Industrial and commercial systems may use in-line gas detection systems to detect the presence of various gases within a gas flow path (e.g., an enclosed gas flow). A heightened humidity present within a gas flowing through a gas detection system may subject a gas sensor within the gas detection system to various undesirable conditions. For example, a photoionization detector (PID), when interacting with a volume of gas comprising a heightened relative humidity, may experience, among other effects, current leakage and/or a quenching effect. For example, when a PID experiences current leakage, an undesired amount of current leaks from between the electrodes in the sensor, often resulting in a false positive output signal. Further, a PID may undergo quenching in conditions of heightened relative humidity, wherein the water molecules within the PID block UV light from the gas of interest, resulting in reduced sensor responsiveness. These conditions affect the performance of the gas sensor, often leading to inaccurate sensor measurement, decreased measurement sensitivity, and/or other sensor failure conditions.
Accordingly, a need exists for solution system configured for reducing the humidity of a volume of gas flowing through a gas flow path, for example, to avoid damaging gas detection sensors.
Various embodiments relate to methods and apparatuses for reducing the humidity of a volume of gas.
Various embodiments are directed to an apparatus for reducing the humidity of a volume of gas, the apparatus comprising a gas delivery conduit; at least one heat-conductive media positioned in-line within at least a portion of the gas delivery conduit; and a cooler in contact with at least a portion of the gas delivery conduit to cool the gas delivery conduit and the at least one heat-conductive media. In various embodiments, apparatus may further comprise a housing, which may comprise an exterior housing portion and an interior housing portion. In various embodiments, at least a portion of the gas delivery conduit, the at least one heat-conductive media, and the cooler are enclosed within the interior housing portion. In various embodiments, the at least one heat-conductive media may be configured to allow for the passage of a volume of gas therethrough. Further, in various embodiments, the at least one heat-conductive media may comprise a copper material. In various embodiments, the gas delivery conduit may comprise at least one conducting portion comprising heat-conductive sidewalls, and the at least one heat-conductive media may be positioned within an interior portion of the at least one conducting portion of the gas delivery conduit.
In various embodiments, the cooler may in contact with the at least one conducting portion of the gas delivery conduit. In various embodiments, the cooler may be embodied as a solid-state thermoelectric cooler, and may define a first side and a second side, wherein the first side may be configured as a cooling side and the second side may be configured as a heating side based at least in part on a voltage applied across the cooler. In various embodiments, at least a portion of the gas delivery conduit is in contact with the first side. In various embodiments, the apparatus may be configured to selectably reverse the voltage applied across the cooler such that the first side may configured as the heating side and the second side may configured as the cooling side. In various embodiments, the at least one heat-conductive media may comprise a first heat-conductive media and a second heat-conductive media positioned within an interior portion of a first conducting portion of the gas delivery conduit and a second conducting portion of the gas delivery conduit, respectively; the first conducting portion of the gas delivery conduit may be in contact with the first side of the cooler and the second conducting portion of the gas delivery conduit may be in contact with the second side of the cooler
In various embodiments, the apparatus may further comprise a pump configured to direct a flow of a volume of gas through the gas delivery conduit.
Various embodiments are directed to a method for reducing the humidity of a volume of gas, the method comprising passing a volume of gas through a gas delivery conduit in a first flow direction, wherein the gas delivery conduit comprises at least one conductive portion, and wherein at least one heat-conductive media is positioned in-line within at least one conductive portion of the gas delivery conduit; and cooling the heat-conductive media within the conductive portion of the gas delivery conduit via a cooler in contact with an outer surface of the conductive portion of the gas delivery conduit to condense humidity within a volume of gas on a surface of the at least one heat-conductive media. In various embodiments, the cooler may be a solid-state thermoelectric cooler and cooling the heat-conductive media may comprise applying a voltage in a first direction to the cooler to cool a first side of the cooler, wherein the first side of the cooler may be in contact with the at least one conducting portion of the gas delivery conduit. In various embodiments, the pump may be configured to change the directional flow of a volume of gas between a first flow direction and a second flow direction within the gas delivery conduit. In various embodiments, the apparatus may be configured to be fluidly connected to a photoionization detector and positioned upstream from the photoionization detector.
In various embodiments, the method may further comprise reversing the voltage applied to the cooler to heat the first side of the cooler to heat the at least one heat-conductive media to remove condensed water from the gas delivery conduit. Further, in various embodiments, the method may further comprise changing a directional flow of the volume of gas through the gas delivery conduit via a pump to a second flow direction opposite from the first flow direction. In various embodiments, the at least one conducting portion of the gas delivery conduit is fluidly connected to a photoionization detector and positioned upstream from the photoionization detector.
The present disclosure more fully describes various embodiments with reference to the accompanying drawings. It should be understood that some, but not all embodiments are shown and described herein. Indeed, the embodiments may take many different forms, and accordingly this disclosure should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like numbers refer to like elements throughout.
It should be understood at the outset that although illustrative implementations of one or more aspects are illustrated below, the disclosed assemblies, systems, and methods may be implemented using any number of techniques, whether currently known or not yet in existence. The disclosure should in no way be limited to the illustrative implementations, drawings, and techniques illustrated below, but may be modified within the scope of the appended claims along with their full scope of equivalents. While values for dimensions of various elements are disclosed, the drawings may not be to scale.
The words “example,” or “exemplary,” when used herein, are intended to mean “serving as an example, instance, or illustration.” Any implementation described herein as an “example” or “exemplary embodiment” is not necessarily preferred or advantageous over other implementations.
Described herein is a method and apparatus for reducing the humidity of a volume of gas moving through a gas conduit, for example, prior to flowing the volume of gas through a gas detection sensor. In an example implementation, a humidity reduction apparatus as discussed herein is configured to utilize a cooling system to extract a volume of water from a volume of gas flowing through a gas conduit, thereby reducing the relative humidity of the gas. Such configurations are capable of reducing the humidity of a volume of gas while the volume of gas is flowing through a gas conduit.
As described herein, the humidity reduction apparatus may receive a volume of gas through a gas delivery conduit and, using a cooler, cool at least a portion of the gas delivery conduit in order to reduce the temperature of a volume of gas therein. As described herein, the cooler may be embodied as a solid-state (or Peltier-style) cooler having two opposing sides and may be configured such that when a voltage is applied across the cooler, heat is removed from a first side (thereby cooling the first side), and transferred to an opposite second side (thereby heating the second side). As described herein, one or both sides of the cooler may be in contact with respective portions of the gas delivery conduit. The humidity reduction apparatus as described herein may utilize a heat-conductive, porous media (e.g., a porous metal grid, a sintered metal filter, and/or the like) positioned within the gas delivery conduit to facilitate efficient heat transfer between the cooler and a volume of gas flowing through the gas delivery conduit by increasing the surface area of cooler-affected material within the conduit. Because the dwell time of gas flowing through the heat-conductive porous media is relatively short, the efficient heat-transfer effect of the porous media to the gas increases the effective cooling of the gas as it flows through the gas delivery conduit, thereby increasing the effectiveness of the humidity reduction effects as well.
In an exemplary implementation, a volume of gas may flow through a conductive portion of the gas delivery conduit having conductive sidewalls (e.g., metal sidewalls) in contact with a first, cooling side of the cooler. As described herein, the reduction of humidity within the volume of gas as it flows through a cooled porous heat-conductive material within the cooled conductive portion may result in an accumulation over time of liquid water condensate within the gas delivery conduit. In embodiments utilizing a solid-state cooler, the apparatus may be configured to reverse the voltage applied across the cooler, thereby heating the first side of the cooler, and by consequence, heating the previously cooled portion of the gas delivery conduit containing the accumulated condensate. When heated, a least a portion of the accumulated condensate evaporates, increasing the humidity of a gas flowing therethrough (e.g., air blown through the conduit during a clean-out cycle/process) such that the condensate may be removed from the gas delivery conduit.
In various embodiments, as disclosed herein a humidity reduction apparatus 10 may comprise a gas delivery conduit, at least one heat-conductive media positioned in-line within at least a portion of the gas delivery conduit, and a cooler to cool the gas delivery conduit and the at least one heat-conductive media.
In various embodiments, the gas delivery conduit 100 may comprise at least one conducting portion. The at least one conducting portion may comprise heat-conductive sidewalls and a hollow interior portion so as to allow for the passage of a volume of gas therethrough. In various embodiments, the heat-conductive sidewalls of the at least one conducting portion may comprise a material having a high thermal conductivity. For example, the heat-conductive sidewalls may comprise copper, tin, aluminum, brass and/or other heat-conductive materials. In various embodiments, as shown in
As shown in the embodiment of
In various embodiments, the cooler 130 may be embodied as, for example, a solid-state thermoelectric cooler. In such exemplary embodiments, the cooler 130 may be configured to create a temperature difference between the first side 131 and the second side 132 based at least in part on a voltage applied across the cooler 130-a phenomenon known as the “Peltier effect.” In various embodiments, a voltage may be applied across the cooler 130 such that one of the first side and the second side of the cooler 131, 132 is configured as a cooling side, while the other is configured as a heating side. For example, in various embodiments, a voltage may be applied across the cooler 130 in a first direction such that the first side of the cooler 131 may be configured as a cooling side and the second side of the cooler 132 may be configured as a heating side. As shown in
In some embodiments, the cooler 130 may be connected to a power supply configured to receive power and power the humidity reduction apparatus 10. As non-limiting examples, the power supply may comprise one or more batteries, one or more capacitors, one or more constant power supplies (e.g., a wall-outlet), and/or the like. In various embodiments, the cooler 130 may be powered at between 1 and 12 volts (e.g., 5 volts). In various embodiments, a cooler 130 may comprise one or more of counter-flow shell-and-tube heat exchangers, plate heat exchangers (i.e. “plate chillers”), plate and shell heat exchangers, adiabatic wheel heat exchangers, plate fin heat exchangers, pillow plate heat exchangers, and/or the like.
Although not shown in
As shown in
For example, the heat-conductive media 111 may be welded to the interior of the conducting portion of the gas delivery conduit 110, may be adhered (e.g., via a heat-conductive adhesive) within the gas delivery conduit 110, and/or the like. Further, as described above with respect to
In various embodiments, as described above with respect to
It should be understood that, although the conducting portion of the gas delivery conduit 110 is illustrated as having a substantially rectangular cross section, any of the at least one conducting portions may have a cross-section of any shape and may comprise any number of sidewalls suitable for operation of the humidity reduction apparatus 10 as described herein. Similarly, it should be understood that, although the heat-conductive media 111 is illustrated as having a substantially round cross section, any of the at least one heat-conductive media may have a cross-section of any shape and may comprise any number of sidewalls suitable for operation of the humidity reduction apparatus 10 as described herein. The heat-conductive media 111 may fill the interior of the conducting portion of the gas delivery conduit 110, such that the length and the cross-sectional area of the porous heat-conductive media 111 are at least substantially equal to the length and the cross-sectional area of the interior of the conducting portion of the gas delivery conduit 110, respectively. In such embodiments, the cross-sectional shape of the porous heat-conductive media 111 may correspond to (e.g., match) the cross-sectional shape of the conducting portion of the gas delivery conduit 110. For example, the conducting portion of the gas delivery conduit 110 may have a circular cross-section and the porous heat-conductive media 111 may have a corresponding circular cross-section. However, in other embodiments, as described herein the cross-sectional shape of the porous heat-conductive media 111 need not correspond to the cross-sectional shape of the conducting portion of the gas delivery conduit 110. For example, the conducting portion of the gas delivery conduit 110 may have a square or rectangular cross-section, and the porous heat-conductive media 111 may have a circular cross-sectional shape. Further, in various embodiments, the length of the porous heat-conductive media 111 need not correspond to the length of the interior of the conducting portion of the gas delivery conduit 110. For example, the porous heat-conductive media 111 may have a length that is less than that of the interior of the conducting portion of the gas delivery conduit 110 such that the porous heat-conductive media 111 does not extend along the entirety of the length of the interior of the conducting portion of the gas delivery conduit 110 along the fluid flow path of the gas delivery conduit 100.
In various embodiments, as shown in
As shown in
Although not shown in
For example, the first and second heat-conductive media 111, 211 may be welded to the interior of the first and second conducting portion of the gas delivery conduit 110, 210, respectively, may be adhered (e.g., via a heat-conductive adhesive) within the first and second conducting portions, 110, 210, respectively, and/or the like. Further, as described herein, the first conducting portion 110 may be in contact with a first side of a cooler 131, while a second conducting portion 210 may be in contact with a second side of a cooler 132.
In various embodiments, based at least in part on a voltage applied across the cooler 130 as described herein, the first side of the cooler 131 may be configured to cool the first conducting portion 110 and the included first heat-conductive media 111, while the second side of the cooler 132 may be configured to heat the second conducting portion 210 and the included second heat-conductive media 211, for example, via conductive heat transfer.
Alternatively, in various embodiments, the voltage applied to the solid-state thermoelectric cooler may be reversed, such that a voltage may be applied across the cooler 130 in a second direction to configure the first side of the cooler 131 as a heating side and the second side of the cooler 132 as a cooling side. In such a configuration, the first side of the cooler 131 may be configured to heat at least a portion of the gas delivery conduit 100, while the second side of the cooler 132 may be configured to cool at least a portion of the gas delivery conduit 100. As shown in
In various embodiments, the humidity reduction apparatus may further comprise a pump 160 configured to direct the flow of a volume of gas through the gas delivery conduit 100. As shown in
In some embodiments, the pump 160 may be connected to a power supply configured to receive power and power the humidity reduction apparatus 10. As non-limiting examples, the power supply may comprise one or more batteries, one or more capacitors, one or more constant power supplies (e.g., a wall-outlet), and/or the like. In various embodiments, the pump 160 may be powered at between 1 and 12 volts (e.g., 5 volts).
In various embodiments, the humidity reduction apparatus may further comprise a controller 170. In various embodiments, the controller 170 may be configured for distribution of power to a cooler 130, one or more additional coolers, and/or a pump 160 as described herein. In some embodiments, a cooler 130 and/or a pump 160 may be connected to controller 170 (e.g., for electronic communication), which may be configured to facilitate functional control therebetween. In various embodiments, the controller 170 may comprise at least a processor and/or a memory (e.g., non-transitory memory). In another example, the memory may be a non-transitory computer-readable storage medium storing computer-executable program code instructions that, when executed by a computing system, cause the computing system to perform the various operations described herein. The memory may be configured to store information, data, content, signals, applications, instructions (e.g., computer-executable program code instructions), or the like, for enabling the controller 170 to carry out various functions in accordance with example embodiments of the present disclosure. In various embodiments, for example, the processor may be configured to control voltage direction across the cooler 130, control a pump 160, or execute one or more humidity reduction cycles for the humidity reduction apparatus 10. For example, in various embodiments, the processor may be configured to change the voltage direction across a cooler 130 from a first direction to a second direction and from a second direction to a first direction. In various embodiments, the processor may be configured to control the power state and directional configuration of a pump 160. In various embodiments, the processor may be configured to execute various instructions related to a heat reduction cycle, such as, for example, instructions to change voltage direction across the cooler 130, or control the power state and/or directional configuration of the pump 160, in order to cool at least a portion of the gas delivery conduit and subsequently remove at least a portion of an accumulated condensate from the gas delivery conduit 100 as described herein.
In various embodiments, the humidity reduction apparatus may further comprise a valve assembly 103, which may be configured to remove at least a portion of accumulated condensate from within the gas delivery conduit. In various embodiments, the valve assembly 103 may comprise a valve positioned along the gas delivery conduit 100. In various embodiments, the valve assembly 103 may be positioned either upstream or downstream from the at least one conducting portion of the gas delivery conduit 100. In various exemplary implementations, such as, for example, during a clean-out process/cycle, the valve may be configured to allow a volume of accumulated condensate to dispense from the gas delivery conduit. For example, as shown in
In various embodiments, the humidity reduction apparatus 10 may comprise one or more additional coolers in addition to the cooler 130. In various embodiments, the one or more additional coolers may be in contact with at least a portion of the gas delivery conduit 100 and may be configured to selectively cool and/or heat said portion of the gas delivery conduit 100. As shown in
In various embodiments, the second cooler 230 may comprise a solid-state thermoelectric cooler and may be configured to operate and function in a manner similar to that of cooler 130. In various embodiments, as described herein with respect to cooler 130, a voltage may be applied across the cooler 130 such that one of the first side and the second side of the second cooler 231, 232 is configured as a cooling side, while the other is configured as a heating side. For example. In various embodiments, the one or more additional coolers may comprise a type of cooler other than a solid-state thermoelectric cooler.
In various embodiments, as shown in
As illustrated in
Experimental testing was conducted to verify the effectiveness of embodiments as described herein. Data was collected over the course of multiple trials using various combinations of embodiments described above.
The humidity reduction apparatus 10 as used in the exemplary testing configuration comprised a single solid-state thermoelectric cooler, a first heat-conductive media positioned in-line within a first conducting portion of the gas delivery conduit and a second heat-conductive media positioned in-line within a second conducting portion of the gas delivery conduit. The aforementioned components were configured in a similar manner to those of the exemplary embodiment illustrated in
As illustrated by
At block 901, a volume of gas is passed through a gas delivery conduit in a first flow direction. The gas delivery conduit comprises at least one conducting portion, and at least one heat-conductive media is positioned in-line within the at least one conductive portion of the gas delivery conduit. In various embodiments, a first flow direction may extend along the gas delivery conduit from an inlet towards an outlet.
Further, at block 902, the at least one heat-conductive media is cooled via a cooler in contact with an outer surface of the conductive portion of the gas delivery conduit to condense humidity within a volume of gas on surfaces of the at least one heat-conductive media. In various embodiments, the cooler may be a solid-state thermoelectric cooler and cooling the heat-conductive media may comprise applying a voltage in a first direction to the cooler to cool a first side of the cooler, wherein the first side of the cooler is in contact with the at least one conducting portion of the gas delivery conduit.
At block 1003, the exemplary method 1000 further comprises reversing the voltage applied to the cooler to heat the first side of the cooler to heat the at least one heat-conductive media to remove condensed water from the gas delivery conduit. In various embodiments, as one or more volumes of gas pass through the at least one heat-conductive media over time, the condensate extracted from the one or more volumes of gas may begin to accumulate. After a period of time, the accumulated condensate on the surfaces of the at least one heat-conductive media, will accumulate to such an extent that the volume of condensate present within the gas delivery conduit will begin to negatively impact the reduction of humidity described herein. In various embodiments, the negative effects of accumulated condensate within the gas delivery conduit and amount of time before which said negative effects may be realized may depend on one or more variables, such as, for example, the flow rate and relative humidity of a volume of gas passing through the gas delivery conduit. For example, in various embodiments, an accumulated condensate within a gas delivery conduit may begin to negatively impact the reduction of humidity of a volume of gas between 2 and 10 hours (e.g., 8 hours) after the cooler has begun cooling the volume of gas. Accordingly, the voltage applied to the cooler may be reversed from a first direction to a second direction so as to switch the configuration of the first side of the cooler from a cooling configuration to a heating configuration, as described herein. Upon heating the at least one conducting portion of the gas delivery conduit, and thus to the at least one heat-conductive media positioned therein, at least a portion of the accumulated condensate may evaporate. The evaporated condensate (i.e. steam) may be removed from the gas delivery conduit via the flow of a volume of gas.
At block 1103, the exemplary method 1100 further comprises changing a directional flow of the volume of gas through the gas delivery conduit via a pump to a second flow direction opposite from the first flow direction. In various embodiments, a second flow direction may extend along the gas delivery conduit from an outlet towards an inlet. In such an exemplary configuration, the evaporated condensate (i.e. steam) may be removed from the gas delivery conduit via the inlet by flowing in the second flow direction. In various embodiments, the directional flow of a volume of gas within the gas delivery conduit may be changed to a second flow direction, as described herein, by, for example, providing power to a pump where the pump was previously unpowered or reversing the polarity of a pump input signal.
Many modifications and other embodiments will come to mind to one skilled in the art to which this disclosure pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the disclosure is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
Number | Date | Country | Kind |
---|---|---|---|
201910598987.4 | Jul 2019 | CN | national |
This application is a divisional of U.S. patent application Ser. No. 16/916,304, filed Jun. 30, 2020, which is based upon and claims the benefit of priority from Chinese patent application number CN 201910598987.4 filed on Jul. 4, 2019, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 16916304 | Jun 2020 | US |
Child | 18750988 | US |