Gas generator for pressurizing downhole samples

Information

  • Patent Grant
  • 8973657
  • Patent Number
    8,973,657
  • Date Filed
    Thursday, May 30, 2013
    11 years ago
  • Date Issued
    Tuesday, March 10, 2015
    9 years ago
Abstract
An apparatus for obtaining fluid samples in a subterranean wellbore comprises a carrier assembly configured to be disposed in a subterranean wellbore; a sampling chamber operably associated with the carrier assembly; a pressure assembly coupled to the sampling chamber and configured to pressurize a fluid sample obtained in the sampling chamber, wherein the pressure assembly is configured to contain a pressure generating agent; an activation mechanism configured to activate the pressure generating agent; and a power device operably associated with the carrier assembly and configured to provide an impulse for activating the activation mechanism, wherein the power device is not disposed on the pressure assembly.
Description
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not applicable.


REFERENCE TO A MICROFICHE APPENDIX

Not applicable.


BACKGROUND

In the subterranean well drilling and completion art, tests are performed on formations intersected by a wellbore. Such tests can be performed in order to determine geological or other physical properties of the formation and fluids contained therein. For example, parameters such as permeability, porosity, fluid resistivity, temperature, pressure, and bubble point may be determined. These and other characteristics of the formation and fluid contained therein may be determined by performing tests on the formation before the well is completed and placed in service.


One type of testing procedure measures the composition of the formation fluids by obtaining a fluid sample from the formation. In order to obtain a representative sample, the sample is preserved as it exists within the formation. A general sampling procedure involves lowering a sample chamber into the wellbore, obtaining a sample, and retrieving the sample in the sampling chamber to the surface for analysis. It has been found, however, that as the fluid sample is retrieved to the surface, the temperature and pressure of the fluid sample can decrease. This change in properties can cause the fluid sample to approach or reach saturation pressure creating the possibility of phase separation, which can result in asphaltene deposition and/or flashing of entrained gasses present in the fluid sample. Once such a process occurs, the resulting phase separation may be irreversible so that a representative sample cannot be obtained without re-running the procedure to take an additional sample.


SUMMARY

In an embodiment, an apparatus for obtaining fluid samples in a subterranean wellbore comprises a carrier assembly configured to be disposed in a subterranean wellbore; a sampling chamber operably associated with the carrier assembly; a pressure assembly coupled to the sampling chamber and configured to pressurize a fluid sample obtained in the sampling chamber, wherein the pressure assembly is configured to contain a pressure generating agent; an activation mechanism configured to activate the pressure generating agent; and a power device operably associated with the carrier assembly and configured to provide an impulse for activating the activation mechanism, wherein the power device is not disposed on the pressure assembly.


In an embodiment, a method comprises positioning a fluid sampler comprising a sampling chamber, a pressure assembly, and an activation mechanism in a subterranean wellbore, wherein the pressure assembly comprises a pressure generating agent that comprises an organic solid composition, a urea, a multi-component system, or any combination thereof; obtaining a fluid sample in the sampling chamber; activating, within the subterranean wellbore, the pressure generating agent with the activation mechanism to generate a pressurized fluid that is coupled to the sampling chamber; and pressurizing the fluid sample using the pressurized fluid.


In an embodiment, a method of generating pressure within a subterranean wellbore comprises positioning an activation mechanism and a pressure assembly comprising a pressure generating agent within a subterranean wellbore; activating, within the subterranean wellbore, the pressure generating agent with the activation mechanism to generate a pressurized fluid; and using the pressurized fluid to operate at least one tool disposed in the subterranean wellbore and coupled to the pressurized fluid.


These and other features will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings and claims.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present disclosure, reference is now made to the following brief description, taken in connection with the accompanying drawings and detailed description, wherein like reference numerals represent like parts.



FIG. 1 is a cross-sectional view of an axial portion of an embodiment of a pressure assembly in accordance with the present disclosure;



FIG. 2A-2F are cross sectional views of successive axial portions of an embodiment of a sampling section of a fluid sampler in accordance with the present disclosure; and



FIG. 3 is an illustration of a wellbore servicing system according to an embodiment of the present disclosure.



FIG. 4 is a schematic illustration of an embodiment of a plurality of sampling chambers coupled to a pressure source.



FIG. 5 is a schematic illustration of an embodiment of a sampling chamber coupled to an actuator and pressure source.





DETAILED DESCRIPTION

It should be understood at the outset that although illustrative implementations of one or more embodiments are illustrated below, the disclosed systems and methods may be implemented using any number of techniques, whether currently known or not yet in existence. The disclosure should in no way be limited to the illustrative implementations, drawings, and techniques illustrated below, but may be modified within the scope of the appended claims along with their full scope of equivalents.


The present disclosure provides a fluid sampling apparatus and a method for obtaining fluid samples from a formation without the need for a highly pressurized gas being charged to the apparatus on the surface of a wellbore. In a typical sampling procedure, a sample of the formation fluids may be obtained by lowering a sampling tool having a sampling chamber and a pressurized gas reservoir into the wellbore on a conveyance such as a wireline, slick line, coiled tubing, jointed tubing or the like. When the sampling tool reaches the desired depth, one or more ports are opened to allow collection of the formation fluids. Once the ports are opened, formation fluids travel through the ports and a sample of the formation fluids is collected within the sampling chamber of the sampling tool. It is understood that in practice, when taking a sample in a downhole environment, other fluids in addition to the formation fluids may be captured, for example some admixture of wellbore fluid, drilling mud, cement, acidation fluid, fracturing fluid, or other fluid that may be present in the wellbore. The pressurized gas reservoir may then be opened to allow the pressurized gas to pressurize the sample. After the sample has been collected and pressurized, the sampling tool may be withdrawn from the wellbore so that the formation fluid sample may be analyzed. The pressurized gas reservoir is filled at the surface of the wellbore with a gas such as nitrogen, and the gas reservoir pressures can be as high as 15,000 pounds per square inch (“psi”). The resulting pressurized fluid container may then present a safety risk to the personnel working around the wellbore prior to the tool being placed into the subterranean formation.


As disclosed herein, an alternative means of providing a pressurized gas reservoir includes the use of a pressure generating agent in an apparatus to provide a source of pressure. In some embodiments, the pressure generating agent can be a solid component, a liquid component, or any combination of components. An activation mechanism may be used to trigger the generation of pressure from the pressure generating agent through, for example, a chemical reaction. The resulting pressure may then be used to operate one or more tools in a wellbore, including providing a source of pressurized gas or fluid for pressurizing a sample of reservoir fluid.


The use of a pressure generating agent to create a source of pressure down hole can allow for the elimination of a high pressure gas within a wellbore tool at the surface of the well, prior to use of the tool. The use of the pressure generating agent can also allow for the pressure charging source (e.g., a high-pressure nitrogen source) to be eliminated at the well site, which may help to limit the high pressure sources located at the surface of the well. The elimination of a potentially dangerous pressure source may help prevent accidents at the well site. For example, the pressure generating agent may be maintained at near atmospheric pressure within a downhole tool until after the tool is disposed within the subterranean formation. Thus, the danger associated with the use of a high pressure fluid may be avoided until the tool is safely within the wellbore. Further, the charging vessel or storage vessel from which the downhole tool might otherwise be charged may be obviated, thereby removing another potential hazard from the well site. In some contexts herein the term fluid may refer to both liquids and gases, where the term is used to point out the ease of flow of the subject material and/or composition.


Turning now to FIG. 1, an embodiment of an activation mechanism and a pressure assembly comprising a pressure generating agent is illustrated. The pressure assembly 102 comprises an outer housing or carrier 104 that may comprise a cylindrical metallic body. The body may be constructed of any appropriate materials suitable for use in wellbore environments and configured to contain the pressure generated within the pressure assembly 102. In an embodiment, the pressure assembly 102 may be capable of containing up to about 15,000 psi, alternatively about 13,000 psi, or still alternatively about 10,000 psi. In an embodiment, the housing may be constructed of carbon steel or stainless steel. In an embodiment, the pressure assembly 102 includes a first end 106 and a second end 108. The first end 106 and second end 108 may be configured to be coupled with additional wellbore components. For example, the first end 106, the second end 108, or both may be threaded and act as a box connector and/or a pin connector in a wellbore tool string. Suitable connections may be provided to allow the pressure assembly 102 to be sealingly engaged to additional wellbore components, as desired.


In an embodiment, the pressure assembly 102 may comprise an activation mechanism 112 within the outer housing 104. In an embodiment, the activation mechanism 112 may comprise any suitable device configured to cause a pressure generating agent 127 to generate a pressure, or any means for initiating a pressure increase from a pressure generating agent 127. Suitable activation mechanisms may include, but are not limited to, percussion caps, electrically initiated sparking devices, and/or electrically initiated heat sources (e.g., filaments). Suitable electrical sources for use with an activation mechanism 112 may include, but are not limited to, batteries (e.g., high temperature batteries for use in wellbore environments) and piezo electric elements capable of generating an electrical charge sufficient to activate an activation mechanism. A power device configured to provide an impulse in the form of a physical force to a percussion cap or an electrical current to an electrically initiated activation mechanism may be disposed within the pressure assembly 102, or may not be disposed on or within the pressure assembly. Rather, the power device may be disposed on a separate device in fluid, mechanical, and/or electrical communication with the pressure assembly 102. For example, an electrical source may be disposed on an additional device mechanically coupled to the pressure assembly 102 such that when a piston or other slidingly engaged device within the additional device is sufficiently displaced, the electrical source may contact a pin connector on the pressure assembly 102 and activate the activation mechanism 112. In another embodiment, the power device may comprise a firing pin configured to provide a physical force to a percussion cap to initiate the activation mechanism.


In an embodiment shown in FIG. 1, the pressure assembly 102 comprises a pin connector 109, at least one connector wire 110, and an activation mechanism 112. The pin connector 109 may be any suitable structure for receiving an electrically conducting element and conducting an electrical charge through connector wire 110, which may be electrically insulated from the surrounding structures in the pressure assembly 102. The activation mechanism 112 may be configured to receive at least one connector wire 110 from the pin connector 109 for initiating the activation mechanism. In some embodiments, only one connector wire 110 is provided from the pin connector if the remaining structures in the pressure assembly 102 are electrically conductive. In some embodiments, a plurality of connector wires 110 may be used, for example, to avoid placing an electrical charge on the other structures in the pressure assembly 102. In an embodiment, one or more redundant connector wires 110 can be used to ensure activation of the activation mechanism 112. The activation mechanism 112 may be coupled to a pressure chamber 114 such that the activation mechanism 112 is capable of activating the pressure generating agent 127 disposed within the pressure chamber 114.


In an embodiment, a suitable activation mechanism may include any device capable of contacting a plurality of components capable of generating pressure. Suitable activation mechanisms may include, but are not limited to, rupture discs, valves, sliding barriers, diaphragms configured to be punctured, or any other separation device capable of being opened to allow fluid communication between two components. The activation mechanisms of this type can be actuated by electrical or mechanical means.


The pressure chamber 114 may be centrally disposed within the pressure assembly 102 and may be configured to contain a pressure generating agent 127. The pressure chamber 114 may be in fluid communication with the first end 106 of the pressure assembly 102 through a fluid channel 116 and a fluid passageway 118. In some embodiments not shown in FIG. 1, the pressure chamber 114 may be coupled to the first end 106 of the pressure assembly 102 through a mechanical means (e.g., a sliding piston). The pressure assembly 102 may include an optional pressure disk 120 disposed between the pin connector 109 and a body 122. In an embodiment, the pressure disk 120 may be a rupture disk, however, other types of pressure disks that provide a seal, such as a metal-to-metal seal, between pressure disk holder pin connector 109 and body 122 could also be used including a pressure membrane. The pressure disk 120 may seal the pressure chamber 114 and any pressure generating agent 127 prior to activation, which may prevent contamination of the pressure generating agent 127.


In an embodiment, the pressure chamber 114 is configured to contain a quantity of pressure generating agent 127. A pressure generating agent may comprise any suitable composition capable of generating at least about 1,000 psi, alternatively about 2,000 psi, or alternatively about 3,000 psi when activated within the wellbore. In an embodiment, the pressure generating agent may comprise a solid composition capable of reacting and/or decomposing upon activation to generate one or more gases and/or fluids within the pressure assembly 102.


In an embodiment, a solid composition suitable for use as a pressure generating agent may comprise a fuel, an oxidizer, and any number of additives suitable for use with gas generating agents. Fuels suitable for use as a solid pressure generating agent may include any compound capable of reacting to form one or more gases at an increased pressure. In an embodiment, the fuel may generally comprise an organic composition. In an embodiment, compositions suitable for use as a fuel may include, but are not limited to, materials incorporating tetrazines, tetrazine derivatives, azides (e.g., sodium azide), azide derivatives, azoles, azole derivatives (e.g., triazole derivatives, tetrazole derivatives, oxadiazole derivatives), guanidine derivatives, azodicarbon amide derivatives, hydrazine derivatives, urea derivatives, ammine complexes, nitrocellulose, any derivatives thereof, any salts thereof, and any combinations thereof. In an embodiment, the fuel may generally comprise a thermite solid composition.


Oxidizers generally assist in the reaction of the fuels to form one or more gases. Suitable oxidizers may include, but are not limited to, chlorates, perchlorates (e.g., potassium perchlorate, lithium perchlorate, and ammonium perchlorate), oxides (e.g., iron oxide), nitrites, nitrates (e.g., ammonium nitrate, potassium nitrate, and strontium nitrate), peroxides (e.g., metal peroxides), hydroxides (e.g., metal hydroxides), hydrides (e.g., sodium borohydride), dicyanamide compounds, any derivatives thereof, any salts thereof, and any combinations thereof.


Additives may include, but are not limited to, binders, coolants, slag forming agents, and processing agents. For example, coolants may include, but are not limited to, metal carbonates, metal bicarbonates, metal oxalates, and any combinations thereof. Slag forming agents may include, but are not limited to, clays, silicas, aluminas, glass, and any combinations thereof.


The solid pressure generating agents may be supplied by suppliers known in the art. Typical or known suppliers include Aldrich, Fisher Chemical companies, and Nippon Carbide. Solid pressure generating agents may be available in a variety of shapes and forms. For example, a solid pressure generating agent may be available in the shape of a pellet, a circular column, a tube, a disk, or a hollow body with both ends closed. The exact composition and form of the pressure generating agent may depend on a variety of factors including, but not limited to, temperature stability, maximum pressure generation, combustion temperature, and ignition characteristics.


In an embodiment, additional pressure generating agents suitable for use in the pressure assembly 102 may include multi-component systems comprising a plurality of reactive components that react when contacted. In this embodiment, the activation device may comprise any device capable of introducing at least one component to another. For example, the activation device may include, but is not limited to, a valving assembly for introducing one component into a chamber containing a second component. Alternatively, the activation device may comprise a percussion cap capable of breaking a seal between two components stored in the same or different chambers. In an embodiment, a multi-components system may comprise the use of a solid carbonate and/or bicarbonate (e.g., a metal bicarbonate such as sodium bicarbonate or calcium carbonate) in combination with a liquid and/or solid acid (e.g., an organic acid such as acetic acid, or a mineral acid such as hydrochloric acid). When combined, this embodiment of a multi-component system will result in the release of carbon dioxide, which may provide the increased pressure within the pressure assembly 102.


In an embodiment, the activation mechanism 112 and the pressure assembly 102 comprising a pressure generating agent 127 may be used as a source of pressure in a wellbore disposed in a subterranean formation. The pressure provided by the pressure assembly 102 may be used to operate at least one tool disposed in the wellbore that is coupled to the pressure assembly 102. In an embodiment, the activation mechanism 112 and the pressure assembly 102 may be positioned within a wellbore disposed in a subterranean formation. The pressure generating agent 127 can be disposed in the pressure chamber 114 prior to the pressure assembly 102 being placed within the wellbore. The pressure assembly 102 may be coupled to a tool at the surface of the wellbore and/or within the wellbore using any suitable techniques known in the art.


Once disposed in the wellbore, the activation mechanism 112 may be used to activate the pressure generating agent 127 to generate a pressurized fluid. The pressure generating agent may generate at least about 1,000 psi, at least about 2,000 psi, or at least about 3,000 psi of pressure within the pressure assembly 102. In an embodiment, the pressure generating agent may generate less than about 15,000 psi, less than about 13,000 psi, or less than about 10,000 psi of pressure within the pressure assembly 102. In an embodiment, a pressure regulation device can be incorporated into the pressure assembly 102 to maintain the pressure in the pressure chamber 114 below a desired value. For example, the pressure regulation device may vent any additional pressured fluid in excess of the amount needed to generate the desired pressure in the pressure reservoir to the wellbore. The pressurized fluid may then be used to operate one or more devices (e.g., downhole tools) disposed in the wellbore. For example, one or more of the devices coupled to (e.g., in fluid communication with) the pressure assembly 102 may be operated using the pressure generated by the activation of the pressure generating agent 127.


In some embodiments, the pressure generating agent 127 may be activated soon after being disposed within the wellbore. In these embodiments, the pressure assembly 102 may comprise additional devices, such as selectively operable valves to allow the pressure assembly 102 to act as a pressure reservoir for use within the wellbore. In some embodiments, the pressure generating agent 127 may not be activated until a desired time, allowing the pressure created by the activation of the pressure generating agent 127 to be used at approximately the same time it is created.


In some embodiments, the pressure created by the activation of the pressure generating agent 127 may be used for a single operation of one or more devices within the wellbore. In some embodiments, the pressure may be used to perform a plurality of operations of a device within the wellbore. In these embodiments, the pressure created by the activation of the pressure generating agent 127 may be stored in a pressure reservoir of a suitable size within the pressure assembly 102. The pressure reservoir may then be used for a plurality of operations of one or more devices. In another embodiment, a plurality of pressure assemblies 102 may be disposed within the wellbore to provide a plurality of operations of one or more devices within the wellbore. In this embodiment, a plurality of pressure chambers 114 and corresponding activation mechanisms 112 may be provided in a single pressure assembly 102, and/or a plurality of pressure assemblies 102 may be provided within the wellbore, all coupled to a device or devices to allow for the plurality of operations of the device or devices.


In an embodiment, the apparatus and device of the present disclosure may be used to operate one or more devices in a wellbore disposed in a subterranean formation. In an embodiment, the device may comprise a fluid sampler for obtaining fluid samples from within a wellbore and maintaining the sample in a single phase upon retrieval of the sample to the surface. An embodiment of a device coupled to a pressure assembly 102 is illustrated in FIGS. 2A-2F, where the device and pressure assembly 102 are illustrated in serial views (e.g., the lower end of FIG. 2A would be coupled to the upper end of FIG. 2B and so forth). As shown in FIGS. 2A-2F, a fluid sampling chamber 200 is shown which may be placed in a fluid sampler comprising a carrier (not shown) (e.g., housing or carrier 104 of FIG. 1) having a pressure assembly 102 coupled thereto, for use in obtaining one or more fluid samples. The sampling chamber 200 may be coupled to a carrier that may also include an actuator (not shown) (e.g., actuator 103 of FIG. 5). In an embodiment, the sampling chamber 200 and the carrier may comprise a part of a wellbore servicing system, as described in more detail below. In an embodiment, one or more sampling chambers 200 as described herein can be disposed in the carrier.


In an embodiment, a passage 210 in an upper portion of the sampling chamber 200 (see FIG. 2A) may be placed in communication with a longitudinally extending internal fluid passageway formed completely through the carrier when the fluid sampling operation is initiated using an actuator. In this way, the internal fluid passageway becomes a portion of an internal passage in a tubular string, which may be used to dispose the fluid sampler within the wellbore as discussed in more detail below. Passage 210 in the upper portion of sampling chamber 200 is in communication with a sample chamber 214 via a check valve 216. Check valve 216 permits fluid to flow from passage 210 into sample chamber 214, but prevents fluid from escaping from sample chamber 214 to passage 210.


In some embodiments, a debris trap may be used with the fluid sampler. In these embodiments, a debris trap piston 218 is disposed within housing 202 and separates sample chamber 214 from a meter fluid chamber 220. When a fluid sample is received in sample chamber 214, debris trap piston 218 is displaced downwardly relative to housing 202 to expand sample chamber 214. Prior to such downward displacement of debris trap piston 218, however, fluid flows through sample chamber 214 and passageway 222 of piston 218 into debris chamber 226 of debris trap piston 218. The fluid received in debris chamber 226 is prevented from escaping back into sample chamber 214 due to the relative cross sectional areas of passageway 222 and debris chamber 226 as well as the pressure maintained on debris chamber 226 from sample chamber 214 via passageway 222. An optional check valve (not pictured) may be disposed within passageway 222 if desired. Such a check valve would operate to allow fluid to flow from the sample chamber 214 into the debris chamber 226 and prevent flow from debris chamber 226 into the sample chamber 214. In this manner, the fluid initially received into sample chamber 214 is trapped in debris chamber 226. Debris chamber 226 thus permits this initially received fluid to be isolated from the fluid sample later received in sample chamber 214. Debris trap piston 218 can include a magnetic locator 224 used as a reference to determine the level of displacement of debris trap piston 218 and thus the volume within sample chamber 214 after a sample has been obtained.


In an embodiment, meter fluid chamber 220 initially contains a metering fluid, such as a hydraulic fluid, silicone oil or the like. A flow restrictor 234 and a check valve 236 control flow between chamber 220 and an atmospheric chamber 238 that initially contains a gas at a relatively low pressure such as air at atmospheric pressure. A collapsible piston assembly 240 includes a prong 242 which initially maintains check valve 244 off seat, so that flow in both directions is permitted through check valve 244 between chambers 220, 238. When elevated pressure is applied to chamber 238, however, as described more fully below, piston assembly 240 collapses axially, and prong 242 will no longer maintain check valve 244 off seat, thereby preventing flow from chamber 220 to chamber 238.


A piston 246 disposed within housing 202 separates chamber 238 from a longitudinally extending atmospheric chamber 248 that initially contains a gas at a relatively low pressure such as air at atmospheric pressure. Piston 246 can include a magnetic locator 247 used as a reference to determine the level of displacement of piston 246 and thus the volume within chamber 238 after a sample has been obtained. Piston 246 comprises a trigger assembly 250 at its lower end. In the illustrated embodiment, trigger assembly 250 is threadably coupled to piston 246 which creates a compression connection between a trigger assembly body 252 and a pin connection 254. Alternatively, pin connection 254 may be coupled to trigger assembly body 252 via threading, welding, friction or other suitable technique. Pin connection 254 comprises a hollow interior where one or more suitable sources of an electrical charge 251 (e.g., high temperature lithium batteries) are configured to provide an electrical current through the tip of pin connection 254. The tip of pin connection 254 may be threaded or otherwise removably engaged to the body of the pin connection 254 to allow for replacement of the one or more batteries as needed. As discussed more fully below, pin connection 254 is used to actuate the activation mechanism 112 of the pressure assembly 102 when piston 246 is sufficiently displaced relative to housing 202.


Below atmospheric chamber 248 and disposed within the longitudinal passageway of housing 202 is the pressure assembly 102, as described above. The pressure assembly 102 may have a pin connector 109 configured to mate with the pin connection 254 on the piston 246. In an embodiment, pin connector 109 is electrically coupled to an activation mechanism 112 through one or more connector wires 110. The activation mechanism 112 is disposed in communication with a pressure chamber 114 configured to contain a pressure generating agent 127, and is capable of activating the pressure generating agent 127 to produce an increased pressure in the pressure chamber 114. Pressure chamber 114 is in fluid communication with fluid channel 116, which is in fluid communication with atmospheric chamber 248 through the fluid channel 116 and fluid passageway 118. A rupture disk, for example the pressure disk 120, may be disposed in fluid channel 116 to prevent the flow of any fluids from atmospheric chamber 248 into the pressure chamber 114 until after the activation of the pressure generating agent 127 by the activation mechanism 112. Upon activation of the pressure generating agent 127, the rupture disk may be breached to allow flow of a pressurized fluid from the pressure chamber 114 to chamber 248.


In an embodiment, a fluid sampler comprising a fluid sampling chamber 200 and associated pressure assembly 102 may comprise a portion of a wellbore servicing system as shown in FIG. 3. In an embodiment, the system 300 comprises a servicing rig 314 that extends over and around a wellbore 302 that penetrates a subterranean formation 304 for the purpose of recovering hydrocarbons, storing hydrocarbons, disposing of carbon dioxide, or the like. The wellbore 302 may be drilled into the subterranean formation 304 using any suitable drilling technique. While shown as extending vertically from the surface in FIG. 3, in some embodiments the wellbore 302 may be deviated, horizontal, and/or curved over at least some portions of the wellbore 302. Reference to up or down will be made for purposes of description with “up,” “upper,” “upward,” or “upstream” meaning toward the surface of the wellbore and with “down,” “lower,” “downward,” or “downstream” meaning toward the terminal end of the wellbore, regardless of the wellbore orientation.


The servicing rig 314 may be one of a drilling rig, a completion rig, a workover rig, a servicing rig, or other mast structure and supports a toolstring 306 and a conveyance 312 in the wellbore 302, but in other embodiments a different structure may support the toolstring 306 and the conveyance 312, for example an injector head of a coiled tubing rigup. In an embodiment, the servicing rig 314 may comprise a derrick with a rig floor through which the toolstring 306 and conveyance 312 extends downward from the servicing rig 314 into the wellbore 302. In some embodiments, such as in an off-shore location, the servicing rig 314 may be supported by piers extending downwards to a seabed. Alternatively, in some embodiments, the servicing rig 314 may be supported by columns sitting on hulls and/or pontoons that are ballasted below the water surface, which may be referred to as a semi-submersible platform or rig. In an off-shore location, a casing may extend from the servicing rig 314 to exclude sea water and contain drilling fluid returns. It is understood that other mechanical mechanisms, not shown, may control the run-in and withdrawal of the toolstring 306 and the conveyance 312 in the wellbore 302, for example a draw works coupled to a hoisting apparatus, a slickline unit or a wireline unit including a winching apparatus, another servicing vehicle, a coiled tubing unit, and/or other apparatus.


The toolstring 306 may be comprised of one or more fluid samplers, which comprise a fluid sample chamber 200 and a pressure assembly 102. The toolstring 306 may also comprise one or more additional downhole tools, for example a packer, retrievable bridge plug, and/or a setting tool. The conveyance 312 may be any of a string of jointed pipes, a slickline, a coiled tubing, a wireline, and other conveyances for the toolstring 306. In another embodiment, the toolstring 306 may comprise additional downhole tools located above or below the fluid sampler.


The toolstring 306 may be coupled to the conveyance 312 at the surface and run into the wellbore casing 303, for example a wireline unit coupled to the servicing rig 314 may run the toolstring 306 that is coupled to a wireline into the wellbore casing 303. In an embodiment, the conveyance may be a wireline, an electrical line, a coiled tubing, a drill string, a tubing string, or other conveyance. At target depth, the actuator in the fluid sampler may be actuated to initiate the sampling of the formation fluid in response to a signal sent from the surface and/or in response to the expiration of a timer incorporated into the fluid sampler or fluid sampler carrier.


As described above with reference to FIGS. 2A-2F, once the fluid sampler is in its operable configuration and is located at the desired position within the wellbore 302, a fluid sample can be obtained in one or more sample chambers 214 by operating an actuator in the carrier to allow the formation fluids surrounding the carrier to flow into the sampling chamber. Fluid from the subterranean formation 304 can then enter passage 210 in the upper portion of the sampling chamber 200. The fluid flows from passage 210 through check valve 216 to sample chamber 214. It is noted that check valve 216 may include a restrictor pin 268 to prevent excessive travel of ball member 270 and over compression or recoil of spiral wound compression spring 272. An initial volume of the fluid is trapped in debris chamber 226 of piston 218 as described above. Downward displacement of piston 218 is slowed by the metering fluid in chamber 220 flowing through restrictor 234. Proper sizing of the restrictor can prevent the pressure of the fluid sample received in sample chamber 214 from dropping below its bubble point.


As piston 218 displaces downward, the metering fluid in chamber 220 flows through restrictor 234 into chamber 238. At this point, prong 242 maintains check valve 244 off seat. The metering fluid received in chamber 238 causes piston 246 to displace downwardly. Eventually, pin connector 254 contacts pin connector 109 on the pressure assembly 102. The resulting electrical charge causes activation mechanism 112 to activate the pressure generating agent 127 in pressure chamber 114. The resulting pressure increase in pressure chamber 114 breaches rupture disk, for example the pressure disk 120, permitting pressure from pressure assembly 102 to be applied to chamber 248. Specifically, once the pressure generating agent 127 is activated, the pressure from pressure assembly 102 passes through fluid channel 116 and fluid passageway 118 to chamber 248. Pressurization of chamber 248 also results in pressure being applied to chambers 238, 220 and thus to sample chamber 214.


When the pressure from pressure assembly 102 is applied to chamber 238, pins 278 are sheared allowing piston assembly 240 to collapse such that prong 242 no longer maintains check valve 244 off seat. Check valve 244 then prevents pressure from escaping from chamber 220 and sample chamber 214. Check valve 216 also prevents escape of pressure from sample chamber 214. In this manner, the fluid sample received in sample chamber 214 remains pressurized, which may prevent any phase separation of the fluid sample.


While several embodiments have been provided in the present disclosure, it should be understood that the disclosed systems and methods may be embodied in many other specific forms without departing from the spirit or scope of the present disclosure. The present examples are to be considered as illustrative and not restrictive, and the intention is not to be limited to the details given herein. For example, the various elements or components may be combined or integrated in another system or certain features may be omitted or not implemented.


Also, techniques, systems, subsystems, and methods described and illustrated in the various embodiments as discrete or separate may be combined or integrated with other systems, modules, techniques, or methods without departing from the scope of the present disclosure. Other items shown or discussed as directly coupled or communicating with each other may be indirectly coupled or communicating through some interface, device, or intermediate component, whether electrically, mechanically, or otherwise. Other examples of changes, substitutions, and alterations are ascertainable by one skilled in the art and could be made without departing from the spirit and scope disclosed herein.

Claims
  • 1. A method of pressurizing a fluid sample, the method comprising: disposing a fluid sampler comprising a sampling chamber, a power device, and a pressure assembly comprising an activation mechanism in a subterranean wellbore, wherein the pressure assembly comprises a pressure generating agent, wherein the power device is positioned between the sampling chamber and the pressure assembly, and wherein the pressure assembly is at or near atmospheric pressure while disposing the fluid sampler in the subterranean wellbore;obtaining a fluid sample in the sampling chamber while maintaining the pressure assembly at or near atmospheric pressure;activating, within the subterranean wellbore, the pressure generating agent with the activation mechanism in response to obtaining the fluid sample in the sampling chamber;generating a pressurized fluid having a pressure greater than atmospheric pressure within the pressure assembly in response to activating the pressure generating agent; andpressurizing the fluid sample using the pressurized fluid.
  • 2. The method of claim 1, wherein the activating of the pressure generating agent occurs after the obtaining of the fluid sample.
  • 3. The method of claim 1, wherein the pressure generating agent comprises a solid composition.
  • 4. The method of claim 3, wherein the solid composition comprises an organic solid composition comprising a urea, a multi-component system, or any combination thereof.
  • 5. The method of claim 3, wherein the solid composition comprises a fuel and an oxidizer.
  • 6. The method of claim 5, wherein the fuel comprises at least one composition selected from the group consisting of: a tetrazine, an azide, an azole, a triazole, a tetrazole, an oxadiazole, a guanidine, an azodicarbon amide, a hydrazine, an ammine complex, a nitrocellulose, any derivative thereof, any salt thereof, and any combination thereof.
  • 7. The method of claim 5, wherein the oxidizer comprises at least one composition selected from the group consisting of: a chlorate, a perchlorate, an oxide, a nitrite, a nitrate, a peroxide, a hydroxide, a hydride, a dicyanamide compound, any derivative thereof, any salt thereof, and any combination thereof.
  • 8. The method of claim 3, wherein the solid composition further comprises at least one additive selected from the group consisting of: a binder, a coolant, a slag forming agent, and a processing agent.
  • 9. The method of claim 1, wherein the activation mechanism comprises a percussion cap, or an electrically initiated activation mechanism.
  • 10. The method of claim 1, wherein the activation mechanism comprises an electrically initiated sparking device or an electrically initiated heat source.
  • 11. The method of claim 1, wherein the power device is configured to provide an impulse for activating the activation mechanism, wherein the power device is separate from the pressure assembly and the activation mechanism.
  • 12. The method of claim 1, wherein the pressure generating agent comprises a first component and a second component, wherein the first component is selected from the group consisting of: a carbonate and a bicarbonate, and wherein the second component comprises an acid.
  • 13. The method of claim 1, wherein the pressurized fluid has a pressure of at least about 1,000 pounds per square inch.
  • 14. A method of generating pressure for use in pressurizing a fluid sample within a subterranean wellbore, the method comprising: positioning a sampling chamber, a power device, and a pressure assembly comprising an activation mechanism and a pressure generating agent within a subterranean wellbore, wherein the pressure assembly is at a first pressure when the pressure assembly is positioned in the subterranean wellbore, and wherein the power device is positioned between the sampling chamber and the pressure assembly;obtaining a fluid sample in the sampling chamber;activating, within the subterranean wellbore, the pressure generating agent with the activation mechanism to generate a pressurized fluid in response to obtaining the fluid sample in the sample chamber, wherein the pressurized fluid is at a second pressure, and wherein the second pressure is greater than the first pressure; andusing the pressurized fluid to pressurize the fluid sample in the sampling chamber in response to the activating.
  • 15. The method of claim 14, wherein the pressure generating agent comprises a solid composition.
  • 16. The method of claim 15, wherein the solid composition comprises at least one composition selected from the group consisting of: a tetrazine, azide, an azole, a triazole, a tetrazole, an oxadiazole, a guanidine, an azodicarbon amide, a hydrazine, an ammine complex, a nitrocellulose, any derivative thereof, any salt thereof, and any combination thereof.
  • 17. The method of claim 14, wherein the power device is operably associated with the fluid sampler, wherein the power device is separate from the pressure assembly and the activation mechanism.
  • 18. The method of claim 17, further comprising translating the power device into engagement with the activation mechanism, and providing an impulse for activating the activation mechanism based on the engagement of the power device with the activation mechanism.
  • 19. The method of claim 18, wherein the impulse is a mechanical impulse or an electrical impulse.
  • 20. The method of claim 18, wherein activating the pressure generating agent to generate the pressurized fluid occurs in response to the impulse.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/962,621 filed Dec. 7, 2010, published as U.S. Patent Application Publication No. US 2012-0138292 A1, and entitled “Gas Generator for Pressurizing Downhole Samples,” which is hereby incorporated by reference in its entirety.

US Referenced Citations (291)
Number Name Date Kind
2076308 Wells Apr 1937 A
2189936 Brandfon Feb 1940 A
2189937 Broyles Feb 1940 A
2308004 Hart Jan 1943 A
2330265 Burt Sep 1943 A
2373006 Baker Apr 1945 A
2381929 Schlumberger Aug 1945 A
2618340 Lynd Nov 1952 A
2618343 Conrad Nov 1952 A
2637402 Baker et al. May 1953 A
2640547 Baker et al. Jun 1953 A
2695064 Ragan et al. Nov 1954 A
2715444 Fewel Aug 1955 A
2871946 Bigelow Feb 1959 A
2918125 Sweetman Dec 1959 A
2961045 Stogner et al. Nov 1960 A
2974727 Goodwin Mar 1961 A
3029873 Hanes Apr 1962 A
3055430 Campbell Sep 1962 A
3122728 Lindberg, Jr. Feb 1964 A
3160209 Bonner Dec 1964 A
3195637 Wayte Jul 1965 A
RE25846 Campbell Aug 1965 E
3217804 Peter Nov 1965 A
3233674 Leutwyler Feb 1966 A
3266575 Owen Aug 1966 A
3398803 Leutwyler et al. Aug 1968 A
3556211 Bohn Jan 1971 A
3659648 Cobbs May 1972 A
4085590 Powell et al. Apr 1978 A
4282931 Golben Aug 1981 A
4352397 Christopher Oct 1982 A
4377209 Golben Mar 1983 A
4385494 Golben May 1983 A
4402187 Golben et al. Sep 1983 A
4598769 Robertson Jul 1986 A
4796699 Upchurch Jan 1989 A
4856595 Upchurch Aug 1989 A
4884953 Golben Dec 1989 A
5024270 Bostick Jun 1991 A
5040602 Helms Aug 1991 A
5058674 Schultz et al. Oct 1991 A
5074940 Ochi et al. Dec 1991 A
5089069 Ramaswamy et al. Feb 1992 A
5101907 Schultz et al. Apr 1992 A
5117548 Griffith et al. Jun 1992 A
5155471 Ellis et al. Oct 1992 A
5163521 Pustanyk et al. Nov 1992 A
5188183 Hopmann et al. Feb 1993 A
5197758 Lund et al. Mar 1993 A
5211224 Bouldin May 1993 A
5238070 Schultz et al. Aug 1993 A
5279321 Krimm Jan 1994 A
5316081 Baski et al. May 1994 A
5316087 Manke et al. May 1994 A
5355960 Schultz et al. Oct 1994 A
5396951 Ross Mar 1995 A
5452763 Owen Sep 1995 A
5476018 Nakanishi et al. Dec 1995 A
5485884 Hanley et al. Jan 1996 A
5490564 Schultz et al. Feb 1996 A
5531845 Flanigan et al. Jul 1996 A
5558153 Holcombe et al. Sep 1996 A
5573307 Wilkinson et al. Nov 1996 A
5575331 Terrell Nov 1996 A
5622211 Martin et al. Apr 1997 A
5662166 Shammai Sep 1997 A
5673556 Goldben et al. Oct 1997 A
5687791 Beck et al. Nov 1997 A
5700974 Taylor Dec 1997 A
5725699 Hinshaw et al. Mar 1998 A
6128904 Rosso, Jr. et al. Oct 2000 A
6137747 Shah et al. Oct 2000 A
6172614 Robison et al. Jan 2001 B1
6186226 Robertson Feb 2001 B1
6196584 Shirk et al. Mar 2001 B1
6315043 Farrant et al. Nov 2001 B1
6333699 Zierolf Dec 2001 B1
6364037 Brunnert et al. Apr 2002 B1
6378611 Helderle Apr 2002 B1
6382234 Birckhead et al. May 2002 B1
6438070 Birchak et al. Aug 2002 B1
6450258 Green et al. Sep 2002 B2
6450263 Schwendemann Sep 2002 B1
6470996 Kyle et al. Oct 2002 B1
6536524 Snider Mar 2003 B1
6561479 Eldridge May 2003 B1
6568470 Goodson, Jr. et al. May 2003 B2
6583729 Gardner et al. Jun 2003 B1
6584911 Bergerson et al. Jul 2003 B2
6598679 Robertson Jul 2003 B2
6619388 Dietz et al. Sep 2003 B2
6651747 Chen et al. Nov 2003 B2
6668937 Murray Dec 2003 B1
6672382 Schultz et al. Jan 2004 B2
6695061 Fripp et al. Feb 2004 B2
6705425 West Mar 2004 B2
6717283 Skinner et al. Apr 2004 B2
6776255 West et al. Aug 2004 B2
6848503 Schultz et al. Feb 2005 B2
6880634 Gardner et al. Apr 2005 B2
6915848 Thomeer et al. Jul 2005 B2
6925937 Robertson Aug 2005 B2
6971449 Robertson Dec 2005 B1
6973993 West et al. Dec 2005 B2
6998999 Fripp et al. Feb 2006 B2
7012545 Skinner et al. Mar 2006 B2
7063146 Schultz et al. Jun 2006 B2
7063148 Jabusch Jun 2006 B2
7068183 Shah et al. Jun 2006 B2
7082078 Fripp et al. Jul 2006 B2
7083009 Paluch et al. Aug 2006 B2
7104276 Einhaus Sep 2006 B2
7152657 Bosma et al. Dec 2006 B2
7152679 Simpson Dec 2006 B2
7165608 Schultz et al. Jan 2007 B2
7191672 Ringgenberg et al. Mar 2007 B2
7195067 Manke et al. Mar 2007 B2
7197923 Wright et al. Apr 2007 B1
7199480 Fripp et al. Apr 2007 B2
7201230 Schultz et al. Apr 2007 B2
7210555 Shah et al May 2007 B2
7234519 Fripp et al. Jun 2007 B2
7237616 Patel Jul 2007 B2
7246659 Fripp et al. Jul 2007 B2
7246660 Fripp et al. Jul 2007 B2
7252152 LoGiudice et al. Aug 2007 B2
7258169 Fripp et al. Aug 2007 B2
7301472 Kyle et al. Nov 2007 B2
7301473 Shah et al. Nov 2007 B2
7322416 Burris, II et al. Jan 2008 B2
7325605 Fripp et al. Feb 2008 B2
7337852 Manke et al. Mar 2008 B2
7339494 Shah et al. Mar 2008 B2
7363967 Burris, II et al. Apr 2008 B2
7367394 Villareal et al. May 2008 B2
7372263 Edwards May 2008 B2
7373944 Smith et al. May 2008 B2
7387165 Lopez de Cardenas et al. Jun 2008 B2
7395882 Oldham et al. Jul 2008 B2
7398996 Saito et al. Jul 2008 B2
7404416 Schultz et al. Jul 2008 B2
7428922 Fripp et al. Sep 2008 B2
7431335 Khandhadia et al. Oct 2008 B2
7472589 Irani et al. Jan 2009 B2
7472752 Rogers et al. Jan 2009 B2
7508734 Fink et al. Mar 2009 B2
7510017 Howell et al. Mar 2009 B2
7557492 Fripp et al. Jul 2009 B2
7559363 Howell et al. Jul 2009 B2
7559373 Jackson et al. Jul 2009 B2
7595737 Fink et al. Sep 2009 B2
7596995 Irani et al. Oct 2009 B2
7604062 Murray Oct 2009 B2
7610964 Cox Nov 2009 B2
7617871 Surjaatmadja et al. Nov 2009 B2
7624792 Wright et al. Dec 2009 B2
7640965 Bosma et al. Jan 2010 B2
7665355 Zhang et al. Feb 2010 B2
7669661 Johnson Mar 2010 B2
7673506 Irani et al. Mar 2010 B2
7673673 Surjaatmadja et al. Mar 2010 B2
7699101 Fripp et al. Apr 2010 B2
7699102 Storm et al. Apr 2010 B2
7712527 Roddy May 2010 B2
7717167 Storm et al. May 2010 B2
7730954 Schultz et al. Jun 2010 B2
7777645 Shah et al. Aug 2010 B2
7781939 Fripp et al. Aug 2010 B2
7802627 Hofman et al. Sep 2010 B2
7804172 Schultz et al. Sep 2010 B2
7832474 Nguy Nov 2010 B2
7836952 Fripp Nov 2010 B2
7856872 Irani et al. Dec 2010 B2
7878255 Howell et al. Feb 2011 B2
7946166 Irani et al. May 2011 B2
7946340 Surjaatmadja et al. May 2011 B2
7963331 Surjaatmadja et al. Jun 2011 B2
7987914 Benton Aug 2011 B2
8040249 Shah et al. Oct 2011 B2
8091637 Fripp Jan 2012 B2
8118098 Hromas et al. Feb 2012 B2
8140010 Symons et al. Mar 2012 B2
8146673 Howell et al. Apr 2012 B2
8162050 Roddy et al. Apr 2012 B2
8191627 Hamid et al. Jun 2012 B2
8196515 Streibich et al. Jun 2012 B2
8196653 Fripp et al. Jun 2012 B2
8215404 Makowiecki et al. Jul 2012 B2
8220545 Storm, Jr. et al. Jul 2012 B2
8225014 Kuhl Jul 2012 B2
8235103 Wright et al. Aug 2012 B2
8235128 Dykstra et al. Aug 2012 B2
8240384 Miller et al. Aug 2012 B2
8261839 Fripp et al. Sep 2012 B2
8276669 Dykstra et al. Oct 2012 B2
8276675 Williamson et al. Oct 2012 B2
8284075 Fincher et al. Oct 2012 B2
8297367 Chen et al. Oct 2012 B2
8302681 Fripp et al. Nov 2012 B2
8319657 Godager Nov 2012 B2
8322426 Wright et al. Dec 2012 B2
8327885 Dykstra et al. Dec 2012 B2
8356668 Dykstra et al. Jan 2013 B2
8376047 Dykstra et al. Feb 2013 B2
8387662 Dykstra et al. Mar 2013 B2
8397803 Crabb et al. Mar 2013 B2
8403068 Robison et al. Mar 2013 B2
8432167 Reiderman Apr 2013 B2
8459377 Moyes Jun 2013 B2
8472282 Fink et al. Jun 2013 B2
8474533 Miller et al. Jul 2013 B2
8479831 Dykstra et al. Jul 2013 B2
8505639 Robison et al. Aug 2013 B2
20040156264 Gardner et al. Aug 2004 A1
20040227509 Ucan Nov 2004 A1
20050241835 Burris, II et al. Nov 2005 A1
20050260468 Fripp et al. Nov 2005 A1
20050269083 Burris, II et al. Dec 2005 A1
20060118303 Schultz et al. Jun 2006 A1
20060131030 Sheffield Jun 2006 A1
20060144590 Lopez de Cardenas et al. Jul 2006 A1
20060219438 Moore et al. Oct 2006 A1
20070189452 Johnson et al. Aug 2007 A1
20080135248 Talley et al. Jun 2008 A1
20080137481 Shah et al. Jun 2008 A1
20080202766 Howell et al. Aug 2008 A1
20090192731 De Jesus et al. Jul 2009 A1
20090308588 Howell et al. Dec 2009 A1
20100065125 Telfer Mar 2010 A1
20100084060 Hinshaw et al. Apr 2010 A1
20100201352 Englert Aug 2010 A1
20110042092 Fripp et al. Feb 2011 A1
20110079386 Fripp et al. Apr 2011 A1
20110139445 Fripp et al. Jun 2011 A1
20110168390 Fripp et al. Jul 2011 A1
20110174484 Wright et al. Jul 2011 A1
20110174504 Wright et al. Jul 2011 A1
20110199859 Fink et al. Aug 2011 A1
20110214853 Robichaux et al. Sep 2011 A1
20110253383 Porter et al. Oct 2011 A1
20110266001 Dykstra et al. Nov 2011 A1
20110308806 Dykstra et al. Dec 2011 A9
20120018167 Konopczynski et al. Jan 2012 A1
20120048531 Marzouk et al. Mar 2012 A1
20120075113 Loi et al. Mar 2012 A1
20120111577 Dykstra et al. May 2012 A1
20120146805 Vick, Jr. et al. Jun 2012 A1
20120152527 Dykstra et al. Jun 2012 A1
20120179428 Dykstra et al. Jul 2012 A1
20120186819 Dagenais et al. Jul 2012 A1
20120205120 Howell Aug 2012 A1
20120205121 Porter et al. Aug 2012 A1
20120211243 Dykstra et al. Aug 2012 A1
20120234557 Dykstra et al. Sep 2012 A1
20120241143 Wright et al. Sep 2012 A1
20120255739 Fripp et al. Oct 2012 A1
20120255740 Fripp et al. Oct 2012 A1
20120279593 Fripp et al. Nov 2012 A1
20120313790 Heijnen et al. Dec 2012 A1
20120318511 Dykstra et al. Dec 2012 A1
20120318526 Dykstra et al. Dec 2012 A1
20120323378 Dykstra et al. Dec 2012 A1
20130000922 Skinner et al. Jan 2013 A1
20130014940 Fripp et al. Jan 2013 A1
20130014941 Tips et al. Jan 2013 A1
20130014955 Fripp et al. Jan 2013 A1
20130014959 Tips et al. Jan 2013 A1
20130020090 Fripp et al. Jan 2013 A1
20130048290 Howell et al. Feb 2013 A1
20130048291 Merron et al. Feb 2013 A1
20130048298 Merron et al. Feb 2013 A1
20130048299 Fripp et al. Feb 2013 A1
20130048301 Gano et al. Feb 2013 A1
20130075107 Dykstra et al. Mar 2013 A1
20130092381 Dykstra et al. Apr 2013 A1
20130092382 Dykstra et al. Apr 2013 A1
20130092392 Dykstra et al. Apr 2013 A1
20130092393 Dykstra et al. Apr 2013 A1
20130098614 Dagenais et al. Apr 2013 A1
20130106366 Fripp et al. May 2013 A1
20130112423 Dykstra et al. May 2013 A1
20130112424 Dykstra et al. May 2013 A1
20130112425 Dykstra et al. May 2013 A1
20130122296 Rose et al. May 2013 A1
20130140038 Fripp et al. Jun 2013 A1
20130153238 Fripp et al. Jun 2013 A1
20130180727 Dykstra et al. Jul 2013 A1
20130180732 Acosta et al. Jul 2013 A1
20130186634 Fripp et al. Jul 2013 A1
20130192829 Fadul et al. Aug 2013 A1
Foreign Referenced Citations (13)
Number Date Country
9925070 May 1999 WO
0220942 Mar 2002 WO
2004018833 Mar 2004 WO
2004099564 Nov 2004 WO
2010002270 Jan 2010 WO
2010111076 Sep 2010 WO
2011021053 Feb 2011 WO
2011087721 Jul 2011 WO
2012078204 Jun 2012 WO
2012082248 Jun 2012 WO
2013032687 Mar 2013 WO
2013032687 Mar 2013 WO
2014092836 Jun 2014 WO
Non-Patent Literature Citations (42)
Entry
Filing receipt and specification for provisional patent application entitled “Wellbore Servicing Tools, Systems and Methods Utilizing Near-Field Communication,” by Zachary William Walton, et al., filed Mar. 12, 2013 as U.S. Appl. No. 61/778,312.
Filing receipt and specification for patent application entitled “Dual Magnetic Sensor Actuation Assembly,” by Zachary W. Walton, et al., filed Mar. 14, 2013 as U.S. Appl. No. 13/828,824.
Filing receipt and specification for patent application entitled “Method and Apparatus for Magnetic Pulse Signature Actuation,” by Zachary W. Walton, et al., filed Feb. 28, 2013 as U.S. Appl. No. 13/781,093.
Filing receipt and specification for patent application entitled “Pressure Relief-Assisted Packer,” by Lonnie Carl Helms, et al., filed Oct. 25, 2012 as U.S. Appl. No. 13/660,678.
Filing receipt and specification for patent application entitled “Wellbore Servicing Tools, Systems and Methods Utilizing Downhole Wireless Switches,” by Michael Linley Fripp, et al., filed on May 31, 2013 as U.S. Appl. No. 13/907,593.
Filing receipt and specification for patent application entitled “Wellbore Servicing Tools, Systems, and Methods Utilizing Near-Field Communication,” by Zachary William Walton, et al., filed Jun. 10, 2013 as U.S. Appl. No. 13/913,881.
Filing receipt and specification for patent application entitled “Wellbore Servicing Tools, Systems, and Methods Utilizing Near-Field Communication,” by Zachary William Walton, et al., filed Jun. 10, 2013 as U.S. Appl. No. 13/914,004.
Filing receipt and specification for patent application entitled, “Wellbore Servicing Tools, Systems, and Methods Utilizing Near-Field Communication,” by Zachary William Walton, et al., filed Jun. 10, 2013 as U.S. Appl. No. 13/914,114.
Filing receipt and specification for patent application entitled “Wellbore Servicing Tools, Systems, and Methods Utilizing Near-Field Communication,” by Zachary William Walton, et al., filed Jun. 10, 2013 as U.S. Appl. No. 13/914,177.
Filing receipt and specification for patent application entitled “Wellbore Servicing Tools, Systems, and Methods Utilizing Near-Field Communication,” by Zachary William Walton, et al., filed Jun. 10, 2013 as US. Appl. No. 13/914,216.
Filing receipt and specification for patent application entitled “Wellbore Servicing Tools, Systems, and Methods Utilizing Near-Field Communication,” by Zachary William Walton, et al., filed Jun. 10, 2013 as U.S. Appl. No. 13/914,238.
Filing receipt and specification for International application entitled “Pressure Equalization for Dual Seat Ball Valve,” filed Mar. 8, 2013 as International application No. PCT/US2013/027666.
Filing receipt and specification for International application entitled “Autofill and Circulation Assembly and Method of Using the Same,” filed Mar. 5, 2013 as International application No. PCT/US2013/027674.
Paus, Annika, “Near Field Communication in Cell Phones,” Jul. 24, 2007, pp. 1-22 plus 1 cover and 1 content pages.
Sanni, Modiu L., et al., “Reservoir Nanorobots,” Saudi Aramco Journal of Technology, Spring 2008, pp. 44-52.
Ward, Matt, et al., “RFID: Frequency, standards, adoption and innovation,” JISC Technology and Standards Watch, May 2006, pp. 1-36.
Danaher product information, Motion Brakes, http://www.danahermotion.com/website/usa/eng/products/clutches—and—brakes/115836.php, Mar. 4, 2009, 3 pages, Danaher Motion.
Filing receipt and specification for patent application entitled “Remotely Activated Down Hole Systems and Methods,” by Frank V. Acosta, et al., filed Mar. 7, 2012 as U.S. Appl. No. 13/414,016.
Filing receipt and specification for patent application entitled “External Casing Packer and Method of Performing Cementing Job,” by Lonnie Helms, et al., filed Mar. 7, 2012 as U.S. Appl. No. 13/414,140.
Filing receipt and specification for patent application entitled “Method of Completing a Multi-Zone Fracture Stimulation Treatment of a Wellbore,” by Steven G. Streich, et al., filed Sep. 21, 2012 as U.S. Appl. No. 13/624,173.
Foreign communication from a related counterpart application—International Search Report and Written Opinion, PCT/US2010/061047, Jun. 23, 2011, 7 pages.
Foreign communication from a related counterpart application—International Search Report and Written Opinion, PCT/US2011/036686, Nov. 30, 2011, 8 pages.
Foreign communication from a related counterpart application—International Preliminary Report on Patentability, PCT/US2011/036686, Jun. 12, 2013, 5 pages.
Foreign communication from a related counterpart application—International Search Report and Written Opinion, PCT/US2012/050762, Mar. 11, 2013, 12 pages.
Halliburton brochure entitled “Armada™ Sampling System,” Sep. 2007, 2 pages.
Halliburton drawing 672.03800, May 4, 1994, p. 1 of 2.
Halliburton drawing 672.03800, May 4, 1994, p. 2 of 2.
Halliburton drawing 626.02100, Apr. 20, 1999, 2 pages.
Magneta Electromagnetic Clutches and Brakes catalog, Jan. 2004, 28 pages, Magneta GmbH & Co KG.
Office Action dated Dec. 22, 2011 (30 pages), U.S. Appl. No. 12/965,859 filed on Dec. 11, 2010.
Office Action dated Dec. 23, 2011 (34 pages), U.S. Appl. No. 12/688,058 filed on Jan. 15, 2010.
Office Action dated Dec. 24, 2012 (26 pages), U.S. Appl. No. 12/688,058 filed on Jan. 15, 2010.
Ogura product information, “Electromagnetic Clutch/Brake,” http://www.ogura-clutch.com/products.html?category=2&by=type&no=1, Mar. 4, 2009, 4 pages, Ogura Industrial Corp.
Foreign communication from a related counterpart application—International Preliminary Report on Patentability, PCT/US2010/061047, Jul. 17, 2012, 5 pages.
Office Action dated Sep. 19, 2013 (17 pages), U.S. Appl. No. 12/688,058 filed on Jan. 15, 2010.
Office Action dated Sep. 19, 2013 (30 pages), U.S. Appl. No. 12/965,859 filed on Dec. 11, 2010.
Foreign communication from a related counterpart application—International Search Report and Written Opinion, PCT/US2013/061386, Apr. 10, 2014, 12 pages.
Advisory Action dated Jul. 1, 2014 (3 pages), U.S. Appl. No. 12/688,058 filed on Jan. 15, 2010.
Foreign communication from a related counterpart application—Australian Office Action, AU Application No. 2010341610, Feb. 27, 2014, 5 pages.
Notice of Allowance dated Jul. 15, 2014 (28 pages), U.S. Appl. No. 12/688,058 filed on Jan. 15, 2010.
Office Action (Final) dated Mar. 10, 2014 (13 pages), U.S. Appl. No. 12/688,058 filed on Jan. 15, 2010.
Office Action (Final) dated May 9, 2014 (16 pages), U.S. Appl. No. 12/965,859 filed on Dec. 11, 2010.
Related Publications (1)
Number Date Country
20130264053 A1 Oct 2013 US
Continuations (1)
Number Date Country
Parent 12962621 Dec 2010 US
Child 13905859 US