Gas hydrate inhibitors and methods for making and using same

Information

  • Patent Grant
  • 8932996
  • Patent Number
    8,932,996
  • Date Filed
    Wednesday, January 11, 2012
    12 years ago
  • Date Issued
    Tuesday, January 13, 2015
    9 years ago
Abstract
Methods relate to using phosphate and/or nitrate brines to reduce hydrate formation in flowlines under conditions conducive for hydrate formation in the absence of the phosphate and/or nitrate brine. The phosphate and/or nitrate brines may include compatible anti-corrosion additives.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


Embodiments of this invention relates to methods for using phosphate and/or nitrate brines to reduce hydrate formation in flowlines under conditions conducive for hydrate formation in the absence of the phosphate and/or nitrate brine. In certain embodiments, the phosphate and/or nitrate brines may include compatible anti-corrosion additives.


2. Description of the Related Art


Gas hydrate is a solid comprising a mixture of water and hydrocarbon gas such as methane. Such mixtures are predominantly water with occluded gaseous hydrocarbons such as methane, ethylene, propylene, etc., normally present in minor amounts. The hydrates may also include other gas components or gas contaminants such as carbon dioxide and hydrogen sulfide. Gas hydrate formation is ubiquitous in offshore drilling for and transportation of resources such as gas and/or crude oil, because subsea temperature and pressure conditions are favorable for or conducive to hydrate formation. In certain environments, the temperature is at or below about 35° F. Thus, wellheads, drilling and production annuli or control lines may become plugged or blocked with an accumulation of gas hydrate. Consequently, drilling fluids may lose their functionality, because hydrate formation may lead to an imbalance in composition of the fluid (less water than originally formulated), increased loss of circulation due to the changes in fluid properties, increased flow back, sudden exposure of the fluids at well surface conditions, which may lead to implosions, and great concern in flow-assurance, as well as real potential of abandoning a well or halting an operation operation are problems familiar to those knowledgeable in the art.


In prior art, gas hydrate is prevented or managed by a number of different methods. One method involves the use of salts and alcohols (glycols, methanol, etc.) (see, e.g., Sloan, E. D. et. al., JPT, December 2009; pp 89-94) to lower a freezing point temperature of the fluid. Other methods involve using low doses of hydrate inhibitors capable of altering hydrate formation kinetics (delaying the rate of hydrate formation) or capable of reducing or preventing hydrate precipitation by keeping hydrate in solution, so-called anti-agglomerants (see, e.g., Proceedings of the 6th ICGH 2008, Vancouver, BC, CA, Jul. 6-10, 2008). Other methods involve managing hydrate agglomeration mechanically by shearing (see, e.g., U.S. Pat. No. 6,774,276; Published International Application No. WO/2007/095399 & United States Published Application 2004/0129609). Other methods involve insulating and heating pipelines to reduce hydrate formation (see, e.g., U.S. Pat. No. 6,070,417). Another method uses high cost organic brines that have a low pour point temperature to reduce or inhibit hydrate formation such as formate brines.


While there are many different methods to address hydrate formation, there is still a need in the art for fluids that reduced or inhibit hydrate formation under conditions conducive to hydrate formation in the absence to the fluids and that are environmentally benign and less costly than fluids known to reduce or inhibit hydrate formation such as expensive formate brines.


SUMMARY OF THE INVENTION

Embodiments of the present invention provide methods for inhibiting hydrate formation, where the methods include using a phosphate brine and/or a nitrate brine as a base fluid in downhole operations under conditions conducive for hydrate formation. In certain embodiments, a fluid including a phosphate brine and/or a nitrate brine may also include capable anti-corrosion additives and/or neutralization additives. The fluid will also include other components depending on the application to which the fluids are being applied. For example, in the case of drilling fluids, the fluids may include capable drilling additives such as foaming agents for underbalanced or pressure managed drilling.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention can be better understood with reference to the following detailed description together with the appended illustrative drawings in which like elements are numbered the same:



FIG. 1 depicts a plot of hydrate equilibrium curves showing a phosphate brine and a nitrate brine compared to conventional brines.



FIG. 2 depicts a hydrate dissociation point plot at the point 63.1° F. and 8,612 psig for a nitrate brine having a SG of 1.35.



FIG. 3 depicts a hydrate dissociation point plot at the point 57.8° F. and 5,534 psig for a nitrate brine having a SG of 1.35.



FIG. 4 depicts a hydrate dissociation point plot at the point 49.9° F. and 1,728 psig for a nitrate brine having a SG of 1.35.



FIG. 5 depicts a hydrate dissociation point plot at the point 65.8° F. and 8,824 psig for a phosphate brine having a SG of 1.78.



FIG. 6 depicts a hydrate dissociation point plot at the point 64.7° F. and 5,740 psig for a phosphate brine having a SG of 1.78.



FIG. 7 depicts a hydrate dissociation point plot at the point 63.2° F. and 1,810 psig for a phosphate brine having a SG of 1.78.





DEFINITIONS OF THE INVENTION

The term “substantially” means that the value or effect is at least 80% of being complete. In certain embodiments, the term means that the value of effect is at least 85% of being complete. In certain embodiments, the term means that the value of effect is at least 90% of being complete. In certain embodiments, the term means that the value of effect is at least 95% of being complete. In certain embodiments, the term means that the value of effect is at least 99% of being complete.


The term “about” means that the value or effect is at least 90% of being complete. In certain embodiments, the term means that the value of effect is at least 95% of being complete. In certain embodiments, the term means that the value of effect is at least 99% of being complete.


The term “ppg” means pounds per gallon (lb/gal) and is a measure of density.


The term “SG” means specific gravity.


The term “under-balanced and/or managed pressure drilling fluid” means a drilling fluid having a hydrostatic density (pressure) lower or equal to a formation density (pressure). For example, if a known formation at 10,000 ft (True Vertical Depth—TVD) has a hydrostatic pressure of 5,000 psi or 9.6 lbm/gal, an under-balanced drilling fluid would have a hydrostatic pressure less than or equal to 9.6 lbm/gal. Most under-balanced and/or managed pressure drilling fluids include at least a density reduction additive. Other additive many include a corrosion inhibitor, a pH modifier and a shale inhibitor.


DETAILED DESCRIPTION OF THE INVENTION

The inventors have found that gas hydrate inhibiting fluids can be formulated to reduce or inhibit hydrate formation under conditions conducive for hydrate formation, where the fluids include an effective amount of a phosphate and/or nitrate brine. The brine reduces or inhibits hydrates formation. A small concentration of a composition of this invention introduced into a brine fluid changes a freezing point temperature of the brine fluid eliminating the formation of hydrates. The fluids may be foamed or unfoamed. For foamed fluid, an effective amount of a foaming system and a gas is added to the fluid to form a foam having desired properties.


Current teaching provides a novel non-halide brines designed to lower a pour point temperature of a fluid rending the fluid unsusceptible to hydrate formation. In addition, brine-compatible corrosion inhibiting additives may be used when needed. Instead of contending with highly expensive formate (sodium, potassium or cesium) brines, sodium, potassium, calcium or zinc (or their blends) phosphate brines or nitrate brines maybe used. As such, activity of using the brine sources or systems has no significant impact on the environment, because the brines are easy to handle and maybe disposed indiscriminately. Unlike when alcohols, amphipathics or oleophilic inhibitors are employed, brine-produced fluid separation is facile.


Suitable Reagents

Phosphate Brines


Suitable phosphate brines for use in the present invention include, without limitation, phosphoric acid brines, polyphosphoric acid brines, alkali metal brines, alkaline earth metal phosphate brines, transition metal phosphate brines, and mixtures or combinations thereof. Exemplary examples alkali metal phosphate brines include mono lithium hydrogen phosphate brines, mono hydrogen phosphate brines, mono potassium hydrogen phosphate brines, mono rubidium hydrogen phosphate brines, mono cesium hydrogen phosphate brines, di-lithium hydrogen phosphate brines, di-hydrogen phosphate brines, di-potassium hydrogen phosphate brines, di-rubidium hydrogen phosphate brines, di-cesium hydrogen phosphate brines, and mixture or combinations thereof. Exemplary examples of alkaline earth metal phosphate brines include magnesium phosphate brines, calcium hydrogen phosphate brines, and mixture or combinations thereof. Exemplary examples of transition metal phosphate brines include zinc phosphate brines, and mixture or combinations thereof.


It should be recognized that if one wants to form a mixed phosphate brine, then one would use a suitable hydrogen phosphate and a suitable base. For example, if one wanted to prepare a potassium-cesium mixed phosphate brine, then one could start with a potassium hydrogen phosphate and cesium hydroxide or cesium hydrogen phosphate and potassium hydroxide. One can also start with cesium, potassium hydrogen phosphate and neutralize with either potassium or cesium hydroxide depending on the brine to be produced. It should also be recognized that the phosphate brines can include more than two metals as counterions by using a mixture of hydrogen phosphates and/or a mixture of bases.


Nitrate Brines


Suitable nitrate brines useful in the present invention include, without limitation, alkali metal nitrate brines, alkaline earth metal nitrate brines, transition metal nitrate brines, and mixtures or combinations thereof. Exemplary examples of alkali metal nitrate brines include lithium nitrate, sodium nitrate, potassium nitrate, rubidium nitrate, cesium nitrate, and mixture or combinations thereof. Exemplary examples of alkaline earth metal nitrate brines include magnesium nitrates, calcium nitrates, and mixture or combinations thereof. Exemplary examples of transition metal nitrate brines include zinc nitrate brines, and mixture or combinations thereof.


Brine Specific Corrosion Inhibitors


Suitable neutralizing agents for neutralizing phosphate brines include, without limitation, acids, anhydrides, other compounds capable of neutralizing basic phosphate brines, or mixtures or combinations thereof. Suitable acids include, without limitation, organic acids, organic acid anhydrides, inorganic acids, inorganic acid anhydrides or mixtures and combinations thereof. Exemplary acids include, without limitations, carboxylic acids (mono, di or poly), halogen containing acids such as hydrochloric acid (HCl), hydrobromic acid (HBr), etc., sulfur containing acids such as sulfuric acid, sulfonic acids, sulfinyl acids, etc., phosphoric containing acids such as phosphoric acid, polyphosphoric acid, etc. or mixtures and combinations thereof. Exemplary carboxylic acids include, without limitation, saturated carboxy acids having from 1 to about 20 carbon atoms, unsaturated carboxy acids having from about 2 to about 20 carbon atoms, aromatic acids having from about 5 to about 30 carbon atoms, saturated dicarboxy acids having from 1 to about 20 carbon atoms, unsaturated dicarboxy acids having from about 2 to about 20 carbon atoms, aromatic diacids having from about 5 to about 30 carbon atoms, saturated polycarboxy acids having from 1 to about 20 carbon atoms, unsaturated polycarboxy acids having from about 2 to about 20 carbon atoms, aromatic polyacids having from about 5 to about 30 carbon atoms, or mixtures and combinations thereof. Exemplary sulfonic acids include, without limitation, alkyl sulfonic acids, alkenyl sulfonic acids, aryl sulfonic acids, where the alkyl groups include 1 to about 20 carbon atoms, the alkenyl groups include 2 to about 20 carbon atoms and the aryl groups include 5 to about 30 carbon atoms. In all of these structures, one or more of the carbon atoms may be replaced by hetero atoms including boron, nitrogen, oxygen, sulfur, or mixtures thereof and one or more of the required hydrogen atoms to complete the valency may be replaced by a halogen including fluorine, chlorine, or bromine, a hydroxyl group, an ether group, an amine, an amide, or mixtures thereof. Exemplary anhydrides include, without limitation, anhydrides prepared from one or more of the acids listed above. In certain embodiments, the acids include methane sulfonic acid (Lutropur MSA—LMSA) from BASF Corp. USA, benzoic acid from Sigma-Aldrich Co. USA, hydrochloric acid, glycolic acid, formic acid, polyphosphoric acid, or mixtures and combinations thereof.


Suitable quaternary salts and amine for use in the additive systems as corrosion inhibitors of this invention include, without limitation, quaternary ammonium salts (R1R2R3R4N+A), quaternary phosphonium salts (R1R2R3R4P+A), amines (R1R2R3N), phosphines (R1R2R3P), and mixtures or combinations thereof, where the R1, R2, R3 and R4 are the same or different and are carbyl groups having between 1 and about 20 carbon atoms (saturated, unsaturated, cyclic, acyclic, aromatic, or mixed) and sufficient hydrogen atoms to satisfy the valence, where one or more carbon atoms may be replaced by a hetero atom or group selected from oxygen, sulfur, amido, boron, or mixtures thereof, and one or more of the hydrogen atoms can be replace by halogens, alkoxdies, or mixtures thereof and where Ais a counterion. Exemplary examples of counterions include hydroxide (OH—), halogens (F, Cl, Br, I) sulfate (SO42−), nitrate (NO3), other counterions or mixtures thereof. Exemplary examples of quaternary and amines include other additive such as CORSAF SF (CSF) available from Tetra Technologies, Inc. USA, OxBan HB™ (OBHB) available from Tetra Technologies, Inc. USA, CorrFoam™ 1 (CF-1) available from Weatherford International, USA, Triaminononane Crude (TAN) available from NOVA Molecular Technologies, Inc. USA and BARDAC® LF, a quaternary biocides, available from Lonza Inc. Allendale, NJ.


Suitable bases include, without limitation, alkali metal hydroxides, alkaline earth metal and mixtures or combinations thereof. Exemplary examples include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, magnesium hydroxide and mixtures or combinations thereof.


Suitable Drilling Fluid Components


Suitable aqueous base fluids includes, without limitation, seawater, freshwater, saline water or such makeup system containing up to about 30% crude oil.


Suitable foaming agents for use in this invention include, without limitation, any foaming agent suitable for foaming aquesous based drilling fluids. Exemplary examples of foaming agents include, without limitation KleanFoam™, DuraFoam™, FMA-100™, TransFoam™ (all available from Weatherford International) or mixture or combinations.


Suitable polymers for use in this invention include, without limitation, any polymer soluble in the aqueous base fluid. Exemplary polymers include, without limitation, a polymer comprising units of one or more (one, two, three, four, five, . . . , as many as desired) polymerizable salts of mono-olefins or di-olefins. Exemplary examples includes, without limitation, natural polymers (starch, hydroxymethyl cellulose, xanthan, guar, etc.) and derivates; co-polymerizable monomers such as acrylates (acrylic acid, methyl acrylate, ethyl acrylate, etc.), methacrylates (methacrylic acid, methyl methacrylate, ethyl methacrylate, etc), 2-acrylamindomethylpropane sulfonic acid, vinylacetate, acrylamide, or the like, provided of course that the resulting polymer is soluble in the water base fluid.


Gases


Suitable gases for foaming the foamable, ionically coupled gel composition include, without limitation, nitrogen, carbon dioxide, or any other gas suitable for use in formation fracturing, or mixtures or combinations thereof.


Other Types of Corrosion Inhibitors


Suitable corrosion inhibitor for use in this invention include, without limitation: quaternary ammonium salts e.g., chloride, bromides, iodides, dimethylsulfates, diethylsulfates, nitrites, bicarbonates, carbonates, hydroxides, alkoxides, or the like, or mixtures or combinations thereof; salts of nitrogen bases; or mixtures or combinations thereof. Exemplary quaternary ammonium salts include, without limitation, quaternary ammonium salts from an amine and a quaternarization agent, e.g., alkylchlorides, alkylbromide, alkyl iodides, alkyl sulfates such as dimethyl sulfate, diethyl sulfate, etc., dihalogenated alkanes such as dichloroethane, dichloropropane, dichloroethyl ether, epichlorohydrin adducts of alcohols, ethoxylates, or the like; or mixtures or combinations thereof and an amine agent, e.g., alkylpyridines, especially, highly alkylated alkylpyridines, alkyl quinolines, C6 to C24 synthetic tertiary amines, amines derived from natural products such as coconuts, or the like, dialkylsubstituted methyl amines, amines derived from the reaction of fatty acids or oils and polyamines, amidoimidazolines of DETA and fatty acids, imidazolines of ethylenediamine, imidazolines of diaminocyclohexane, imidazolines of aminoethylethylenediamine, pyrimidine of propane diamine and alkylated propene diamine, oxyalkylated mono and polyamines sufficient to convert all labile hydrogen atoms in the amines to oxygen containing groups, or the like or mixtures or combinations thereof. Exemplary examples of salts ofnitrogen bases, include, without limitation, salts of nitrogen bases derived from a salt, e.g.: C1 to C8 monocarboxylic acids such as formic acid, acetic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, 2-ethylhexanoic acid, or the like; C2 to C12 dicarboxylic acids, C2 to C12 unsaturated carboxylic acids and anhydrides, or the like; polyacids such as diglycolic acid, aspartic acid, citric acid, or the like; hydroxy acids such as lactic acid, itaconic acid, or the like; aryl and hydroxy aryl acids; naturally or synthetic amino acids; thioacids such as thioglycolic acid (TGA); free acid forms of phosphoric acid derivatives of glycol, ethoxylates, ethoxylated amine, or the like, and aminosulfonic acids; or mixtures or combinations thereof and an amine, e.g.: high molecular weight fatty acid amines such as cocoamine, tallow amines, or the like; oxyalkylated fatty acid amines; high molecular weight fatty acid polyamines (di, tri, tetra, or higher); oxyalkylated fatty acid polyamines; amino amides such as reaction products of carboxylic acid with polyamines where the equivalents of carboxylic acid is less than the equivalents of reactive amines and oxyalkylated derivatives thereof; fatty acid pyrimidines; monoimidazolines of EDA, DETA or higher ethylene amines, hexamethylene diamine (HMDA), tetramethylenediamine (TMDA), and higher analogs thereof; bisimidazolines, imidazolines of mono and polyorganic acids; oxazolines derived from monoethanol amine and fatty acids or oils, fatty acid ether amines, mono and bis amides of aminoethylpiperazine; GAA and TGA salts of the reaction products of crude tall oil or distilled tall oil with diethylene triamine; GAA and TGA salts of reaction products of dimer acids with mixtures of poly amines such as TMDA, HMDA and 1,2-diaminocyclohexane; TGA salt of imidazoline derived from DETA with tall oil fatty acids or soy bean oil, canola oil, or the like; or mixtures or combinations thereof.


Other Additives


The drilling fluids of this invention can also include other additives as well such as scale inhibitors, carbon dioxide control additives, paraffin control additives, oxygen control additives, or other additives.


Scale Control


Suitable additives for Scale Control and useful in the compositions of this invention include, without limitation: Chelating agents, e.g., Na+, K+ or NH4+ salts of EDTA; Na, K or NH4+ salts of NTA; Na+, K+ or NH4+ salts of Erythorbic acid; Na+, K+ or NH4+ salts of thioglycolic acid (TGA); Na+, K+ or NH4+ salts of Hydroxy acetic acid; Na+, K+ or NH4+ salts of Citric acid; Na+, K+ or NH4+ salts of Tartaric acid or other similar salts or mixtures or combinations thereof. Suitable additives that work on threshold effects, sequestrants, include, without limitation: Phosphates, e.g., sodium hexamethylphosphate, linear phosphate salts, salts of polyphosphoric acid, Phosphonates, e.g., nonionic such as HEDP (hydroxythylidene diphosphoric acid), PBTC (phosphoisobutane, tricarboxylic acid), Amino phosphonates of: MEA (monoethanolamine), NH3, EDA (ethylene diamine), Bishydroxyethylene diamine, Bisaminoethylether, DETA (diethylenetriamine), HMDA (hexamethylene diamine), Hyper homologues and isomers of HMDA, Polyamines of EDA and DETA, Diglycolamine and homologues, or similar polyamines or mixtures or combinations thereof; Phosphate esters, e.g., polyphosphoric acid esters or phosphorus pentoxide (P2O5) esters of: alkanol amines such as MEA, DEA, triethanol amine (TEA), Bishydroxyethylethylene diamine; ethoxylated alcohols, glycerin, glycols such as EG (ethylene glycol), propylene glycol, butylene glycol, hexylene glycol, trimethylol propane, pentaerythritol, neopentyl glycol or the like; Tris & Tetrahydroxy amines; ethoxylated alkyl phenols (limited use due to toxicity problems), Ethoxylated amines such as monoamines such as MDEA and higher amines from 2 to 24 carbons atoms, diamines 2 to 24 carbons carbon atoms, or the like; Polymers, e.g., homopolymers of aspartic acid, soluble homopolymers of acrylic acid, copolymers of acrylic acid and methacrylic acid, terpolymers of acylates, AMPS, etc., hydrolyzed polyacrylamides, poly malic anhydride (PMA); or the like; or mixtures or combinations thereof.


Carbon Dioxide Neutralization


Suitable additives for CO2 neutralization and for use in the compositions of this invention include, without limitation, MEA, DEA, isopropylamine, cyclohexylamine, morpholine, diamines, dimethylaminopropylamine (DMAPA), ethylene diamine, methoxy proplyamine (MOPA), dimethylethanol amine, methyldiethanolamine (MDEA) & oligomers, imidazolines of EDA and homologues and higher adducts, imidazolines of aminoethylethanolamine (AEEA), aminoethylpiperazine, aminoethylethanol amine, di-isopropanol amine, DOW AMP-90™, Angus AMP-95, dialkylamines (of methyl, ethyl, isopropyl), mono alkylamines (methyl, ethyl, isopropyl), trialkyl amines (methyl, ethyl, isopropyl), bishydroxyethylethylene diamine (THEED), or the like or mixtures or combinations thereof.


Paraffin Control


Suitable additives for Paraffin Removal, Dispersion, and/or paraffin Crystal Distribution include, without limitation: Cellosolves available from DOW Chemicals Company; Cellosolve acetates; Ketones; Acetate and Formate salts and esters; surfactants composed of ethoxylated or propoxylated alcohols, alkyl phenols, and/or amines; methylesters such as coconate, laurate, soyate or other naturally occurring methylesters of fatty acids; sulfonated methylesters such as sulfonated coconate, sulfonated laurate, sulfonated soyate or other sulfonated naturally occurring methylesters of fatty acids; low molecular weight quaternary ammonium chlorides of coconut oils soy oils or C10 to C24 amines or monohalogenated alkyl and aryl chlorides; quanternary ammonium salts composed of disubstituted (e.g., dicoco, etc.) and lower molecular weight halogenated alkyl and/or aryl chlorides; gemini quaternary salts of dialkyl(methyl, ethyl, propyl, mixed, etc.) tertiary amines and dihalogenated ethanes, propanes, etc. or dihalogenated ethers such as dichloroethyl ether (DCEE), or the like; gemini quaternary salts of alkyl amines or amidopropyl amines, such as cocoamidopropyldimethyl, bis quaternary ammonium salts of DCEE; or mixtures or combinations thereof. Suitable alcohols used in preparation of the surfactants include, without limitation, linear or branched alcohols, specially mixtures of alcohols reacted with ethylene oxide, propylene oxide or higher alkyleneoxide, where the resulting surfactants have a range of HLBs. Suitable alkylphenols used in preparation of the surfactants include, without limitation, nonylphenol, decylphenol, dodecylphenol or other alkylphenols where the alkyl group has between about 4 and about 30 carbon atoms. Suitable amines used in preparation of the surfactants include, without limitation, ethylene diamine (EDA), diethylenetriamine (DETA), or other polyamines. Exemplary examples include Quadrols, Tetrols, Pentrols available from BASF. Suitable alkanolamines include, without limitation, monoethanolamine (MEA), diethanolamine (DEA), reactions products of MEA and/or DEA with coconut oils and acids.


Oxygen Control


The introduction of water downhole often is accompanied by an increase in the oxygen content of downhole fluids due to oxygen dissolved in the introduced water. Thus, the materials introduced downhole must work in oxygen environments or must work sufficiently well until the oxygen content has been depleted by natural reactions. For system that cannot tolerate oxygen, then oxygen must be removed or controlled in any material introduced downhole. The problem is exacerbated during the winter when the injected materials include winterizers such as water, alcohols, glycols, Cellosolves, formates, acetates, or the like and because oxygen solubility is higher to a range of about 14-15 ppm in very cold water. Oxygen can also increase corrosion and scaling. In CCT (capillary coiled tubing) applications using dilute solutions, the injected solutions result in injecting an oxidizing environment (O2) into a reducing environment (CO2, H2S, organic acids, etc.).


Options for controlling oxygen content includes: (1) de-aeration of the fluid prior to downhole injection, (2) addition of normal sulfides to product sulfur oxides, but such sulfur oxides can accelerate acid attack on metal surfaces, (3) addition of erythorbates, ascorbates, diethylhydroxyamine or other oxygen reactive compounds that are added to the fluid prior to downhole injection; and (4) addition of corrosion inhibitors or metal passivation agents such as potassium (alkali) salts of esters of glycols, polyhydric alcohol ethyloxylates or other similar corrosion inhibitors. Exemplary examples oxygen and corrosion inhibiting agents include mixtures of tetramethylene diamines, hexamethylene diamines, 1,2-diaminecyclohexane, amine heads, or reaction products of such amines with partial molar equivalents of aldehydes. Other oxygen control agents include salicylic and benzoic amides of polyamines, used especially in alkaline conditions, short chain acetylene diols or similar compounds, phosphate esters, borate glycerols, urea and thiourea salts of bisoxalidines or other compound that either absorb oxygen, react with oxygen or otherwise reduce or eliminate oxygen.


Salt Inhibitors


Suitable salt inhibitors for use in the fluids of this invention include, without limitation, Na Minus Nitrilotriacetamide available from Clearwater International, LLC of Houston, Tex.


EXPERIMENTS OF THE INVENTION

Introduction


In preparation for this hydrate dissociation evaluation, two brine solutions were submitted to Intertek Westport Technology Center, Houston, Tex. USA. Each fluid was then evaluated for hydrate dissociation temperatures at varying pressures using a synthetic gas supplied by Intertek Westport (Green Canyon Gas). These tests were performed in a high pressure Autoclave mixing cell.


Test Procedures


Approximately 175 mL of a test fluid were poured into an open Autoclave cell. The cell was sealed, evacuated, and purged using the test gas to remove the possibility of interference due to air contamination. The pressure was increased to test conditions. The fluid was then allowed to become gas saturate with mixing. Upon completion of the saturation process, the pressure was shut in and the cell temperature was reduced at approximately 10° F. per hour to minimum test conditions. The temperature was then maintained at minimum test conditions for an extended period of time to ensure a significant amount of hydrate formation had occurred. A temperature ramp is conducted back up to the initial starting temperature at approximately 6° F. per hour. Temperature and pressure data were collected using a data acquisition system. Three dissociation points were measured on each sample using this procedure at varying pressures to define the hydrate equilibrium curves.


Table I list the composition of the test gas.









TABLE I







Test Gas Composition











ID
Component
Mole %















N2
Nitrogen
0.14



C1
Methane
87.48



C2
Ethane
7.58



C3
Propane
3.08



i-C4
Isobutane
0.51



n-C4
N-Butane
0.80



i-C5
Isopentane
0.20



C5
Pentane
0.20










Table II tabulates the hydrate equilibrium test results for a nitrate brine and a phosphate brine.









TABLE II







Hydrate Equilibrium Curve by High Pressure Autoclave Method












Nitrate

Phosphate




(K2NO3) Brine

(K2HPO4) Brine



SG = 1.35

SG = 1.78












Temp (° F.)
Press (psig)
Temp (° F.)
Press (psig)







63.1
8,612
65.8
8,824



57.8
5,534
64.7
5,740



49.9
1,728
63.2
1,810










Referring to FIG. 1, a plot of hydrate equilibrium curves for seven commercial hydrate inhibitors are shown along with the three point curves for a nitrate brine and a phosphate brine of this invention. The nitrate brine is a potassium nitrate (KNO3) brine having an SG of 1.35. The phosphate brine is a dipotassium hydrogen phosphate (K2HPO4) brine having an SG of 1.78. The curves show that the nitrate and phosphate brines behave similar to zinc bromide, formate and sodium chloride brines as opposed to calcium chloride and calcium bromide brines and organic hydrate inhibitors monoethylene glycol (MEG) and methanol.


Referring to FIG. 2, a plot of a hydrate dissociation point for the nitrate brine of this invention using the High Pressure Autoclave Method to determine hydrate equilibrium curve at 63.1° F. and 8,612 psig.


Referring to FIG. 3, a plot of a hydrate dissociation point for the nitrate brine of this invention using the High Pressure Autoclave Method to determine hydrate equilibrium curve at 57.8° F. and 5,534 psig.


Referring to FIG. 4, a plot of a hydrate dissociation point for the nitrate brine of this invention using the High Pressure Autoclave Method to determine hydrate equilibrium curve at 49.9° F. and 1,728 psig.


Referring to FIG. 5, a plot of a hydrate dissociation point for the phosphate brine of this invention using the High Pressure Autoclave Method to determine hydrate equilibrium curve at 65.8° F. and 8,824 psig.


Referring to FIG. 6, a plot of a hydrate dissociation point for the phosphate brine of this invention using the High Pressure Autoclave Method to determine hydrate equilibrium curve at 64.7° F. and 5,740 psig.


Referring to FIG. 7, a plot of a hydrate dissociation point for the phosphate brine of this invention using the High Pressure Autoclave Method to determine hydrate equilibrium curve at 63.2° F. and 1,810 psig.


The data presented in the tables and figures clearly demonstrates that the phosphate and nitrate brines are ideal candidates for preparing fluid for use under condition conducive for hydrate formation. The phosphate and nitrate brines show hydrate equilibrium curves similar to zinc bromide, potassium formate and sodium chloride brines, which are currently used as hydrate inhibitors. The phosphate and nitrate brines are lower cost and are relatively non-corrosive. In certain embodiments, the brines may include compatible anti-corrosion additives and/or neutralization additives to further reduce any corrosive propensity of the brines. The phosphate and nitrate brines of this invention may be added to drilling fluids, foamed drilling fluids, completion fluids, foamed completion fluids, production fluid or foamed production fluids at concentration sufficient to reduce or inhibit hydrate formation. Additionally, the drilling, completion or production fluids, foamed or unfoamed, may use the phosphate and nitrate brines of this invention as the base fluid.


All references cited herein are incorporated by reference. Although the invention has been disclosed with reference to its preferred embodiments, from reading this description those of skill in the art may appreciate changes and modification that may be made which do not depart from the scope and spirit of the invention as described above and claimed hereafter.

Claims
  • 1. A method for inhibiting gas hydrate formation in downhole fluids comprising: using a downhole fluid including: a base fluid comprising a nitrate brine, andan inhibiting amount of a corrosion system including: at least one compatible anti-corrosion and/or neutralization additive is selected from the group consisting of mono carboxylic acids, dicarboxylic acids, poly carboxylic acids, hydrochloric acid (HCl), hydrobromic acid (HBr), sulfuric acid, sulfonic acids, sulfinyl acids, phosphoric acid, polyphosphoric acid, and mixtures or combinations thereof,where the downhole fluid is selected from the group consisting of a drilling fluid, a completion fluid, and a production fluid,where the base fluid reduces or inhibits hydrocarbon gas hydrate formation under conditions conducive to hydrocarbon gas hydrate formation in the downhole fluid, andwhere the additives reduce or prevent corrosion by the base fluid.
  • 2. The method of claim 1, wherein the downhole fluid further include: an effective amount of a foaming system and a gas to form a foamed downhole fluid having desired foam properties.
  • 3. The method of claim 1, wherein the nitrate brines are selected from the group consisting of alkali metal nitrate brines, alkaline earth metal nitrate brines, transition metal nitrate brines, and mixtures or combinations thereof.
  • 4. The method of claim 3, wherein: the alkali metal nitrate brines are selected from the group consisting of lithium nitrate brines, sodium nitrate brines, potassium nitrate brines, rubidium nitrate brines, cesium nitrate brines, and mixture or combinations thereof,the alkaline earth metal nitrate brines are selected from the group consisting of magnesium nitrate brines, calcium nitrate brines, and mixture or combinations thereof, andthe transition metal nitrate brines are zinc nitrate brines.
  • 5. The method of claim 4, wherein: the mono-, di- and polycarboxylic acids are selected from the group consisting of saturated carboxy acids having from 1 to about 20 carbon atoms, unsaturated carboxy acids having from about 2 to about 20 carbon atoms, aromatic acids having from about 5 to about 30 carbon atoms, saturated dicarboxy acids having from 1 to about 20 carbon atoms, unsaturated dicarboxy acids having from about 2 to about 20 carbon atoms, aromatic diacids having from about 5 to about 30 carbon atoms, saturated polycarboxy acids having from 1 to about 20 carbon atoms, unsaturated polycarboxy acids having from about 2 to about 20 carbon atoms, aromatic polyacids having from about 5 to about 30 carbon atoms, or mixtures and combinations thereof, andthe sulfonic acids include, without limitation, alkyl sulfonic acids, alkenyl sulfonic acids, aryl sulfonic acids, where the alkyl groups include 1 to about 20 carbon atoms, the alkenyl groups include 2 to about 20 carbon atoms and the aryl groups include 5 to about 30 carbon atoms.
  • 6. A method for inhibiting gas hydrate formation in drilling fluids comprising: using a drilling fluid including: a base fluid comprising a nitrate brine, andan inhibiting amount of a corrosion system including: at least one compatible anti-corrosion and/or neutralization additive is selected from the group consisting of mono carboxylic acids, dicarboxylic acids, poly carboxylic acids, hydrochloric acid (HCl), hydrobromic acid (HBr), sulfuric acid, sulfonic acids, sulfinyl acids, phosphoric acid, polyphosphoric acid, and mixtures or combinations thereof,where the nitrate brines are selected from the group consisting of alkali metal nitrate brines, alkaline earth metal nitrate brines, transition metal nitrate brines, and mixtures or combinations thereof,where the base fluid reduces or inhibits hydrocarbon gas hydrate formation under conditions conducive to hydrocarbon gas hydrate formation in the base fluid, andwhere the additives reduce or prevent corrosion by the base fluid.
  • 7. The method of claim 6, wherein the drilling fluid further include: an effective amount of a foaming system and a gas to form a foamed drilling fluid having desired foam properties.
  • 8. The method of claim 6, wherein the nitrate brines are selected from the group consisting of alkali metal nitrate brines, alkaline earth metal nitrate brines, transition metal nitrate brines, and mixtures or combinations thereof.
  • 9. The method of claim 8, wherein: the alkali metal nitrate brines are selected from the group consisting of lithium nitrate brines, sodium nitrate brines, potassium nitrate brines, rubidium nitrate brines, cesium nitrate brines, and mixture or combinations thereof,the alkaline earth metal nitrate brines are selected from the group consisting of magnesium nitrate brines, calcium nitrate brines, and mixture or combinations thereof, andthe transition metal nitrate brines are zinc nitrate brines.
  • 10. The method of claim 9, wherein: the mono-, di- and polycarboxylic acids are selected from the group consisting of saturated carboxy acids having from 1 to about 20 carbon atoms, unsaturated carboxy acids having from about 2 to about 20 carbon atoms, aromatic acids having from about 5 to about 30 carbon atoms, saturated dicarboxy acids having from 1 to about 20 carbon atoms, unsaturated dicarboxy acids having from about 2 to about 20 carbon atoms, aromatic diacids having from about 5 to about 30 carbon atoms, saturated polycarboxy acids having from 1 to about 20 carbon atoms, unsaturated polycarboxy acids having from about 2 to about 20 carbon atoms, aromatic polyacids having from about 5 to about 30 carbon atoms, or mixtures and combinations thereof, andthe sulfonic acids include, without limitation, alkyl sulfonic acids, alkenyl sulfonic acids, aryl sulfonic acids, where the alkyl groups include 1 to about 20 carbon atoms, the alkenyl groups include 2 to about 20 carbon atoms and the aryl groups include 5 to about 30 carbon atoms.
  • 11. A method for inhibiting gas hydrate formation in completion fluids comprising: using a drilling fluid including: a base fluid comprising a nitrate brine, andan inhibiting amount of a corrosion system including: at least one compatible anti-corrosion and/or neutralization additive is selected from the group consisting of mono carboxylic acids, dicarboxylic acids, poly carboxylic acids, hydrochloric acid (HCl), hydrobromic acid (HBr), sulfuric acid, sulfonic acids, sulfinyl acids, phosphoric acid, polyphosphoric acid, and mixtures or combinations thereof,where the nitrate brines are selected from the group consisting of alkali metal nitrate brines, alkaline earth metal nitrate brines, transition metal nitrate brines, and mixtures or combinations thereof,where the base fluid reduces or inhibits hydrocarbon gas hydrate formation under conditions conducive to hydrocarbon gas hydrate formation in the completion fluid, andwhere the additives reduce or prevent corrosion by the base fluid.
  • 12. The method of claim 11, wherein the completion fluid further include: an effective amount of a foaming system and a gas to form a foamed completion fluid having desired foam properties.
  • 13. The method of claim 11, wherein the nitrate brines are selected from the group consisting of alkali metal nitrate brines, alkaline earth metal nitrate brines, transition metal nitrate brines, and mixtures or combinations thereof.
  • 14. The method of claim 13, wherein: the alkali metal nitrate brines are selected from the group consisting of lithium nitrate brines, sodium nitrate brines, potassium nitrate brines, rubidium nitrate brines, cesium nitrate brines, and mixture or combinations thereof,the alkaline earth metal nitrate brines are selected from the group consisting of magnesium nitrate brines, calcium nitrate brines, and mixture or combinations thereof, andthe transition metal nitrate brines are zinc nitrate brines.
  • 15. The method of claim 14, wherein: the mono-, di- and polycarboxylic acids are selected from the group consisting of saturated carboxy acids having from 1 to about 20 carbon atoms, unsaturated carboxy acids having from about 2 to about 20 carbon atoms, aromatic acids having from about 5 to about 30 carbon atoms, saturated dicarboxy acids having from 1 to about 20 carbon atoms, unsaturated dicarboxy acids having from about 2 to about 20 carbon atoms, aromatic diacids having from about 5 to about 30 carbon atoms, saturated polycarboxy acids having from 1 to about 20 carbon atoms, unsaturated polycarboxy acids having from about 2 to about 20 carbon atoms, aromatic polyacids having from about 5 to about 30 carbon atoms, or mixtures and combinations thereof, andthe sulfonic acids include, without limitation, alkyl sulfonic acids, alkenyl sulfonic acids, aryl sulfonic acids, where the alkyl groups include 1 to about 20 carbon atoms, the alkenyl groups include 2 to about 20 carbon atoms and the aryl groups include 5 to about 30 carbon atoms.
  • 16. A method for inhibiting gas hydrate formation in production fluids comprising: using a production fluid including: a base fluid comprising a nitrate brine, andan inhibiting amount of a corrosion system including: at least one compatible anti-corrosion and/or neutralization additive is selected from the group consisting of mono carboxylic acids, dicarboxylic acids, poly carboxylic acids, hydrochloric acid (HCl), hydrobromic acid (HBr), sulfuric acid, sulfonic acids, sulfinyl acids, phosphoric acid, polyphosphoric acid, and mixtures or combinations thereof,where the nitrate brines are selected from the group consisting of alkali metal nitrate brines, alkaline earth metal nitrate brines, transition metal nitrate brines, and mixtures or combinations thereof,where the base fluid reduces or inhibits hydrocarbon gas hydrate formation under conditions conducive to hydrocarbon gas hydrate formation in the production fluid, andwhere the additives reduce or prevent corrosion by the base fluid.
  • 17. The method of claim 16, wherein the production fluid further include: an effective amount of a foaming system and a gas to form a foamed production fluid having desired foam properties.
  • 18. The method of claim 16, wherein the nitrate brines are selected from the group consisting of alkali metal nitrate brines, alkaline earth metal nitrate brines, transition metal nitrate brines, and mixtures or combinations thereof.
  • 19. The method of claim 18, wherein: the alkali metal nitrate brines are selected from the group consisting of lithium nitrate brines, sodium nitrate brines, potassium nitrate brines, rubidium nitrate brines, cesium nitrate brines, and mixture or combinations thereof,the alkaline earth metal nitrate brines are selected from the group consisting of magnesium nitrate brines, calcium nitrate brines, and mixture or combinations thereof, andthe transition metal nitrate brines are zinc nitrate brines.
  • 20. The method of claim 19, wherein: the mono-, di- and polycarboxylic acids are selected from the group consisting of saturated carboxy acids having from 1 to about 20 carbon atoms, unsaturated carboxy acids having from about 2 to about 20 carbon atoms, aromatic acids having from about 5 to about 30 carbon atoms, saturated dicarboxy acids having from 1 to about 20 carbon atoms, unsaturated dicarboxy acids having from about 2 to about 20 carbon atoms, aromatic diacids having from about 5 to about 30 carbon atoms, saturated polycarboxy acids having from 1 to about 20 carbon atoms, unsaturated polycarboxy acids having from about 2 to about 20 carbon atoms, aromatic polyacids having from about 5 to about 30 carbon atoms, or mixtures and combinations thereof, andthe sulfonic acids include, without limitation, alkyl sulfonic acids, alkenyl sulfonic acids, aryl sulfonic acids, where the alkyl groups include 1 to about 20 carbon atoms, the alkenyl groups include 2 to about 20 carbon atoms and the aryl groups include 5 to about 30 carbon atoms.
US Referenced Citations (199)
Number Name Date Kind
2196042 Timpson Apr 1940 A
2390153 Kern Dec 1945 A
2805958 Bueche et al. Jul 1959 A
3059909 Wise Oct 1962 A
3163219 Wyant et al. Dec 1964 A
3301723 Chrisp Jan 1967 A
3301848 Halleck Jan 1967 A
3303896 Tillotson et al. Feb 1967 A
3317430 Priestley et al. May 1967 A
3565176 Wittenwyler Feb 1971 A
3856921 Shrier et al. Dec 1974 A
3888312 Tiner et al. Jun 1975 A
3933205 Kiel Jan 1976 A
3937283 Blauer et al. Feb 1976 A
3960736 Free et al. Jun 1976 A
3965982 Medlin Jun 1976 A
3990978 Hill Nov 1976 A
4007792 Meister Feb 1977 A
4052159 Fuerst et al. Oct 1977 A
4067389 Savins Jan 1978 A
4108782 Thompson Aug 1978 A
4112050 Sartori et al. Sep 1978 A
4112051 Sartori et al. Sep 1978 A
4112052 Sartori et al. Sep 1978 A
4113631 Thompson Sep 1978 A
4378845 Medlin et al. Apr 1983 A
4461716 Barbarin et al. Jul 1984 A
4479041 Fenwick et al. Oct 1984 A
4506734 Nolte Mar 1985 A
4514309 Wadhwa Apr 1985 A
4541935 Constien et al. Sep 1985 A
4549608 Stowe et al. Oct 1985 A
4561985 Glass, Jr. Dec 1985 A
4623021 Stowe Nov 1986 A
4654266 Kachnik Mar 1987 A
4657081 Hodge Apr 1987 A
4660643 Perkins Apr 1987 A
4683068 Kucera Jul 1987 A
4686052 Baranet et al. Aug 1987 A
4695389 Kubala Sep 1987 A
4705113 Perkins Nov 1987 A
4714115 Uhri Dec 1987 A
4718490 Uhri Jan 1988 A
4724905 Uhri Feb 1988 A
4725372 Teot et al. Feb 1988 A
4739834 Peiffer et al. Apr 1988 A
4741401 Walles et al. May 1988 A
4748011 Baize May 1988 A
4779680 Sydansk Oct 1988 A
4795574 Syrinek et al. Jan 1989 A
4817717 Jennings, Jr. et al. Apr 1989 A
4830106 Uhri May 1989 A
4846277 Khalil et al. Jul 1989 A
4848468 Hazlett et al. Jul 1989 A
4852650 Jennings, Jr. et al. Aug 1989 A
4869322 Vogt, Jr. et al. Sep 1989 A
4892147 Jennings, Jr. et al. Jan 1990 A
4926940 Stromswold May 1990 A
4938286 Jennings, Jr. Jul 1990 A
4978512 Dillon Dec 1990 A
5005645 Jennings, Jr. et al. Apr 1991 A
5024276 Borchardt Jun 1991 A
5067556 Fudono et al. Nov 1991 A
5074359 Schmidt Dec 1991 A
5074991 Weers Dec 1991 A
5082579 Dawson Jan 1992 A
5106518 Cooney et al. Apr 1992 A
5110486 Manalastas et al. May 1992 A
5169411 Weers Dec 1992 A
5224546 Smith et al. Jul 1993 A
5228510 Jennings, Jr. et al. Jul 1993 A
5246073 Sandiford et al. Sep 1993 A
5259455 Nimerick et al. Nov 1993 A
5330005 Card et al. Jul 1994 A
5342530 Aften et al. Aug 1994 A
5347004 Rivers et al. Sep 1994 A
5363919 Jennings, Jr. Nov 1994 A
5402846 Jennings, Jr. et al. Apr 1995 A
5411091 Jennings, Jr. May 1995 A
5424284 Patel et al. Jun 1995 A
5439055 Card et al. Aug 1995 A
5462721 Pounds et al. Oct 1995 A
5465792 Dawson et al. Nov 1995 A
5472049 Chaffe et al. Dec 1995 A
5482116 El-Rabaa et al. Jan 1996 A
5488083 Kinsey, III et al. Jan 1996 A
5497831 Hainey et al. Mar 1996 A
5501275 Card et al. Mar 1996 A
5551516 Norman et al. Sep 1996 A
5624886 Dawson et al. Apr 1997 A
5635458 Lee et al. Jun 1997 A
5649596 Jones et al. Jul 1997 A
5669447 Walker et al. Sep 1997 A
5674377 Sullivan, III et al. Oct 1997 A
5688478 Pounds et al. Nov 1997 A
5693837 Smith et al. Dec 1997 A
5711396 Joerg et al. Jan 1998 A
5722490 Ebinger Mar 1998 A
5744024 Sullivan, III et al. Apr 1998 A
5755286 Ebinger May 1998 A
5775425 Weaver et al. Jul 1998 A
5787986 Weaver et al. Aug 1998 A
5806597 Tjon-Joe-Pin et al. Sep 1998 A
5807812 Smith et al. Sep 1998 A
5833000 Weaver et al. Nov 1998 A
5853048 Weaver et al. Dec 1998 A
5871049 Weaver et al. Feb 1999 A
5877127 Card et al. Mar 1999 A
5908073 Nguyen et al. Jun 1999 A
5908814 Patel et al. Jun 1999 A
5964295 Brown et al. Oct 1999 A
5979557 Card et al. Nov 1999 A
5980845 Cherry Nov 1999 A
6016871 Burts, Jr. Jan 2000 A
6035936 Whalen Mar 2000 A
6047772 Weaver et al. Apr 2000 A
6054417 Graham et al. Apr 2000 A
6059034 Rickards et al. May 2000 A
6060436 Snyder et al. May 2000 A
6063972 Duncum et al. May 2000 A
6069118 Hinkel et al. May 2000 A
6123394 Jeffrey Sep 2000 A
6133205 Jones Oct 2000 A
6147034 Jones et al. Nov 2000 A
6162449 Maier et al. Dec 2000 A
6162766 Muir et al. Dec 2000 A
6169058 Le et al. Jan 2001 B1
6228812 Dawson et al. May 2001 B1
6247543 Patel et al. Jun 2001 B1
6267938 Warrender et al. Jul 2001 B1
6283212 Hinkel et al. Sep 2001 B1
6291405 Lee et al. Sep 2001 B1
6330916 Rickards et al. Dec 2001 B1
6725931 Nguyen et al. Apr 2004 B2
6756345 Pakulski et al. Jun 2004 B2
6793018 Dawson et al. Sep 2004 B2
6832650 Nguyen et al. Dec 2004 B2
6875728 Gupta et al. Apr 2005 B2
7055628 Grainger et al. Jun 2006 B2
7140433 Gatlin et al. Nov 2006 B2
7186353 Novak Mar 2007 B2
7268100 Kippie et al. Sep 2007 B2
7350579 Gatlin et al. Apr 2008 B2
7392847 Gatlin et al. Jul 2008 B2
7517447 Gatlin Apr 2009 B2
7565933 Kippie et al. Jul 2009 B2
7566686 Kippie et al. Jul 2009 B2
7712535 Venditto et al. May 2010 B2
7767628 Kippie et al. Aug 2010 B2
7829510 Gatlin et al. Nov 2010 B2
7886824 Kakadjian et al. Feb 2011 B2
7915203 Falana et al. Mar 2011 B2
7932214 Zamora et al. Apr 2011 B2
7942201 Ekstrand et al. May 2011 B2
7956017 Gatlin et al. Jun 2011 B2
7956217 Falana et al. Jun 2011 B2
7971659 Gatlin et al. Jul 2011 B2
7989404 Kakadjian et al. Aug 2011 B2
7992653 Zamora et al. Aug 2011 B2
8011431 van Petegen Sep 2011 B2
8012913 Gatlin et al. Sep 2011 B2
8028755 Darnell et al. Oct 2011 B2
8034750 Thompson et al. Oct 2011 B2
8065905 Sweeney et al. Nov 2011 B2
8084401 Lukocs et al. Dec 2011 B2
8093431 Falana et al. Jan 2012 B2
8097567 Wilson, Jr. Jan 2012 B2
8099997 Curr et al. Jan 2012 B2
8141661 Kakadjian et al. Mar 2012 B2
8158562 Wilson, Jr. et al. Apr 2012 B2
8172952 Wanner et al. May 2012 B2
20020049256 Bergeron, Jr. Apr 2002 A1
20020165308 Kinniard et al. Nov 2002 A1
20030220204 Baran, Jr. et al. Nov 2003 A1
20050045330 Nguyen et al. Mar 2005 A1
20050092489 Welton et al. May 2005 A1
20050137114 Gatlin et al. Jun 2005 A1
20060194700 Gatlin et al. Aug 2006 A1
20080251252 Schwartz Oct 2008 A1
20080318812 Kakadjian et al. Dec 2008 A1
20090250659 Gatlin Oct 2009 A1
20090275488 Zamora et al. Nov 2009 A1
20100077938 Zamora et al. Apr 2010 A1
20100212905 van Petegen Aug 2010 A1
20100252262 Ekstrand et al. Oct 2010 A1
20100292108 Kakadjian Nov 2010 A1
20100305010 Falana et al. Dec 2010 A1
20100311620 Kakadjian et al. Dec 2010 A1
20110001083 Falana et al. Jan 2011 A1
20110005756 van Petegen Jan 2011 A1
20110240131 Parker Oct 2011 A1
20110247821 Thompson et al. Oct 2011 A1
20110284247 Zamora et al. Nov 2011 A1
20110284248 Zamora et al. Nov 2011 A1
20120071366 Falana et al. Mar 2012 A1
20120071367 Falana et al. Mar 2012 A1
20120071370 Falana et al. Mar 2012 A1
20120073813 Zamora et al. Mar 2012 A1
20120137752 Morrow Jun 2012 A1
Foreign Referenced Citations (1)
Number Date Country
WO 2009141308 Nov 2009 WO
Non-Patent Literature Citations (11)
Entry
U.S. Appl. No. 13/117,304, filed May 27, 2011, Falana et al.
U.S. Appl. No. 13/247,985, filed Sep. 28, 2011, Veldman et al.
U.S. Appl. No. 13/109,712, filed May 17, 2011, Falana et al.
U.S. Appl. No. 13/102,053, filed May 6, 2011, Falana et al.
U.S. Appl. No. 13/094,806, filed Apr. 26, 2011, Zamora et al.
U.S. Appl. No. 13/052,947, filed Mar. 21, 2011, Kakadjian et al.
U.S. Appl. No. 13/102,053, filed May 6, 2011, Kakadjian et al.
U.S. Appl. No. 13/348,267, filed Jan. 1, 2012, Kakadjian et al.
U.S. Appl. No. 13/249,819, filed Sep. 30, 2011, Falana et al.
U.S. Appl. No. 13/348,279, filed Jan. 11, 2012, Falana et al.
U.S. Appl. No. 13/348,267, filed Jan. 11, 2012, Kakadjian et al.
Related Publications (1)
Number Date Country
20130178399 A1 Jul 2013 US