to the elbow 52. The passage 56 may have a gas vent 68 at an upper end of the passage and elbow, e.g., above the centerline 54. The passage 56 also has a filtrate drain 70 extending out of the passage and through the elbow. The filtrate drain is at a lower portion of the passage 56 and below the centerline 54 of the trunnion conduit and drum axis and preferably below the elevation of the lower edge 60 of the aperture(s) 58. A substantial amount of filtrate may pass through the passage 56 as air and foam are discharged from the ribs into the passage. Further, liquid filtrate in the ribs may serve a purging action to push out air and foam from the ribs and the pushing liquid filtrate may flow into the passage 56.
Alternatively, the valve segment 50 may be integrated into the valve segment support such that the distal end of the outer plate constitutes the valve segment and openings in the outer plate constitute the gas apertures leading to the gas passage 56. Further, the outer plate 64 and valve segment support 51 may be formed by a sturdy tube having a relatively large cross-sectional area and offset from and lower than the axis 54 of the drum. The tube may have an oval or kidney shaped cross-section to reduce the blockage to fluid flow in the trunnion conduit and conform to the inside wall surface of the trunnion conduit.
The rear plate 72 and outer plate 64 of the valve segment support 51 form a sturdy support and the gas vent passage 56. The valve segment support may extend as a cantilever from the inlet of the elbow 52 into the trunnion conduit. A cylindrical post 78 on the distal end of the valve segment support may fit into a bushing 79 (
The internal gap between the front and rear plates of the valve segment support defines the gas passage 56. End caps 82 welded to opposite longitudinal ends of the plates seal the ends of the passage. The passage 56 may alternatively be a tube extending along a back surface of the outer front plate and thereby render the rear plate optional.
The valve segment 50 provides a means for removing the air from filter drum before the air enters the drop leg. The valve segment allows the ribs to vent gases into the passage 56 for substantially the entire rotational period during which the suction is not applied to the ribs. Further, the valve segment allows gas and foam from the ribs to vent entirely into the passage 56 (along with a substantial amount of liquid filtrate) to minimize air entering the elbow and down leg conduits. These features are contrary to the conventional approach of blocking liquid fluid flow through the ribs during most of the portion of the rotational in which suction is not applied to the ribs.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
This application claims the benefit of application Ser. No. 60/829,313 filed Oct. 13, 2006, which is incorporated in its entirety by reference.
| Number | Date | Country | |
|---|---|---|---|
| 60829313 | Oct 2006 | US |