This is a national stage of PCT/JP07/069395 filed Oct. 3, 2007 and published in Japanese, hereby incorporated by reference.
The present invention relates to a gas hydrate production apparatus that produces a gas hydrate by causing a raw-material gas, such as a natural gas, to react with water.
A gas hydrate is ice-like solid crystals formed of water molecules and gas molecules, and is a generic term referring to clathrate hydrates (hydrates) in each of which each gas molecule is included inside a cage constructed of water molecules with a three-dimensional structure. The gas hydrate has been actively studied and developed as transportation and storage means for natural gases because the gas hydrate contains a natural gas in an amount as large as approximately 165 Nm3 per 1 m3 of the gas hydrate.
As apparatuses for producing gas hydrates, there have conventionally been the following systems: a bubbling system (see, for example, Japanese patent application Kokai publication No. 2003-80056) in which a raw-material gas is blown into a raw-material water in a generator; a spray system (see, for example, Japanese patent application Kokai publication No. 2002-38171) in which a raw-material water is sprayed into a generator filled with a raw-material gas; a tubular reactor system (see, for example, Japanese patent application Kokai publication No. 2002-356685) using a line mixer and a water-tube-type tubular reactor; and the like.
However, the bubbling system has the following problems and the like because the bubbling system includes: a generator with an agitator; an external cooler that removes a generated heat (called also a reaction heat); a gravity dehydrator (called also a gravity dehydrating tower) in which a gas hydrate slurry, generated by the generator and then introduced thereinto, is dehydrated by utilizing gravity so that an unreacted water is removed therefrom. Specifically, (1) the bubbling system requires the agitator, (2) the bubbling system requires two devices, that is, the generator and the external cooler, (3) the dehydrator is large in size because of the gravity dehydration, and (4) the dehydrator is difficult to control because of the gravity dehydration.
Meanwhile, the spray system has the following problems and the like because water is sprayed from a nozzle into the generator filled with a raw-material gas. Specifically, (1) the speed of producing a gas hydrate is slow, and (2) the cooling of a raw-material gas in the generator with the external cooler is associated with a poor heat transmission.
On the other hand, the tube system has the following problems and the like. Specifically, (1) the tubular reactor is long, and (2) a pressure drop is large because of the long tubular reactor.
An object of the present invention is to provide a gas hydrate production apparatus with no need for an agitator in a generator and with a simple structure, as well as with easy control of a dehydrator and with capability of making constant the percentage of gas hydration of the product.
A gas hydrate production apparatus according to the invention as recited in claim 1 is characterized by including: an ejector-type mixer that stirs and mixes a raw-material gas and a raw-material water; a shell-and-tube-type generator provided downstream of the ejector-type mixer; partition walls provided in end plates placed respectively in the front and rear ends of the generator, the partition walls each causing a gas hydrate slurry to turn around; a dehydrator provided downstream of the generator, the dehydrator including a cone-shaped filter; a drainage pipe provided to the dehydrator; and a flow regulating valve provided to the drainage pipe.
A gas hydrate production apparatus according to the invention as recited in claim 2 is characterized by including: an ejector-type first mixer that stirs and mixes a raw-material gas and a raw-material water; a shell-and-tube-type first generator provided downstream of the ejector-type first mixer, the first generator intended to generate gas hydrate cores; an ejector-type second mixer provided downstream of the first generator, the second mixer mixing the raw-material gas into a slurry containing the gas hydrate cores, and then stirring and mixing the raw-material gas and the slurry; a second generator provided downstream of the second mixer, the second generator intended to generate a gas hydrate; and a flow regulating valve provided to a pipe through which a part of the gas hydrate slurry generated by the second generator is returned to the second mixer.
The invention as recited in claim 3 is characterized in that, in the gas hydrate production apparatus as recited in claim 2, partition walls are provided in each of end plates placed respectively in the front and rear ends of each of the first and second generators, the partition walls each causing the slurry to turn around.
The invention as recited in claim 4 is characterized in that, in the gas hydrate production apparatus as recited in claim 1 or 3, corner portions are provided among joint portions of each end plate and the corresponding partition walls, the corner portions each having a curved wettable surface.
The invention as recited in claim 5 is characterized in that, in the gas hydrate production apparatus as recited in claim 1 or 2, first collision bodies and second collision bodies are provided alternately in a narrowly constricted body portion of each ejector type mixer, the first collision bodies each being a plate-shaped base plate provided with triangular or trapezoidal penetrating portions radially formed therein, the second collision bodies each being a plate-shaped base plate provided with a stellate penetrating portion formed therein.
The invention as recited in claim 6 is characterized in that, in the gas hydrate production apparatus as recited in claim 1, a part of the gas hydrate slurry generated by the generator is returned and recirculated to the generator.
The invention as recited in claim 7 is characterized in that, in the gas hydrate production apparatus as recited in claim 2, a part of the gas hydrate slurry generated by the first generator is returned and recirculated to the first generator.
As described above, in the invention according to claim 1, the raw-material gas and the raw-material water are stirred and mixed by the ejector-type mixer. Accordingly, the invention eliminates the need for an agitator in a generator, a motor for driving such agitator, and the like. As a result, the structure is simplified and no electric power for driving a motor is required.
In addition, in the invention, the shell-and-tube-type generator is provided downstream of the ejector-type mixer and the partition walls each causing the gas hydrate slurry to turn around are provided in the end plates placed respectively in the front and rear ends of the generator. Accordingly, the invention makes the generator compact as compared to the conventional tubular reactor system including a plurality of bent tubes, and thus makes it possible to suppress a pressure drop in the generator. Moreover, since the generator is of the shell-and-tube type, the generator is capable of efficiently removing a reaction heat generated during the generation of a gas hydrate, and therefore, is capable of efficiently generating a gas hydrate.
Further, in the invention, the dehydrator including the cone-shaped filter is provided downstream of the generator, and the flow regulating valve is provided to the drainage pipe of the dehydrator. Accordingly, the invention facilitates the control on the dehydrator, and thus makes it possible to control the percentage of gas hydration (hereinafter, called an NGH percentage) of a gas hydrate as a product.
The percentage of gas hydration herein means a weight ratio of a hydrate of theoretical values to the weight of a sample.
In the invention according to claim 2, as described above, the second generator intended to generate a gas hydrate is provided downstream of the shell-and-tube-type first generator intended to generate gas hydrate cores, and further, the flow regulating valve is provided to the pipe through which a part of the gas hydrate slurry generated by the second generator is returned to the second mixer. Accordingly, the invention makes it possible not only to increase the particle size of the gas hydrate but also to control the NGH percentage.
In addition, the invention eliminates, in the same manner as that of the invention according to claim 1, the need for an agitator in a generator, a motor for driving such agitator, and the like. Further, the invention makes the generator compact as compared to the conventional tubular reactor system including a plurality of bent tubes, and thus makes it possible to suppress a pressure drop in the generator. Moreover, since the generator is of the shell-and-tube type, the generator exerts the effect of efficiently removing a reaction heat, and the like.
In the invention according to claim 3, the partition walls each causing the slurry to turn around are provided in the end plates placed respectively in the front and rear ends of each of the first and second generators. Accordingly, the invention makes it possible to elongate the gas hydrate generating region with no increase in pressure drops in the first and second generators, and accordingly, makes it possible to promote the generation of gas hydrate cores and the growth of particles of the gas hydrate.
In the invention according to claim 4, the corner portions each having the curved wettable surface are provided among the joint portions of each end plate and the corresponding partition walls. Accordingly, the invention makes it possible to make uniform the flow rate of the gas hydrate slurry in each end plate.
In the invention according to claim 5, the first collision bodies and the second collision bodies are alternately provided in the narrowly constricted body portion of the ejector-type mixer. Here, each first collision body is a plate-shaped base plate provided with triangular or trapezoidal penetrating portions formed therein, and each second collision body is a plate-shaped base plate provided with a stellate penetrating portion formed therein. Accordingly, the raw-material water is intensively stirred by the first and second collision bodies, and the raw-material gas is involved into the raw-material water and crushed into fine bubbles therein, so that the raw-material water and the raw-material gas are mixed with each other. In this way, the area of contact between the raw-material gas and the raw-material water is increased. As a result, the raw-material gas is efficiently dissolved into the raw-material water.
Consider the case where a part of the gas hydrate slurry generated by the generator is returned and recirculated to the generator, as in the invention according to claim 6. In this case, since the hydrate cores are present in the gas hydrate slurry, the gas hydrate is generated at the operating temperature with no need for a supercooling process.
On the other hand, in the case where no recirculation is performed, a mixture of the water and gas discharged from the mixer is caused to enter a shell-and-tube heat exchanger and is thus cooled therein. However, the hydrate is not generated until the temperature reaches a range where the degree of supercooling has a certain value (4 to 8° C.). In addition, once the degree of supercooling reaches the value, the hydrate is rapidly generated, and the temperature is decreased to the temperature of the steady operation. If the hydrate is rapidly generated in this way, the inside of the tubes is sometimes blocked by the hydrate. Moreover, since the amount of heat transmission is decreased in the supercooling section, the apparatus has to be increased in size.
The degree of supercooling is a difference between a generation temperature for the hydrate and an equilibrium temperature between generation and decomposition at the generation pressure for the hydrate, and is expressed by the following formula.
ΔT=Te−Tf [Mathematical Formula 2]
Here,
Also in the case where a part of the gas hydrate slurry generated by the first generator is returned and recirculated to the first generator, as in the invention according to claim 7, the same effects as described above are obtained.
Part (a) of
Part (a) of
First, a first embodiment will be described, and then, a second embodiment will be described.
(1) First Embodiment
A gas hydrate production apparatus of the present invention includes, as illustrated in
The slurry supply pipe 8 is branched at a branching point a located between the slurry pump 7 and the dehydrator 3, and is thus configured so that apart of the slurry is injected into the pipe 6 through a branch pipe 16. The amount of slurry to be circulated may be approximately 0 to 10%. In addition, an NGH percentage meter 10 is provided to a gas hydrate discharge pipe 9 that is provided at an outlet of the dehydrator 3. Moreover, a flow regulating valve 12 and a pump 13 are provided to a drainage pipe 11 that connects the dehydrator 3 and the raw-material water supply pipe 5. Further, a compressor 15 is provided to an unreacted-gas recovery pipe 14 that connects the dehydrator 3 and the raw-material gas supply pipe 4.
Here, the flow regulating valve 12 is controlled by means of the NGH percentage meter 10. As the NGH percentage meter, a mixing-ratio measurement system for a mixed-phase fluid (see Japanese patent application Kokai publication No. Sho 62-172253) or the like may be employed, for example.
As illustrated in
Although there is no problem with the ejector-type mixer illustrated in
As illustrated in
The gas hydrate generator 2 includes a first end plate 37 in a front end portion (an upstream portion) of the body portion 32 and includes a second end plate 38 in a rear end portion (a downstream portion) of the body portion 32. The first end plate 37 includes a processed-target inflow portion 39 in a bottom portion thereof. The second end plate 38 includes a processed-target outflow portion 40 in an upper portion thereof.
Inside the first endplate 37, as illustrated in Part (a) of
On the other hand, inside the second end plate 38, as illustrated in Part (b) of
Here, as illustrated in
The dehydrator 3 is, as illustrated in
Next, the operation of the above-described gas hydrate production apparatus will be described.
As illustrated in
A mixed water w′ into which the raw-material gas has been mixed flows through the pipe 6 to be supplied to the processed-target inflow portion 39 of the shell-and-tube-type gas hydrate generator 2, as illustrated in
Here, the flow of the mixed water w′ in the first end plate 37 and the second end plate 38 will be described. In the first end plate 37, as illustrated in Part (a) of
The gas hydrate slurry s (having an NGH percentage of 20 to 30%) generated by the gas hydrate generator 2 is, as illustrated in
An unreacted water w″ generated through the dehydration by the dehydrator 2 is returned to the raw-material water supply pipe 5 by the pump 13. In this event, the NGH percentage can be controlled by adjusting the flow regulating valve 12 by means of the NGH percentage meter 10 provided to the gas hydrate discharge pipe 9. On the other hand, an unreacted gas g″ accumulated in the dehydrator 3 is returned to the raw-material gas supply pipe 4 through the unreacted-gas recovery pipe 14.
Next, a second embodiment will be described.
(2) Second Embodiment
In a gas hydrate production apparatus of this embodiment, as illustrated in
Furthermore, a gas hydrate slurry discharge pipe 58 provided to the second generator 57 and the second pipe 54 are connected to each other through a gas hydrate slurry return pipe 59. A pump 60 and a flow regulating valve 61 are provided to the gas hydrate slurry return pipe 59. The flow regulating valve 61 is controlled by means of an NGH percentage meter 62 provided to the gas hydrate slurry discharge pipe 58.
Moreover, a raw-material-gas supply pipe 63 and a raw-material-water supply pipe 64 are provided to the first mixer 51. Furthermore, a raw-material-gas supply pipe 63a branched from the raw-material-gas supply pipe 63 is provided to the second mixer 55. Note that the structure of each of the first mixer 51 and the second mixer 55 is the same as that of the mixer 1 in the first embodiment, and thus detailed description thereof will be omitted. Also, the structure of each of the first generator 53 and the second generator 57 is the same as that of the generator 2 in the first embodiment, and thus detailed description thereof will be omitted.
Next, the operation of the gas hydrate production apparatus of this embodiment will be described.
As illustrated in
A slurry S (having an NGH percentage of 1 to 5%) containing the gas hydrate cores formed in the first generator 53 flows through the second pipe 54 to be supplied to the second mixer 55. The second pipe 548 located between a slurry pump 65 and the second mixer 55 branches at a branching point b, and is thus configured so that a part of the slurry is injected into the first pipe 52 through a branch pipe 66. Here, the amount of the slurry to be circulated may be approximately 0 to 10%.
Since the raw-material gas g is supplied to the second mixer 55 from the raw-material-gas supply pipe 63a, the slurry S and the raw-material gas g are stirred and mixed by the second mixer 55. A slurry S′ thus supplied with the raw-material gas g flows through the third pipe 56 to be supplied to the shell-and-tube-type second generator 57. The slurry S′ supplied to the second generator 57 undergoes reaction to form a gas hydrate slurry s while meandering forward and backward inside the shell-and-tube-type second generator 57 having a cooling temperature set at, for example, 1 to 7° C.
The gas hydrate slurry s thus generated by the second generator 57 is discharged to the next process through the gas hydrate slurry discharge pipe 58. In the meantime, the NGH percentage of the gas hydrate slurry s can be controlled (for example, at 20 to 30%) by controlling the flow regulating valve 61 by means of the NGH percentage meter 62 provided to the gas hydrate slurry discharge pipe 58.
Moreover, since a part of the gas hydrate slurry s generated by the second generator 57 is returned to the upstream of the second mixer 55 through the gas hydrate slurry return pipe 59, the crystallization of the gas hydrate is promoted, so that the particles of the gas hydrate can be increased in size.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2007/069395 | 10/3/2007 | WO | 00 | 3/31/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/044467 | 4/9/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6703534 | Waycuilis et al. | Mar 2004 | B2 |
20050059846 | Kohda et al. | Mar 2005 | A1 |
20050107648 | Kimura et al. | May 2005 | A1 |
20080023175 | Lehr et al. | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
2002-038171 | Feb 2002 | JP |
2002-356685 | Dec 2002 | JP |
2003-055676 | Feb 2003 | JP |
2003-080056 | Mar 2003 | JP |
2003-252804 | Sep 2003 | JP |
2004-155747 | Jun 2004 | JP |
2004-156000 | Jun 2004 | JP |
2006-233143 | Sep 2006 | JP |
2007-269950 | Oct 2007 | JP |
Number | Date | Country | |
---|---|---|---|
20100247405 A1 | Sep 2010 | US |