Gas-generating devices with grain-retention structures and related methods and systems

Information

  • Patent Grant
  • 8672348
  • Patent Number
    8,672,348
  • Date Filed
    Thursday, June 4, 2009
    15 years ago
  • Date Issued
    Tuesday, March 18, 2014
    10 years ago
Abstract
Gas-generating devices with grain-retention structures and related methods and systems are described. In particular, gas-generating devices having at least one retention structure fixed to a frame and positioned between adjacent gas-generant grains arranged in a longitudinal stack. Fire suppression systems comprising such gas-generating devices are also described. Additionally, methods of manufacturing gas-generating devices, as well as methods of generating a gas and methods of suppressing a fire utilizing such gas-generating devices are described.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is related to U.S. patent application Ser. No. 11/409,257 entitled MAN-RATED FIRE SUPPRESSION SYSTEM, filed Apr. 21, 2006, now U.S. Pat. No. 8,408,322, issued Apr. 2, 2013; U.S. patent application Ser. No. 10/727,088 entitled MAN-RATED FIRE SUPPRESSION SYSTEM, filed Dec. 2, 2003, now abandoned; U.S. patent application Ser. No. 10/727,093 entitled METHOD AND APPARATUS FOR SUPPRESSION OF FIRES, filed Dec. 2, 2003, now U.S. Pat. No. 7,337,856, issued Mar. 4, 2008; and U.S. patent application Ser. No. 12/042,200 entitled METHOD AND APPARATUS FOR SUPPRESSION OF FIRES, filed Mar. 4, 2008, now U.S. Pat. No. 7,845,423, issued Dec. 7, 2010, the disclosures of all of which are incorporated by reference herein in their entirety.


TECHNICAL FIELD

The invention relates to gas-generating devices with grain-retention structures and related methods and systems. In particular, the invention relates to gas-generating devices having at least one retention structure positioned between gas-generant grains. The invention also relates to fire suppression systems comprising such gas-generating devices. Additionally, the invention relates to methods of manufacturing gas-generating devices, as well as methods of generating a gas and methods of suppressing a fire utilizing such gas-generating devices.


BACKGROUND

Gas-generating devices that utilize gas-generating grains are often used in the automotive industry for passenger restraint systems, such as for inflators for airbag modules. Additionally, new methods and devices for suppressing fires using gas-generating devices that utilize gas-generating grains have been disclosed in the aforementioned U.S. patent application Ser. No. 11/409,257 entitled MAN-RATED FIRE SUPPRESSION SYSTEM, filed on Apr. 21, 2006, now U.S. Pat. No. 8,408,222.


The following discussion relates to the environment in which embodiments of the present invention may be beneficially employed, and does not constitute Admitted Prior Art.


As gas generators are made larger, such as to produce larger amounts of gas, the inventors of the present invention discovered several issues. For example, as gas-generating grains are produced in a larger scale the reliability of the grains becomes an issue. Specifically, larger gas-generating grains tend to have an unpredictable burn rate and have an inconsistent gas production throughout the burn, as well as having other undesirable burn characteristics. Additionally, larger gas-generating grains tend to develop cracks and other structural defects that contribute to the unreliability of these larger grains and the undesirable burn characteristics of such larger grains.


Instead of a single larger grain, a plurality of smaller gas-generating grains in a single gas generator improve the reliability of the gas generator, and provide relatively predictable burn rates and relatively consistent gas production throughout the burn. However, the inventors of the present invention discovered that the interaction between the smaller, burning gas-generating grains within the gas generator has undesirable effects on the gas generator performance.


As shown in FIG. 1, a gas-generating grain 10 may have a generally annular shaped body 12 and include a plurality of protrusions 14 on a surface that may act as a “stand-off.” A plurality of grains 10 may be arranged within a sleeve 16 in a longitudinal stack, and the protrusions 14 may maintain a space between adjacent grains of the plurality of grains 10, as shown in FIG. 2A. As the grains 10 burn, the entire exposed surface of each grain 10 may combust to generate a gas. Also, as the plurality of grains 10 burns and produces gas, the size and mass of each grain 10 is reduced, as shown in FIG. 2B, and gaps 18 may be formed between adjacent grains 10.


As shown in FIG. 2C, the burning grains 10 may be accelerated in different directions during the combustion and gas-generating process and relatively large gaps 20 may result. As the burning grains 10 continue to be accelerated in various directions, the grains 10 may collide with surrounding structures and adjacent grains 10. As larger gaps 20 may form, the grains 10 may be accelerated over a greater distance, resulting in higher velocities. The collisions at such higher velocities may be relatively energetic and may result in material of the grains 10, particularly spent material of the grains 10 or so called “clinkers,” breaking apart, which may result in the production of particulates. This production of particles may be undesirable, as the gas-generating grains 10 may be enclosed within a combustion chamber of a gas-generating assembly (not shown), and as particulates are carried through the gas-generating assembly they may foul a filter of the assembly and reduce gas flow and/or may be carried out of the gas-generating assembly. The particulates that may be carried out of the gas-generating assembly may be undesirable. Additionally, excessive smoke and undesirable combustion products may result and may also be expelled from the gas-generating assembly.


BRIEF SUMMARY OF THE INVENTION

Embodiments of the present invention relate to gas-generating devices that comprise a plurality of gas-generant grains, a frame, and at least one retention plate. The gas-generant grains may be constrained to a longitudinally stacked configuration by the frame. Each retention plate may be coupled to the frame, fixed relative to the frame, and positioned between at least one gas-generant grain and at least one adjacent gas-generant grain of the plurality of gas-generant grains.


Embodiments of the present invention also relate to gas-generating devices that comprise a plurality of longitudinally stacked gas-generant grains, a frame, and at least one retention structure coupled to the frame and positioned between adjacent gas-generant grains of the plurality of longitudinally stacked gas-generant grains. Each retention member may be sized and configured to remain fixed to the frame and constrain the longitudinal position of the adjacent gas-generant grains relative to the frame as the adjacent gas-generant grains generate gas.


Additionally, embodiments of the present invention relate to fire suppression systems, and other applications requiring multiple grains in a larger gas generator, that comprise at least one combustion chamber, at least one effluent train coupled to each combustion chamber, and at least one gas-generating device located within each combustion chamber. Each gas-generating device may comprise a plurality of fire-suppressing gas-generant grains constrained to a longitudinally stacked configuration by a frame. One or more retention plates may be coupled to the frame, fixed relative to the frame, and positioned between at least some adjacent gas-generant grains of the plurality of fire-suppressing gas-generant grains.


In accordance with one embodiment of the present invention, a gas generator may be manufactured by arranging a plurality of gas-generant grains in a longitudinal stack. One or more retaining members may be positioned between at least one gas-generant grain and at least one adjacent gas-generant grain of the plurality of gas-generant grains in the longitudinal stack, and each retaining member may be fixed to the frame.


In accordance with another embodiment of the present invention, a gas may be generated by combusting a plurality of longitudinally stacked gas-generant grains to generate a gas. Lateral movement of at least some of the plurality of longitudinally stacked gas-generant grains may be restricted during combustion with a frame structure, and longitudinal movement of the plurality of longitudinally stacked gas-generant grains may be restricted during combustion by maintaining at least one retaining member between adjacent gas-generant grains of the plurality of longitudinally stacked gas-generant grains and maintaining the one or more retaining members fixed relative to the frame during combustion.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a pictorial view of a gas-generant grain.



FIG. 2A shows a cross-sectional view of a gas-generating device with a plurality of gas-generant grains, such as shown in FIG. 1.



FIG. 2B shows a cross-sectional view of the gas-generating device shown in FIG. 2A after the gas-generant grains have experienced some mass loss due to gas generation and gaps have formed between gas-generant grains.



FIG. 2C shows a cross-sectional view of the gas-generating device of FIG. 2B after the gas-generant grains have moved within the gas-generating device and a relatively large gap has formed.



FIG. 3A shows a pictorial cutaway view of a gas-generating device according to an embodiment of the invention with a full gas-generant grain removed from a longitudinal stack of gas-generant grains to better show a retention plate located between gas-generant grains of the longitudinal stack.



FIG. 3B shows a cross-sectional view of the gas-generating device of FIG. 3A.



FIG. 4 shows a top view of a retention plate, such as used in the gas-generating device of FIGS. 3A and 3B.



FIG. 5 shows a cross-sectional view of a gas-generating device having retention plates located between gas-generant grains according to another embodiment of the invention.



FIG. 6 shows a top view of a retention plate, such as used in the gas-generating device of FIG. 5.





DETAILED DESCRIPTION

A gas-generating device 22 according to an embodiment of the present invention is shown in FIGS. 3A and 3B. The gas-generating device 22 may include a plurality of gas-generant grains 24, a frame, such as a sleeve 26, and at least one retention structure, such as a retention plate 28. The plurality of gas-generant grains 24 may be constrained to a longitudinally stacked configuration by the sleeve 26 and each retention plate 28 may be coupled to the sleeve 26 and positioned between adjacent gas-generant grains 24 of the plurality of gas-generant grains 24. The gas-generating device 22 may be located within a combustion chamber of a gas-generating assembly (not shown), which may include an igniter and may be coupled to an effluent train.


Each gas-generant grain 24 may be substantially cylindrical or annular in shape. Accordingly, each grain 24 may include a substantially planar first end surface 30, a substantially planar second end surface 32, a generally arcuate outer surface 34 and a generally arcuate inner surface 36. Optionally, the first and/or second end surfaces 30 and 32 of each gas-generant grain 24 may comprise protrusions, or another stand-off structure, formed thereon, such as the protrusions 14 of the gas-generant grain 10 shown in FIG. 1. The gas-generant grains 24 may be arranged in a stacked configuration, wherein the outer surfaces 34 of each gas-generant grain 24 may be generally aligned with the outer surfacess 34 of another gas-generant grain 24 and wherein at least one of the first and second end surfaces 30 and 32 of each grain 24 may be adjacent to one of the first and second end surfaces 30 and 32 of another grain 24.


The sleeve 26 may be a substantially annular elongated sleeve 26 formed from a gas permeable material, such as a perforated metal sheet. For example, the sleeve 26 may be formed from a perforated steel sheet and may be shaped as a perforated steel pipe or tube. Additionally, the sleeve 26 may have a bore 38 sized and shaped to substantially conform to an outer surface 34 of each gas-generant grain 24 of the plurality of gas-generant grains 24. For example, the bore 38 may be substantially cylindrical in shape. A diameter D0 of the bore 38 may be sized similar to the outer diameter D1 of each gas-generant grain 24, or may be sized slightly larger (such as less than about 10% larger) than the outer diameter D1 of each gas-generant grain 24.


Each retention plate 28 may comprise a perforated metal sheet and may be generally shaped like a disc, or may be otherwise shaped similarly to a cross-sectional shape of at least one of the sleeve 26 and the grains 24, such as shown in FIG. 4. Each retention plate 28 may be positioned between adjacent grains 24 in the longitudinal stack. A retention plate 28 may be located between each adjacent grain 24, as shown in FIG. 3B, or may be located at intervals. For example, a retention plate 28 may be located between every other grain 24. In additional embodiments, the retention plates 28 may be located at some other uniform interval, or optionally a non-uniform interval. The positioning of a perforated retention plate 28 between adjacent grains 24 may provide a gap between adjacent grains 24 and provide communication between adjacent grains 24 through the perforations. In view of this arrangement, grains may or may not include stand-offs when retention plates are positioned between adjacent grains.


As shown in FIG. 4, each retention plate 28 may include a plurality of apertures 40 or perforations therein, and may include a large central aperture 42 that may correspond to a central aperture of each grain 24, such as a central aperture 42 that may correspond to a central aperture of each grain, such as a central aperture 44 defined by the inner surface 36 of each grain 24 as shown in FIGS. 3A and 3B. Each retention plate 28 may be sized and configured to remain fixed to the frame, such as the sleeve 26, and constrain the longitudinal position of the adjacent gas-generant grains 24 relative to the sleeve 26 when the adjacent gas-generant grains 24 generate gas. For example, each retention plate 28 may be sized with a diameter D2 larger than a diameter D0 of the bore 38 of the sleeve 26. Accordingly, each retention plate 28 may be pressed into the sleeve 26 and may be coupled to the sleeve 26 by an interference fit. The interference fit may fasten the retention plate 28 to the sleeve 26 by friction, which may be significantly increased by the compression of the retention plate 28 by the sleeve 26. The sleeve 26 and the retention plate 28 may be formed of a material having sufficient tensile and compressive strength, and the retention plate 28 may be sized relative to the sleeve 26, to provide sufficient friction to fix the retention plate 28 relative to the sleeve 26 and prevent the longitudinal movement of the retention plate 28 relative to the sleeve 26 during the combustion of the gas-generant grains 24. In some embodiments, the retention plate 28 may include cantilevered members 46 where the diameter D2 may exceed the diameter D0 of the bore 38 of the sleeve 26. Additionally, the cantilevered members 46 may extend beyond a general diameter D3 of the retention plate 28, as shown in FIG. 4. Upon insertion into the sleeve 26, an interference fit may be provided between the cantilevered members 46 and the sleeve 26. In additional embodiments, the retention plate 28 may not include cantilevered members 46 and the general diameter D3 of the retention plate 28 may be larger than the diameter D0 of the bore 38 of the sleeve 26 and an interference fit may be provided between the sleeve 26 and substantially the entire outer surface of the retention plate 28. In yet additional embodiments, the sleeve 26 may include surface features within the bore 38, such as helical threads, protrusions and/or annular grooves (not shown), that may correspond to surface features at the periphery of each retention plate 28 that may be utilized to longitudinally fix the retention plate 28 relative to the sleeve 26.


An additional embodiment of a gas-generating device 50 according to the present invention is shown in FIG. 5. The gas-generating device 50 may include a plurality of gas-generant grains 52, a frame 54, which may comprise a plurality of rods 56, and at least one retention structure, such as a retention plate 58. The plurality of gas-generant grains 52 may be constrained to a longitudinally stacked configuration by the longitudinally extending rods 56 of the frame 54 and each laterally oriented retention plate 58 may be coupled to one or more rods 56 of the frame 54 and positioned between adjacent gas-generant grains 52 of the plurality of gas-generant grains 52.


Each gas-generant grain 52 may be sized and shaped similar to the gas-generant grains 24 described with reference to FIGS. 3A and 3B. The gas-generant grains 52 may be arranged in a stacked configuration, wherein the outer surfaces 62 of each gas-generant grain 52 may be generally aligned with an outer surface 62 of another gas-generant grain 52 and wherein at least one of a first surface 64 and second surface 66 of each grain 52 may be adjacent one of the first surface 64 and second surfaces 66 of another grain 52. Additionally, the rods 56 may be placed circumferentially to surround each gas-generant grain 52 and may be positioned adjacent to each gas-generant grain 52, such that lateral movement of the gas-generant grains 52 may be restricted by the rods 56.


As shown in FIG. 5, the rods 56 may have an elongated, generally cylindrical shape and may be formed from a generally rigid and heat resistant material, such as steel or another suitable metal. In additional embodiments, the rods 56 may have another elongated shape and may have a cross-section that may comprise any number of shapes.


At least one retention structure, such as retention plates 58, may be positioned between adjacent gas-generant grains 52 of the longitudinally stacked plurality of gas-generant grains 52. The retention plates 58 may be similar to the retention plates 28 described with reference to FIG. 4; however, the retention plates 58 may be sized and configured to couple and be fixed to the rods 56 of the frame 54, rather than a sleeve 26 (FIGS. 3A and 3B). As shown in FIG. 6, each retention plate 58 may include a plurality of apertures 68 or perforations therein, and may include a large central aperture 70 that may correspond to a central aperture 72 of each grain 52. Each retention plate 58 may be sized and configured to remain fixed to the frame 54 and constrain the longitudinal position of the adjacent gas-generant grains 52 relative to the frame 54 when the adjacent gas-generant grains 52 generate gas. For example, each retention plate 58 may be sized with one or more coupling apertures 74 having a dimension D4 smaller than a dimension D5 of the rods 56 of the frame 54. The coupling apertures 74 may include one or more relief cuts 76, which may facilitate an elastic deformation of the retention plate 58 proximate each coupling aperture 74. Accordingly, the coupling apertures 74 of each retention plate 58 may be aligned with the rods 56 of the frame 54 and each retention plate 58 may be pressed onto the rods 56 and may be coupled to the rods 56 by an interference fit. The interference fit may fasten each retention plate 58 to the rods 56 by friction, in a manner similar to that described with reference to the retention plates 28 and sleeve 26 described with reference to FIGS. 3A, 3B and 4. For example, regions of the retention plate 58 proximate each coupling aperture 74 may be elastically deformed by ran outer surface 78 of each rod 56 and enhance the friction between the retention plate 58 and the rods 56. Accordingly, the friction between the retention plates 58 and the rods 56 of the frame 54 may be sufficient to prevent longitudinal movement of the retaining plates 58 relative to the frame 54 while the grains 52 combust to generate gas. In additional embodiments, the rods 56 may include surface features, such as grooves, protrusions, and/or helical threads (not shown), that may couple with corresponding features of each retention plate 58 and longitudinally fix each retention plate 58 relative to the rods 56.


Methods of manufacturing a gas generator, such as gas-generating devices 22 and 50, may comprise arranging a plurality of gas-generant grains, such as gas-generant grains 24 or 52, in a longitudinal stack, positioning at least one retaining member, such as retention plates 28 or 58, between adjacent grains of the plurality of gas-generant grains 24 or 52 in the longitudinal stack, and fixing the at least one retaining member to the frame, such as to the rods 56 or the sleeve 26.


For example, an elongated frame, such as the sleeve 26, may be provided and positioned to align with a plunger, such as a plunger attached to a press ram. A gas-generant grain 24 may be aligned with the sleeve 26, for example, the arcuate outer surface 34 of the gas-generant grain 24 may be aligned with the bore 38 of the sleeve 26, and the grain 24 may be positioned at a longitudinal position within the sleeve 26 by applying a force to the grain 24 with the plunger. A retaining member, such as the retention plate 28, may then be positioned adjacent a surface of the gas-generant grain 24 within the sleeve 26 and fixed to the sleeve 26. The retention plate 28 may be aligned with the sleeve 26 and pressed with the plunger, such as with the assistance of a mechanical or hydraulic press, into the sleeve 26 and positioned adjacent to the second end surface 32 of the gas-generant grain 24, and the size and configuration of the retention plate 28 relative to the sleeve 26 may provide an interference fit to fix the retention plate 28 to the sleeve 26.


After the first gas-generant grain 24 is inserted into the sleeve 26 and the first retention plate 28 has been positioned adjacent to the first gas-generant grain 24 and fixed to the sleeve 26, another gas-generant grain 24 may be aligned with the sleeve 26, similarly to the first gas-generant grain 24. The second grain 24 may be positioned at another longitudinal position within the sleeve 26, and a first end surface 30 of the second gas-generant grain 24 may be located adjacent to the first retention plate 28, by applying a force to the second grain 24 with the plunger. Then another retention plate 28 may be positioned adjacent to the second end surface 32 of the second gas-generant grain 24 within the sleeve 26 and fixed to the sleeve 26 in a manner similar to the positioning and affixation of the first retention plate 28. This method may be repeated until the required number of grains 24 has been assembled into the sleeve 26.


Gas-generating devices according to the present invention, such as gas-generating devices 22 and 50 described herein, may generate a gas by a chemical reaction that may convert solid chemicals in the gas-generating grains 24 and 52 into a gas. For example, gas-generant grains 24 and 52 may combust and form gaseous combustion products. An igniter, such as an electronic igniter (not shown), may be actuated to initiate a chemical reaction or otherwise cause the gas-generant grains 24 and 52 to combust and generate the gas. While the grains combust, thrust forces may be generated and act upon the grains, and the frame, such as the frame 54 or sleeve 26, and at least one retaining member, such as the retention plates 28 and 58, may resist these forces and restrict the movement of the grains 24 and 52. The frame 54 and sleeve 26 may be maintained in a fixed position and may be utilized to physically restrict the lateral movement of each of the longitudinally stacked gas-generant grains 24 and 52 and maintain the lateral position of each grain 24 and 52 during combustion of the grains 24 and 52. Additionally, the retention plates 28 and 58 may be maintained at a fixed longitudinal location relative to the frame 54 and sleeve 26 and maintained between adjacent gas-generant grains 24 and 52 of the plurality of longitudinally stacked gas-generant grains 24 and 52 during combustion of the grains 24 and 52. In view of this, each retention plate 28 and 58 may remain fixed relative to the frame 54 and sleeve 26 and restrict the longitudinal movement of adjacent gas-generant grains 24 and 52 as the grains 24 and 52 combust.


In some embodiments, the gas-generating devices 22 and 50 and methods as described herein may be part of a fire suppression system, such as is disclosed in the aforementioned U.S. patent application Ser. No. 11/409,257 entitled MAN-RATED FIRE SUPPRESSION SYSTEM, filed on Apr. 21, 2006, now U.S. Pat. No. 8,408,322. Accordingly, the gas-generating grains 24 and 52 may generate a fire-suppressing gas that may be directed out of a combustion chamber and through an effluent train into a space containing a fire (not shown). The fire-suppressing gas may flood the space and/or may be metered into the space and the fire may be suppressed. For example, the fire-suppressing gas may replace previously available oxygen-containing gas and may deprive the fire of the oxygen required for combustion, and/or the fire-suppressing gas may otherwise interfere with the combustion reaction of the fire and suppress the fire. However, it may be understood that embodiments of the present invention may also be used for any number of other types of gas-generating assemblies having a variety of uses.


While the invention may be susceptible to various modifications and alternative forms, specific embodiments of which have been shown by way of example in the drawings and have been described in detail herein, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention includes all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the following appended claims and their legal equivalents.

Claims
  • 1. A gas-generating device comprising: a plurality of gas-generant grains arranged in a longitudinally extending stack and constrained to a longitudinally stacked configuration by a frame; anda plurality of retention plates coupled to the frame and fixed relative to the frame, each retention plate of the plurality positioned between one adjacent gas-generant grain of the plurality of gas generant grains and another adjacent gas-generant grain of the plurality of gas-generant grains in the longitudinally extending stack.
  • 2. The gas-generating device of claim 1, wherein the retention plates each comprise a generally disc-shaped perforated metal sheet.
  • 3. The gas-generating device of claim 2, wherein the frame comprises a sleeve having a bore sized and shaped to substantially conform to an outer surface of each gas-generant grain of the plurality of longitudinally stacked gas-generant grains and wherein each of the plurality of gas-generant grains and the plurality of retention plates are positioned within the bore of the sleeve.
  • 4. The gas-generating device of claim 3, wherein the sleeve comprises a perforated metal pipe or tube.
  • 5. The gas-generating device of claim 4, wherein an outer diameter of each of the plurality of retention plates is larger than an inner diameter of the bore of the sleeve and wherein each retention plate of the plurality of retention plates is positioned within the bore such that each retention plate of the plurality of retention plates is compressed by a bore wall of the sleeve forming an interference fit between each retention plate of the plurality of retention plates and the sleeve.
  • 6. The gas-generating device of claim 5, wherein each retention plate of the plurality of retention plates comprises a plurality of cantilevered members and wherein an outer diameter of the plurality of cantilevered members prior to positioning thereof in the bore of the sleeve is larger than the inner diameter of the bore of the sleeve.
  • 7. The gas-generating device of claim 1, wherein the frame comprises at least one rod and wherein each retention plate of the plurality of retention plates is coupled to the at least one rod and fixed to the at least one rod.
  • 8. The gas-generating device of claim 7, wherein each retention plate of the plurality of retention plates comprises a perforated metal sheet including at least one guide aperture having a dimension smaller than a dimension of an outer surface of the at least one rod and wherein the at least one rod is positioned within the at least one guide aperture such that a region of the perforated metal sheet surrounding the at least one guide aperture is compressed by the outer surface of the at least one rod and forms an interference fit between each retention plate of the plurality of retention plates and the at least one rod.
  • 9. The gas-generating device of claim 1, wherein each retention plate of the plurality of retention plates has a shape similar to a shape of a cross-section of each gas-generant grain of the plurality of gas-generant grains.
  • 10. A gas-generating device comprising: longitudinally stacked gas-generant grains;a frame constraining the gas-generant grains to a longitudinally stacked configuration; andretention structures coupled to the frame, each retention structure positioned between adjacent gas-generant grains, the retention structures sized and configured to remain fixed to the frame and constrain the longitudinal position of the adjacent gas-generant grains relative to the frame as the adjacent gas-generant grains in the longitudinal stack generate gas.
  • 11. The gas-generating device of claim 10, wherein the retention structures are positioned between two gas-generant grains of the longitudinally stacked gas-generant grains.
  • 12. The gas-generating device of claim 10, further comprising an interference fit coupling the retention structures to the frame.
  • 13. A fire suppression system comprising: at least one combustion chamber;at least one effluent train coupled to the at least one combustion chamber; andat least one gas-generating device located within the at least one combustion chamber, the at least one gas-generating device comprising: a plurality of gas-generant grains arranged in a longitudinal stack and constrained to a longitudinally stacked configuration by a frame; anda plurality of retention plates coupled to the frame and fixed relative to the frame, each retention plate of the plurality positioned between one adjacent gas-generant grain and another adjacent gas-generant grain of the plurality of gas-generant grains in the longitudinal stack.
  • 14. A method of manufacturing a gas generator, the method comprising: arranging a plurality of gas-generant grains in a longitudinal stack;positioning retaining members between an adjacent gas-generant grain and another adjacent gas-generant grain of the plurality of gas-generant grains in the longitudinal stack;constraining the plurality of gas-generant grains to a longitudinally stacked configuration using a frame; andfixing the retaining members to the frame.
  • 15. The method of claim 14, further comprising aligning a feature of each gas-generant grain with a retaining feature of the frame.
  • 16. The method of claim 15, wherein aligning a feature of each gas-generant grain with a retaining feature of the frame comprises aligning an arcuate outer surface of each gas-generant grain with a bore of a sleeve.
  • 17. The method of claim 15, wherein aligning a feature of each gas-generant grain with a retaining feature of the frame comprises aligning at least one aperture of each gas-generant grain with at least one rod.
  • 18. The method of claim 15, further comprising: sliding a feature of a first gas-generant grain along the retaining feature of the frame to position the first gas-generant grain at a first longitudinal position relative to the frame;sliding a first retaining member to a second longitudinal position relative to the frame adjacent a surface of the first gas-generant grain;fixing the first retaining member to the frame at the second longitudinal position by compressing at least a portion of the first retaining member with the frame to form an interference fit between the first retaining member and the frame; andsliding an alignment feature of a second gas-generant grain along the retaining feature of the frame to position the second gas-generant grain adjacent to the first gas-generant grain and position the first retaining member between the adjacent first gas-generant grain and second gas-generant grain.
  • 19. A method of generating a gas, the method comprising: combusting a plurality of longitudinally stacked gas-generant grains to generate a gas;restricting lateral movement of the plurality of longitudinally stacked gas-generant grains during combustion with a frame structure; andrestricting longitudinal movement of at least some of the plurality of longitudinally stacked gas-generant grains during combustion by maintaining retaining members between adjacent gas-generant grains of the plurality of longitudinally stacked gas-generant grains and maintaining the retaining members fixed relative to the frame structure during combustion.
  • 20. The method of claim 19, wherein combusting a plurality of longitudinally stacked gas-generant grains to generate a gas comprises combusting a plurality of longitudinally stacked gas-generant grains to generate a fire-suppressing gas.
US Referenced Citations (137)
Number Name Date Kind
1839658 Dugas Jan 1932 A
2744816 Hutchison May 1956 A
2841227 Betzler Jul 1958 A
3255824 Rodgers Jun 1966 A
3524506 Weise Aug 1970 A
3641935 Gawlick et al. Feb 1972 A
3701256 Pelham et al. Oct 1972 A
3741585 Hendrickson et al. Jun 1973 A
3806461 Hendrickson et al. Apr 1974 A
3836076 Conrad et al. Sep 1974 A
3972545 Kirchoff et al. Aug 1976 A
3972820 Filter et al. Aug 1976 A
4064944 McClure et al. Dec 1977 A
4067392 Rich Jan 1978 A
4113019 Sobolev et al. Sep 1978 A
4224994 Tone et al. Sep 1980 A
4448577 Paczkowski May 1984 A
4505336 Thevis et al. Mar 1985 A
4601344 Reed, Jr. et al. Jul 1986 A
4616694 Hsieh Oct 1986 A
4807706 Lambertsen et al. Feb 1989 A
4817828 Goetz Apr 1989 A
4890860 Schneiter Jan 1990 A
4909549 Poole et al. Mar 1990 A
4931111 Poole et al. Jun 1990 A
4998751 Paxton et al. Mar 1991 A
5035757 Poole Jul 1991 A
5038866 Kern et al. Aug 1991 A
5060867 Luxton et al. Oct 1991 A
5423384 Galbraith et al. Jun 1995 A
5425886 Smith Jun 1995 A
5429691 Hinshaw et al. Jul 1995 A
5439537 Hinshaw et al. Aug 1995 A
5441114 Spector et al. Aug 1995 A
5449041 Galbraith Sep 1995 A
5495893 Roberts et al. Mar 1996 A
5520826 Reed, Jr. et al. May 1996 A
5531941 Poole Jul 1996 A
5538568 Taylor et al. Jul 1996 A
5542704 Hamilton et al. Aug 1996 A
5544687 Barnes et al. Aug 1996 A
5588493 Spector et al. Dec 1996 A
5609210 Galbraith et al. Mar 1997 A
5610359 Spector et al. Mar 1997 A
5613562 Galbraith et al. Mar 1997 A
5673935 Hinshaw et al. Oct 1997 A
5725699 Hinshaw et al. Mar 1998 A
5735118 Hinshaw et al. Apr 1998 A
5739460 Knowlton et al. Apr 1998 A
5762145 Bennett Jun 1998 A
5783773 Poole Jul 1998 A
5820160 Johnson et al. Oct 1998 A
5845716 Birk Dec 1998 A
5845933 Walker et al. Dec 1998 A
5848652 Bennett Dec 1998 A
5861106 Olander Jan 1999 A
5865257 Kozyrev et al. Feb 1999 A
5876062 Hock Mar 1999 A
5882036 Moore et al. Mar 1999 A
5884710 Barnes et al. Mar 1999 A
5918679 Cramer Jul 1999 A
5957210 Cohrt et al. Sep 1999 A
5985060 Cabrera et al. Nov 1999 A
5992528 Parkinson et al. Nov 1999 A
5992530 Sundholm Nov 1999 A
5996699 Sundholm Dec 1999 A
6012533 Cramer Jan 2000 A
6016874 Bennett Jan 2000 A
6019177 Olander Feb 2000 A
6019861 Canterberry et al. Feb 2000 A
6024889 Holland et al. Feb 2000 A
6039820 Hinshaw et al. Mar 2000 A
6045637 Grzyll Apr 2000 A
6045638 Lundstrom Apr 2000 A
6065774 Cabrera May 2000 A
6076468 DiGiacomo et al. Jun 2000 A
6077372 Mendenhall et al. Jun 2000 A
6082464 Mitchell et al. Jul 2000 A
6086693 Mendenhall et al. Jul 2000 A
6089326 Drakin Jul 2000 A
6093269 Lundstrom et al. Jul 2000 A
6095559 Smith et al. Aug 2000 A
6096147 Taylor et al. Aug 2000 A
6116348 Drakin Sep 2000 A
6123359 Cabrera et al. Sep 2000 A
6132480 Barnes et al. Oct 2000 A
6136114 Johnson et al. Oct 2000 A
6143104 Blomquist Nov 2000 A
6202755 Hardge Mar 2001 B1
6217788 Wucherer et al. Apr 2001 B1
6224099 Nielson et al. May 2001 B1
6250072 Jacobson et al. Jun 2001 B1
6257341 Bennett Jul 2001 B1
6287400 Burns et al. Sep 2001 B1
6314754 Kotliar Nov 2001 B1
6328906 Lundstrom et al. Dec 2001 B1
6334315 Kotliar Jan 2002 B1
6371384 Garcia Apr 2002 B1
6401487 Kotliar Jun 2002 B1
6416599 Yoshikawa et al. Jul 2002 B1
6418752 Kotliar Jul 2002 B2
6435552 Lundstrom et al. Aug 2002 B1
6474684 Ludwig et al. Nov 2002 B1
6481746 Hinshaw et al. Nov 2002 B1
6502421 Kotliar Jan 2003 B2
6513602 Lewis et al. Feb 2003 B1
6557374 Kotliar May 2003 B2
6560991 Kotliar May 2003 B1
6599380 Zeuner et al. Jul 2003 B2
6601653 Grabow et al. Aug 2003 B2
6605233 Knowlton et al. Aug 2003 B2
6612243 Italiane et al. Sep 2003 B1
6634433 Kim et al. Oct 2003 B2
6739399 Wagner et al. May 2004 B2
6851483 Olander et al. Feb 2005 B2
6935433 Gupta Aug 2005 B2
6942249 Iwai et al. Sep 2005 B2
6990905 Manole et al. Jan 2006 B1
7028782 Richardson Apr 2006 B2
7156184 Wagner Jan 2007 B2
7337856 Lund et al. Mar 2008 B2
7455120 Richardson et al. Nov 2008 B2
7845423 Lund Dec 2010 B2
8162350 Parkinson et al. Apr 2012 B1
20020007886 Neidert et al. Jan 2002 A1
20020020536 Bennett Feb 2002 A1
20020137875 Reed et al. Sep 2002 A1
20020195181 Lundstrom Dec 2002 A1
20040173922 Barnes Sep 2004 A1
20050115721 Blau et al. Jun 2005 A1
20050139365 Richardson Jun 2005 A1
20050257866 Williams et al. Nov 2005 A1
20060278409 Blau Dec 2006 A1
20080128145 Butz et al. Jun 2008 A1
20100170684 Richardson et al. Jul 2010 A1
20110226493 Blau et al. Sep 2011 A1
20120085556 Cox et al. Apr 2012 A1
Foreign Referenced Citations (20)
Number Date Country
19546528 Jun 1997 DE
19717044 Oct 1997 DE
0784998 Jul 1997 EP
0956883 Nov 1999 EP
1767248 Mar 2007 EP
1219363 Jan 1971 GB
5248640 Nov 1977 JP
09500296 Jan 1997 JP
2001518046 Oct 2001 JP
2001346898 Dec 2001 JP
2002160992 Jun 2002 JP
9315793 Aug 1993 WO
9500205 Jan 1995 WO
9846529 Oct 1998 WO
9901180 Jan 1999 WO
0006424 Feb 2000 WO
0015305 Mar 2000 WO
03024534 Mar 2003 WO
2004028642 Apr 2004 WO
2004091729 Oct 2004 WO
Non-Patent Literature Citations (18)
Entry
Pyrogen, “The new revolution in fire suppression technology,” International Aircraft Systems, Fire Protection Working Group, Atlantic City, NJ. Aug. 29, 2000, 43 pages.
Berezovsky, “Pyrogen, A Revolution in Fire Suppression Technology?”, Fire Safety Engineering, vol. 5, No. 5, Oct. 1998, pp. 30-32.
Annex to Form PCT/ISA/206, Communication Relating to the Results of the Partial International Search, mailed Jun. 24, 2005.
Ebeling, Hans, et al., “Development of Gas Generators for Fire Extinguishing,” Propellants, Explosives, Pyrotechnics, vol. 22, pp. 170-175, 1997.
Engelen, K., et al., “Pyrotechnic Propellant for Nitrogen Gas Generator,” Bull. Soc. Chim Belg., vol. 106, No. 6, pp. 349-354, 1997.
Fallis, Stephen, et al., “Advanced Propellant/Additive Development for Fire Suppressing Gas Generators: Development + Test,” Proceedings of HOTWC-2002 12th Halon Options Technical Working Conference, Albuquerque, NM, Apr. 20-May 2, 2002, National Institute of Standards and Technology Special Publication 984.
Fletcher M., “Fighting Fire with Fire,” Eureka (Inc. Engineering Materials and Design), Findlay Publications, Horton Kirby, Kent, GB, vol. 20, No. 1, Jan. 2000, p. 17, XP000877927, ISSN: 0261-2097.
Mitchell, Robert M., Olin Aerospace Company, Report on Advanced Fire Suppression Technology (AFST) Research and Development Program, 52 pages, Report Date Sep. 1994.
Palaszewski, Bryan A., NASA Glenn Research Center, Safer Aircraft Possible with Nitrogen Generation, 2 pages, Mar. 2001.
PCT International Preliminary Examination Report, dated Jan. 17, 2005.
PCT International Search Report dated Mar. 17, 2005.
PCT International Search Report mailed Nov. 23, 2006.
Saito, Naoshi, et al., “Flame-extinguishing Concentrations and Peak Concentrations of N2, Ar, Co2 and their Mixtures for Hydrocarbon Fuels,” Fire Safety Journal, vol. 27, pp. 185-200, 1996.
Schmid, Helmut, et al., “Gas Generator Development for Fire Protection Purpose,” Propellants, Explosives, Pyrotechnics, vol. 24, pp. 144-148, 1999.
TNO Defence, Security and Safety, “Solid Propellant Cool Gas Generators,” 2 pages, unknown publication date.
U.S. Appl. No. 60/414,157, filed Sep. 28, 2002, to Joseph Michael Bennett, entitled, “In-Room Gas Generator Fire Protection System.”
“Water Mist-Fire-Suppression Experiment,” NASA Glenn Research Center, Dec. 2001, 3 pages.
Yang, Jiann C., et al., “Solid Propellant Gas Generators: An Overview and Their Application to Fire Suppression,” International Conference on Fire Research and Engineering, Sep. 10-15, 1995, Orlando, FL, 3 pages.
Related Publications (1)
Number Date Country
20100307775 A1 Dec 2010 US