Gas-hydraulic shock absorber assembly

Information

  • Patent Grant
  • 6669180
  • Patent Number
    6,669,180
  • Date Filed
    Friday, August 9, 2002
    21 years ago
  • Date Issued
    Tuesday, December 30, 2003
    20 years ago
Abstract
The gas-hydraulic shock absorber assembly comprises a sleeve member and a ram member movable relative to the sleeve member. In the interior of the ram member, a gas chamber is provided that is pressurized by means of a gas. In the interior of the sleeve member, an oil chamber is provided that is filled with a hydraulic medium and which decreases in volume the more the ram member is moved relative to the sleeve member. Between the two chambers, a gas-hydraulic control assembly is provided. Upstream of the control assembly, there is a bleeding assembly, comprising a transfer channel opening into a portion of the oil chamber remote from the control assembly. Further provided is a bleeding channel, opening into an upper portion of the oil chamber and connecting the transfer channel to the control assembly when the shock absorber assembly is at rest. The bleeding assembly comprises several channels connecting the oil chamber to the control assembly and comprising each a V-shaped valve flap to close the channels. Even if the ram member is moved slowly relative to the sleeve member, any gas collected in the oil chamber can escape through the transfer channel and/or the bleeding channel. At high relative moving velocities, the two legs of the valve flaps are moved towards each other such that the oil can flow through the channels of the bleeding assembly, whereby the collected gas can escape through the transfer channel and the bleeding channel.
Description




BACKGROUND OF THE INVENTION




The present invention relates to a gas-hydraulic shock absorber assembly, particularly for push and/or pull devices of rail vehicles. It comprises a sleeve member, a ram member movable relative to the sleeve member, a gas chamber located in the sleeve member or in the ram member and adapted to be pressurized by means of a gaseous medium, and an oil chamber located in the ram member or in the sleeve member and containing a hydraulic medium.




Gas-hydraulic shock absorber assemblies to be used in push devices or pull devices of rail vehicles are well known in the prior art, for instance in the form of so-called bumpers. However, a shock absorber assembly designed according to the invention can also be used for example in couplings of rail vehicles, particularly couplings adapted to interconnect a plurality of rail vehicles.




In known gas-hydraulic shock absorber assemblies having no physical separation means to separate the gaseous and fluid media, the fundamental danger is present that gaseous medium collects in the fluid chamber after a certain period of use; of course, this is highly undesirable because it can impair the proper function of the shock absorber assembly, even lead to malfunction thereof. For example, too much gaseous medium in the fluid chamber can lead to an undefined or insufficient resilient behavior e.g. of a rail vehicle bumper. Particularly, if such a bumper is hit very hard, there is a high danger that gaseous medium enters the fluid chamber.




OBJECTS OF THE INVENTION




Thus, it is an object of the invention to provide a gas-hydraulic shock absorber assembly of the kind mentioned herein before which bleeds itself during its operation by automatically recycle any gaseous medium that may have collected in the fluid chamber to the gas chamber.




SUMMARY OF THE INVENTION




In order to meet this and other objects, the present invention provides a gas-hydraulic shock absorber assembly, particularly for push and/or pull devices of rail vehicles. It comprises a sleeve member, a ram member movable relative to the sleeve member, a gas chamber located in the sleeve member or in the ram member and adapted to be pressurized by means of a gaseous medium, and an oil chamber located in the ram member or in the sleeve member and containing a hydraulic medium.




Further, the shock absorber assembly comprises a gas-hydraulic control assembly arranged between the gas chamber and the oil chamber, and a bleeding assembly, incorporating a transfer channel opening into an upper portion of the oil chamber and providing a communication between the oil chamber and the gas chamber.











BRIEF DESCRIPTION OF THE DRAWINGS




In the following, an embodiment of the shock absorber assembly according to the invention will be further described, with reference to the accompanying drawings, in which:





FIG. 1

shows a longitudinal sectional view of the gas-hydraulic shock absorber assembly in the form of a bumper; and





FIG. 2

shows a perspective view of a bleeding assembly.











DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT




The general design of an assembly according to the invention will now be further explained with the help of

FIG. 1

, showing a longitudinal sectional view of a gas-hydraulic shock absorber assembly in the form of a bumper incorporating a bleeding assembly designed in accordance with the invention. It is to be noted that the bumper is shown in

FIG. 1

in its released state, i.e. no load force acting on it.




The bumper comprises a bumper sleeve


1


to be connected to a rail vehicle (not shown), as well as a bumper ram member


2


including an outer ram member tube


4


, an inner plunger tube


5


and a bumper head member


3


. Both the ram member tube


4


and the plunger tube


5


are operationally connected to the bumper head member


3


. The end of the plunger tube


5


facing the rail vehicle is provided with a flange member


6


. The interior of the plunger tube


5


constitutes a gas chamber


8


adapted to contain a gaseous medium pressurized to 5-20 bar as well as a portion of a hydraulic medium.




In the interior of the bumper sleeve


1


, an oil chamber


9


is constituted. In the released state of the bumper, as shown in

FIG. 1

, the gas chamber


8


is partially filled with a hydraulic medium, while the oil chamber


9


is entirely filled with the hydraulic medium. The flange member


6


constitutes, together with a valve assembly


13


, a gas-hydraulic control device


12


, controlling the flow rate of the hydraulic medium from the oil chamber


9


into the gas chamber


8


in relation to the load force applied to the bumper head


3


during the compression of the bumper.




The valve body member


13




a


of the valve assembly


13


is biased in the direction towards the oil chamber


9


, due to the overpressure present in the gas chamber


8


. The flange


6


comprises an annular projection


17


located at its right side, i.e. facing the oil chamber


9


. This annular projection


17


operates, together with channels, recesses, bores, valves and a transfer channel


21


, as a bleeding assembly


7


. The transfer channel


21


, located outside the oil chamber


9


in the wall of the bumper sleeve


1


, is provided at both of its ends with a bore


22


,


23


radially opening into the oil chamber


9


. One of the bores, i.e. the bore


22


, radially opens into the upper portion of the oil chamber


9


at the side thereof facing the control device


12


, while the other bore


23


radially opens into the upper portion of the oil chamber


9


at the side thereof remote from the control device


12


. The assembly being in its rest or released position, as shown in

FIG. 1

, the transfer channel


21


is connected to the control device


12


at its side facing the control device


12


via a bleeding channel


16


. Thus, it is ensured that any gas that may have collected in the rear upper portion of the oil chamber


9


can escape from the rear upper portion of the oil chamber


9


through the transfer channel


21


upon subjecting the bumper to a load. The design and the operation of the of the bleeding assembly


7


will be further explained herein below.




The flange


6


is provided with a central recess, located adjacent to the valve assembly


13


, to form a chamber


15


. From this chamber


15


, a bleeding channel


16


runs radially inclined upwards to the left side of the annular projection


17


, where it opens into the oil chamber


9


. Between the annular projection


17


of the flange


6


and the wall


10


of the oil chamber


9


, there is an annular gap


18


. Upon subjecting the bumper to a load force, thereby causing the bumper head


3


and its associated elements to move to the right, as seen in

FIG. 1

, oil and, if appropriate, gas that may have collected in the upper portion of the oil chamber


9


flow through the annular gap


18


to the left side of the annular projection


17


. Therefrom, it can flow via the bleeding channel


16


into the chamber


15


and via the valve body member


13




a


, being released under the influence of the now existing overpressure, into the gas chamber


8


. As already mentioned, the upper portion of the oil chamber


9


, remote from the control device


12


, communicates via the transfer channel


21


and the bleeding channel


16


with the control device


12


, with the result that any gas collected in the rear portion of the oil chamber


9


can flow via the rear radial bore


23


into the real transfer channel


21


and, therefrom, via the front radial bore


22


into the bleeding channel


16


. Finally, the gas can flow from the bleeding channel


16


through the open valve assembly back into the gas chamber


8


. As the bumper ram member


2


is further moved to the right, one end of the transfer channel


21


is closed because the inner plunger tube


5


is moved into a position in front of the front radial bore


22


of the transfer channel


21


.




A further channel


20


, directly connecting the oil chamber


9


to the chamber


15


, is only partially shown in FIG.


1


. In the interior of this channel


20


, a valve flap


19


is provided which closes the channel


20


once the bumper is in its rest position. In all, four of such channels


20


are provided, each having an associated valve flap


19


; further explanation referring thereto will be given herein after with regard to FIG.


2


.




In

FIG. 2

, the bleeding assembly


7


is shown in a perspective view. Clearly visible in

FIG. 2

are the four channels


20




a


,


20




b


,


20




c


and


20




d


, provided in the flange member


6


, and incorporating each a V-shaped valve flap


19




a


,


19




b


,


19




c


and


19




d


. Each of these valve flaps


19




a


,


19




b


,


19




c


and


19




d


comprises two legs, whereby in the following reference is made, for simplicity's sake, only to the legs


24


,


25


of the valve flap


19




a


. The two legs


24


,


25


of the valve flaps


19




a-d


resiliently rest against the walls of the channels


20




a


-


20




d


, if the bumper is in its rest position, as shown in

FIGS. 1 and 2

. Thereby, each of the valve flaps


19




a


-


19




d


seal the associated channel


20




a


-


20




d


. Under the influence of the overpressure generated in the oil chamber


9


, caused by a quick compression of the bumper and urging the bumper ram member


2


to move to the right, the two legs


24


,


25


are resiliently bent towards each other, with the result that a passage is created in the associated channel


20


through which the oil repressed from the oil chamber


9


can flow into the central chamber


15


.




The bleeding channel


16


, running essentially radially through the flange member


6


, is also shown in FIG.


2


. The inner diameter of the oil chamber


9


decreases towards the right side, i.e. towards the vehicle, with the result that the annular gap


18


between the annular projection


17


and the wall of the oil chamber


9


gradually decreases when the bumper ram member


2


is moved to the right side.




The operation of the bleeding assembly may be explained as follows:




Upon subjecting the bumper to a load, the outer ram member tube


4


as well as the inner plunger tube


5


and the flange


6


is moved to the right, as seen in FIG.


1


. Thereby, oil and, if appropriate, gas that may have collected in the upper portion of the oil chamber


9


flow from the oil chamber


9


through the annular gap


18


to the left side of the annular projection


17


of the flange member


6


. Due to the overpressure existing in the oil chamber


9


, the gas is repressed into the chamber


15


via the bleeding channel


16


opening into the upper portion of the oil chamber


9


; therefrom, it flows through the valve assembly


13


into the gas chamber


8


. Since the four channels


20




a


,


20




b


,


20




c


and


20




d


provided in the flange member


6


are closed each by one of the valve flaps


19




a


,


19




b


,


19




c


and


19




d


, respectively, when the bumper is in its rest position, a ram pressure is generated upon moving the bumper ram member


2


and the plunger tube


5


including the flange member


6


to the right; the result is that the gas to be repressed from the oil chamber


9


compellingly escapes through the bleeding channel


16


, even if the movement to the right of the above mentioned elements is slow.




Due to the difference of the specific gravity of gas and oil and due to the fact that high acceleration values occur if the bumper is hit by another rail vehicle, the gas is collected in the upper rear portion of the oil chamber


9


upon a hit. The quick movement of the bumper ram member


2


to the right also causes a high pressure differential between oil chamber


9


and the left side of the annular projection


17


. This pressure differential initiates a current flowing in the transfer channel


21


which displaces the gas from the rear portion of the oil chamber


9


, remote from the flange


6


, into the gas chamber


8


within a very short period of time.




During high moving speeds of the bumper ram member


2


, a correspondingly high overpressure is generated in the oil chamber


9


. That high overpressure causes the two legs


24


,


25


of the valve flaps


19




a


-


19




d


to resiliently bend towards each other, with the result that the oil can pass the valve flaps


19




a


-


19




d


and flow through the channels


20




a


-


20




d


without substantial drag. Thus, upon a high moving speed of the bumper ram member


2


, the oil can flow from the oil chamber


9


to the chamber


15


through all channels


16


,


20




a


,


20




b


,


20




c


and


20




d


. However, upon a low moving speed of the bumper ram member


2


, the gas collected in the oil chamber


9


compellingly flows through the bleeding channel


16


into the chamber


15


.




The bleeding assembly


7


according to the present invention is of simple design and can be manufactured at low costs. The V-shaped valve flaps


19




a


,


19




b


,


19




c


and


19




d


show the advantage that they incur only a very low drag to the oil flowing through the channels


20


upon high moving speeds of the bumper ram member


2


.



Claims
  • 1. Gas-hydraulic shock absorber assembly, particularly for push and/or pull assemblies of rail vehicles, comprising:a sleeve means; a ram means movable relative to said sleeve means; a gas chamber means located in said sleeve means or in said ram means and adapted to be pressurized by means of a gaseous medium; an oil chamber means located in said ram means or in said sleeve means and containing a hydraulic medium, said oil chamber means being adapted to decrease its volume upon a relative movement of said sleeve means and said ram means; a gas-hydraulic control means arranged between said gas chamber and said oil chamber; and a bleeding assembly means, incorporating a transfer channel means opening into an upper portion of said oil chamber means and providing a communication between said oil chamber means and said gas chamber means.
  • 2. Gas-hydraulic shock absorber assembly according to claim 1 in which said bleeding assembly means is operationally located upstream of said gas-hydraulic control means.
  • 3. Gas-hydraulic shock absorber assembly according to claim 2 in which said transfer channel means runs outside said oil chamber means and opens radially into the upper portion of said oil chamber means both at its end remote from said gas-hydraulic control means as well as at its end facing said gas-hydraulic control means, whereby at least one bleeding channel means is provided by means of which said transfer channel means is connected to said gas-hydraulic control means at the end of said transfer channel means facing said gas-hydraulic control means.
  • 4. Gas-hydraulic shock absorber assembly according to claim 3 in which said bleeding assembly means comprises a flange means operationally connected to said ram means and movable in said oil chamber means, said bleeding channel means being located in said flange means.
  • 5. Gas-hydraulic shock absorber assembly according to claim 4 in which said flange means further comprises at least one oil channel means connecting said oil chamber means to said gas-hydraulic control means, said oil channel means or each of said oil channel means being provided with a spring biased valve means adapted to be operated, against the biasing force, by the oil escaping from said oil chamber means.
  • 6. Gas-hydraulic shock absorber assembly according to claim 5 in which said bleeding channel means and said oil channel means open into a common chamber means, whereby a valve assembly means is provided that is located upstream of said chamber means.
  • 7. Gas-hydraulic shock absorber assembly according to claim 4 in which said flange means comprises an annular projection means having an outer diameter smaller than the inner diameter of said oil chamber means, thus creating a gap between said annular projection means and said oil chamber means, whereby said bleeding channel means and said oil channel means lead radially outward from said flange means at the side of said annular projection means that is remote from said oil chamber means.
  • 8. Gas-hydraulic shock absorber assembly according to claim 4 in which said transfer channel means extends within said sleeve means, and in which said ram means is provided with an inner plunger tube means, said flange means movable in said oil chamber means being connected to said inner plunger tube means.
  • 9. Gas-hydraulic shock absorber assembly according to claim 5 in which said oil channel means is provided with a V-shaped valve flap means having two leg means, said leg means resiliently resting on the walls of said oil channel means when said shock absorber assembly is in the rest position, whereby said two leg means are movable, contrary to the biasing force, towards each other to open a passage in said oil channel means under the influence of an increase in pressure in said oil chamber means occurring during subjecting said shock absorber assembly to a load force.
  • 10. Gas-hydraulic shock absorber assembly according to claim 7 in which said oil chamber means has a gradually decreasing diameter in the direction of movement of said ram means, such that said annular gap between said annular projection means and the wall of said oil chamber means gradually decreases upon a movement of said ram means.
  • 11. Gas-hydraulic shock absorber assembly according to claim 1 in which said transfer channel means is adapted to be closed at least at one end thereof upon an increasing movement of said ram means.
  • 12. Gas-hydraulic shock absorber assembly according to claim 5 in which said flange means comprises an annular projection means having an outer diameter smaller than the inner diameter of said oil chamber means, thus creating a gap between said annular projection means and said oil chamber means, whereby said bleeding channel means and said oil channel means lead radially outward from said flange means at the side of said annular projection means that is remote from said oil chamber means.
  • 13. Gas-hydraulic shock absorber assembly according to claim 6 in which said flange means comprises an annular projection means having an outer diameter smaller than the inner diameter of said oil chamber means, thus creating a gap between said annular projection means and said oil chamber means, whereby said bleeding channel means and said oil channel means lead radially outward from said flange means at the side of said annular projection means that is remote from said oil chamber means.
Priority Claims (2)
Number Date Country Kind
1473/01 Aug 2001 CH
0758/02 May 2002 CH
US Referenced Citations (5)
Number Name Date Kind
3252587 Scales May 1966 A
3731771 Borgo May 1973 A
4805517 Conley et al. Feb 1989 A
5845796 Miller Dec 1998 A
20030030198 Ziegler Feb 2003 A1
Foreign Referenced Citations (3)
Number Date Country
0 133 157 Feb 1985 EP
001283142 Feb 2003 EP
001283143 Feb 2003 EP