The present invention relates generally to gas generating systems, and to gas generant compositions employed in gas generator devices for automotive restraint systems, for example.
The present invention relates to gas generant compositions that upon combustion produce a relatively small amount of solids and a relatively abundant amount of gas. It is an ongoing challenge to reduce the amount of solids and increase the amount of gas thereby decreasing the filtration requirements for an inflator. As a result, the filter may be either reduced in size or eliminated altogether thereby reducing the weight and/or size of the inflator.
An equally important challenge is to manufacture gas generants that exhibit relatively low sensitivity with regard to impact, friction, or electrostatic discharge stimuli.
Yet another challenge with gas generant compositions that produce relatively small amounts of solids, sometimes known as “smokeless” compositions, is that not all non-metallic constituents contribute to stable ballistic performance when subjected to environmental conditioning. In fact, one fuel that is favored because of its propensity to produce all or mostly gas is the mono-ammonium salt of bis-1(2)H-tetrazol-5-yl)-amine (BTA-1NH3). When combined with other gas generant constituents such as an oxidizer, and formed into a gas generant composition, this fuel contributes to greater amounts of gas upon combustion of the composition.
Accordingly, it would be an improvement in the art to provide compositions that contain BTA-1NH3 that contribute to a “smokeless” gas generant composition, or one that when combusted produces 90% or more of gas as a product, while yet passing thermal shock evaluations.
The above-referenced concerns are resolved by gas generating compositions including BTA-1NH3, an oxidizer such as phase stabilized ammonium nitrate, and a fumed oxide such as fumed silica or fumed alumina. It has been found that the addition of fumed silica or fumed oxides to compositions containing BTA-1NH3 has resulted in compositions that are now able to withstand thermal cycling/thermal shock evaluations. Other constituents including processing aids such as graphite, may be included in relatively small amounts.
In further accordance with the present invention, a gas generator and a vehicle occupant protection system incorporating the gas generant composition are also included.
The present invention includes gas generant compositions that in accordance with the present invention, incorporate an additive into compositions containing BTA-1NH3 that, when added at relatively low levels, stabilizes the propellant grains when subjected to thermal cycling or thermal shock conditioning, as required for use in the automotive industry. These formulations generally contain the following:
A first oxidizer selected from the group including nonmetal and metal nitrate salts such as ammonium nitrate, phase-stabilized ammonium nitrate, potassium nitrate, strontium nitrate; nitrite salts such as potassium nitrite; chlorate salts such as potassium chlorate; metal and nonmetal perchlorate salts such as potassium or ammonium perchlorate; oxides such as iron oxide and copper oxide; basic nitrate salts such as basic copper nitrate and basic iron nitrate; and mixtures thereof. The first oxidizer is generally provided at about 0.1-80 wt % of the gas generant composition, and more preferably at about 10-70 wt %.
An optional secondary oxidizer may also be provided and selected from the oxidizers described above, and when included is generally provided at about 0.1-50 wt %, and more preferably at about 0.1-30 wt %. The total oxidizer component, that is the combined weight percent of all oxidizers, will nevertheless only range from 0.1 to 80 wt %.
A first or primary fuel consists of mono-ammonium salt of bis-(1(2)H-tetrazol-5-yl)-amine (BTA-1NH3) and is generally provided at about 0.1-50 weight percent or wt %, and more preferably at about 10-30 wt %.
An optional secondary fuel is selected from the group containing derivatives of bis-(1(2)H-tetrazol-5-yl)-amine, including its anhydrous acid and its acid monohydrate, from metal salts thereof including the potassium, sodium, strontium, copper, boron, zinc salts of BTA-1NH3, and complexes thereof; azoles such as 5-aminotetrazole; metal salts of azoles such as potassium 5-aminotetrazole; nonmetal salts of azoles such as mono-or di-ammonium salt of 5,5′-bis-1H-tetrazole; nitrate salts of azoles such as 5-aminotetrazole nitrate; nitramine derivatives of azoles such as 5-nitraminotetrazole; metal salts of nitramine derivatives of azoles such as di-potassium 5-nitraminotetrazole; nonmetal salts of nitramine derivatives of azoles such as mono- or di-ammonium 5-nitraminotetrazole and; guanidines such as dicyandiamide; salts of guanidines such as guanidine nitrate; nitro derivatives guanidines such as nitroguanidine; azoamides such as azodicarbonamide; nitrate salts of azoamides such as azodicarbonamidine dinitrate; and mixtures thereof, and when included is generally provided at about 0.149.9 wt %, more preferably 0.1-30 wt %. The total fuel component, that is the combined amount of all of the fuels of the composition, will nevertheless only range from 0.1-50 wt %, and more preferably about 0.1-30 wt %.
In accordance with the present invention, a first or primary additive is selected from the group of fumed metal oxides including fumed silica and fumed alumina, and mixtures thereof, and is generally provided at about 0.05-10 wt %, and more preferably at about 0.05-5 wt %.
All percentages for the constituents described herein are presented as weight percents of a total gas generant weight.
An optional second additive is selected from the group including silicon compounds including elemental silicon, silicon dioxide, and fused silica; silicones such as polydimethylsiloxane; silicates such as potassium silicates; natural minerals such as talc, mica, and clay; lubricants such as graphite powder or fibers, magnesium stearate, boron nitride, molybdenum sulfide; and mixtures thereof, and when included is generally provided at about 0.1-10%, and more preferably at about 0.1-5%.
An optional binder is selected from the group of cellulose derivatives such as cellulose acetate, cellulose acetate butyrate, carboxymethycellulose, salts of carboxymethylcellulose, carboxymethylcellulose acetate butyrate; silicone; polyalkene carbonates such as polypropylene carbonate and polyethylene carbonate; and mixtures thereof, and when included is generally provided at about 0.1-10%, and more preferably at about 0.1-5%.
All percentages for the constituents described herein are presented as weight percents of the total gas generant weight.
It has been determined that the addition of small amounts of fumed metal oxides, such as fumed silica (M-5 Grade provided by the Cabot Corporation), to these formulations provides a gas generant which exhibits all of the favorable properties listed above, and, more importantly, exhibits stable ballistic performance when subjected to thermal cycling or thermal shock conditioning.
The mono-ammonium salt of BTA-1NH3, when combined with PSAN, exhibits many favorable qualities for use in automotive passenger restraints, and therefore forms preferred gas generating compositions. BTA-1NH3 is a high energy, high-nitrogen fuel which exhibits excellent stability and very favorable levels of hygroscopicity and sensitivity. The properties of ammonium nitrate and potassium nitrate, for example, are well known throughout the propellant industry. PSAN, more specifically, exhibits no sensitivity when subjected to impact, friction, or electrostatic discharge stimuli.
Dry mixes of formulations containing these materials were made. The raw materials were ground together for 15 minutes in a Sweco vibratory mill. The dry material was then tableted, loaded into inflators, and subjected to desired thermal shock conditioning (100 Cycles, −40 C to 90 C). These formulations showed less than desirable ballistic performance when deployed at +85 C.
Next, the same process was used to make gas generants containing the above listed materials with 0.25%, 0.5%, and 0.75% M-5 Silica by weight. After the thermal shock conditioning indicated above, it was found that the ballistic stability of the gas generant increased with the amount of fumed silica, thereby providing the stability required for use in the automotive industry. Iterative analysis of various amounts of fumed silica in various compositions determined the amount of fumed silica or fumed oxide employed to assure acceptable ballistic performance. Accordingly, gas generant compositions made in accordance with the present invention exhibit many favorable characteristics for use in the auto industry, while avoiding many of the drawbacks of gas generants listed in the prior art.
A smokeless gas generant was produced by mixing Phase-Stabilized Ammonium Nitrate (PSAN) containing 10% by weight Potassium Nitrate, with bis-(1(2)H-tetrazol-5-yl)-amine, mono-ammonium salt (BTA-1NH3). The mixture was substantially in stoichiometric balance. The components were ground dry for about 15 minutes within a Sweco Vibratory Jar Mill.
The resultant mixture was pressed into tablets, as is standard in the industry. The tablets were then loaded into a single-stage driver-side inflator for ballistic evaluation. Several inflators were deployed to provide baseline data while other inflators were subjected to thermal shock conditioning by varying the temperature from −40 C to 90 C in accordance with typical thermal shock cycling. Upon completion of 100 thermal shock cycles, several inflators were deployed to compare with baseline ballistics. Relative to thermal shock evaluations, inflators were deployed at temperatures of −40 C, +23 C, and +85 C. The −40 C and +23 C deployments match the baseline data fairly well, while the +85 C ballistic data indicated less than desirable ballistic behavior.
To alleviate this problem, varying amounts of fumed silica were added to the mixture. The fumed silica was commercially available as M-5 Grade provided by Cabot Corporation. Initially, the fumed silica was added at levels between about 3-6% by mass. The stoichiometric balance of the fuel and oxidizer and processing were kept the same. The resultant gas generants were then ballistically evaluated via the same method described above. After thermal shock conditioning, no change had occurred in the ballistic performance. However, the addition of such a large amount of “inert” material detracted from or inhibited the energy of the system. Although these compositions were acceptable, the lessened energy made the formulations not as desirable.
Next, the amount of fumed silica was reduced to test what level was required to pass thermal shock conditioning. Three new mixtures were made via the same processing using 0.25%, 0.5%, and 0.75% fumed silica by mass. The new mixtures were tableted and ballistically evaluated via the same method as described above.
0.25% Silica (mixture 1)
The ballistic data for the mixture containing 0.25% silica is illustrated in
0.5% silica (mixture 2)
The ballistic data for the mixture containing 0.5% silica can be seen in
0.75% silica (mixture 3)
The ballistic data for the mixture containing 0.75% silica can be seen in
The results of this experiment are counterintuitive according to the density and crush strength of the individual tablets. All three mixtures appear to be nearly identical in density and crush strength, both before and after thermal shock. Accordingly, it is not apparent that the use of fumed silica in the varying amounts would improve the ballistic properties as described. Mixture 3, however, performs significantly better than Mixture 2, which performs significantly better than Mixture 1.
As shown in
Referring now to
Referring again to
Safety belt assembly 150 may also include (or be in communication with) a crash event sensor 158 (for example, an inertia sensor or an accelerometer) including a known crash sensor algorithm that signals actuation of belt pretensioner 156 via, for example, activation of a pyrotechnic igniter (not shown) incorporated into the pretensioner. U.S. Pat. Nos. 6,505,790 and 6,419,177, previously incorporated herein by reference, provide illustrative examples of pretensioners actuated in such a manner.
It should be appreciated that safety belt assembly 150, airbag system 200, and more broadly, vehicle occupant protection system 180 exemplify but do not limit gas generating systems contemplated in accordance with the present invention. Further, the compositions described above do not limit the present invention.
It should be understood that the preceding is merely a detailed description of various embodiments of this invention and that numerous changes to the disclosed embodiments can be made in accordance with the disclosure herein without departing from the scope of the invention. The preceding description, therefore, is not meant to limit the scope of the invention. Rather, the scope of the invention is to be determined only by the appended claims and their equivalents.
This application is a continuation-in-part of co-pending application U.S. application Ser. No. 11/540,841 filed on Sep. 29, 2006, and claims the benefit thereof.
Number | Date | Country | |
---|---|---|---|
Parent | 11540841 | Sep 2006 | US |
Child | 12217577 | US |