The present invention relates to mechanisms for infusing liquids with gases, irrigation systems that include such mechanisms, and methods of using the same. More particularly, the present invention relates to microbubble generating mechanisms and there use in irrigation systems and methods of using the same.
Conventional growing procedures for plants and crops include watering by applying water to the soil surface. The applied water includes some dissolved oxygen in it that is carried to the roots by virtue of the water filtering into the soil. The amount of oxygen provided roots by surface watering is not optimal and can be insufficient depending on soil composition. To compensate for the oxygen inefficiencies of surface water, the ground may be permitted to dry in order to admit air into the soil, which may be dissolved and carried to the roots by the next irrigation or watering. This is a tedious and imprecise technique, rife with inefficiencies. For example, it is difficult for a farmer to gauge the amount of time needed to properly oxygenate the soil and the ideal volume and frequency of water applications. Too much water can literally drown the crop (due to too little oxygen). Too little water results in crop wilt and failure, or at least reduction in quality and production. Additionally, due to ongoing drought conditions in many agricultural regions, water waste is increasingly objectionable and expensive as water supplies have diminished due to drought.
The infusion of irrigation water with additional air and oxygen can be a means for improving over conventional irrigation techniques. Watering cycles may revamped and improved if sufficient oxygen and nitrogen can be delivered to the root systems of plants through water supplies themselves. However, air bubbles present in a water column have buoyancy that is proportional to the volume of air contained therein. Thus, to improve on conventional techniques, schemes are required for reducing the size of air bubbles in irrigation water or otherwise increasing the solubility and retention of air bubbles in the irrigation water.
Previous systems have been developed for subterranean delivery of irrigation water to the roots systems of plants, with the aim of reducing the amount of water required and increased the amount of air or other nourishing gases to the soil surrounding the root systems. However, there are still drawbacks to such systems, including a lack of uniformity in the size of the generated air bubbles and larger than ideal air bubble sizes limit the efficiency and effectiveness of previously developed systems. For example, larger air bubbles (e.g., air bubbles having an average diameter of greater than about 10 μm) tend to rise and surface in the column of irrigation water in a relatively short period. Thus, air bubbles of that size may not reach the distal end of an irrigation line (e.g., irrigation tape or tube) of an extensive length (e.g., tens to hundreds of yards) in sufficiently concentration.
Improvements in technologies for infusing water and other liquids with air are needed for the agricultural industry and in other industrial and technological fields.
The present invention provides cavitating apparatuses for generating microbubbles in a liquid, liquid distribution (e.g., irrigation) systems using the same, and methods of using the same. The cavitating apparatuses distribute bubbles having a diameter in the range of about 80 nm to about 10 μm (“microbubbles”) in a stream of water or other liquid supplied through a liquid distribution system. Such distribution systems may be, e.g., subterranean irrigation systems in which distributed air bubbles may deliver oxygen to the roots where it is needed for nourishment and development of the plants served by the irrigation system. Air delivery is particularly usual for plants that are grown in dense soils, which do not admit much atmospheric oxygen and can become relatively anoxic.
The cavitating apparatuses of the present invention may include a gas (e.g., air) delivery system that connects to a liquid delivery system and draws gas from an outside source (e.g., a gas reservoir, the atmosphere, etc.), a gas injector (e.g., a Venturi tube) that connects the gas delivery system to the liquid delivery system, and an inline cavitating turbine within a liquid conduit for creating microbubbles within the liquid. The cavitating turbine may be positioned inline within the liquid conduit downstream of the gas delivery system, which may supply gas into the liquid from the atmosphere, a gas reservoir, or other source. In some embodiments, and without limitation, the gas delivery system may draw air from the atmosphere, for example, through a filter for removing particulates. Gas drawn into the liquid through the gas delivery system need not be pressurized, and is drawn into the liquid through a gas injection port by pressure dynamics. For example, the gas injector may be a Venturi tube that chokes the diameter of the liquid conduit to reduce pressure and draw gas into the liquid through the gas injection port. Other mechanisms may be used to introduce or draw gas into the liquid through the gas injector. In other examples, and without limitation, the gas may be provided from a pressurized source (e.g., a pressurized tank, pump, etc.) to push the gas into the liquid. The introduction of the gas into the liquid in the conduit provides gas to be supplied downstream (e.g., to plant root systems). The cavitating turbine then utilizes the gas introduced by the gas delivery system to generate microbubbles.
The turbine may be freely rotating, and have various designs, such as a gas turbine blade design, Francis turbine blade design, a Kaplan turbine blade design, etc. The cavitating turbine may create microbubbles by multiple mechanisms. First, the shearing forces created by the spinning blades of the cavitating turbine may breakup gas bubbles present in the water as a result of gas injection by the gas injector to create smaller gas bubbles. Second, the cavitating turbine may create new microbubbles by dropping the static pressure of the liquid passing through the conduit to a point that dissolved gases degas to form microbubbles. The rotation of the blades of the cavitating turbine may be driven by the dynamic pressure (the flow) of the liquid passing through the cavitating turbine without any additional driving force applied to the turbine. The size, shape, and number of the turbine blades may have a relationship to the size of the microbubbles created by the turbine at a given dynamic pressure and flow volume. The size, shape, and number of turbine blades can be varied depending on the particular application (e.g., conduit size, dynamic fluid pressure, liquid composition, etc.). In some embodiments, the cavitating apparatus of the present invention may include a plurality of cavitating turbines therein (e.g., the cavitating system may include 3, 4, or more inline cavitating turbines). The plurality of cavitating turbines may be configured such that at least one spins in a clockwise direction and at least one of the plurality of cavitating turbine spins in the opposite direction. It is to be further understood that the fluid delivery system (e.g., subterranean irrigation system) into which the gas-liquid mixture feeds may also include cavitating turbines placed at intervals therein. These additional cavitating turbines may aid in keeping the gas dissolved and suspended in the water column.
Once the liquid stream has passed through the cavitating turbine it may be delivered to its target location(s) through a considerable length of conduit without losing a significant proportion of the microbubbles distributed therein. In some embodiments, and without limitation, the cavitating system may be part of an irrigation system (e.g., a subterranean irrigation system) and the gas-infused liquid may be passed through a subsurface conduit, such as a drip irrigation tape or tube buried in the ground (e.g., to a depth in a range of about 4 inches to about 24 inches). Irrigation conduit typically extends for many tens to hundreds of yards, often along rows of crops such as strawberries and peppers. The gas-infused irrigation water is discharged along the length of the conduit through perforations or gaps in the conduit. In order for the gas bubbles in the irrigation water to persist to the end of the conduit so that plant roots located at the end of the irrigation conduit receive adequate oxygen and/or other gases, the gas bubbles need to remain dissolved in the water column.
The microbubbles of gas generated by the cavitating system of the present invention are carried as a suspension in a flowing stream. In order for the gas bubbles to stay distributed in solution for a sufficient period of time, they preferably have a diameter within a particular range (about 80 nm to about 1 μm). Microbubbles in that size range may stay distributed in solution, resisting coalescence and degassing. This may be due to balancing between charge force generated at the gas-liquid interface of the microbubble and the surface tension of the liquid. Curved aqueous surfaces may introduce a surface charge due to water's molecular structure, and like charges at the liquid-gas interface will reduce the internal pressure and the surface tension of the liquid as the charge repulsion at the surface of the bubble acts in the opposite direction to the surface tension. These two opposing forces may be at or near an equilibrium in the above-mentioned size-range, and thus coalescence may be resisted. Additionally, buoyancy may be negligible in such microbubbles preventing loss at the top of the liquid column. Thus, the cavitating turbine of the present invention may overcome the tendency of the gas to be released from the liquid or to coalesce, as occurs in conventional systems.
Therefore, the present invention provides an improved cavitating apparatus for generating microbubbles in liquids that can be used in various applications. In some embodiments, and without limitation, the present invention provides a cavitating system that can be utilized in various irrigation systems (e.g., subterranean irrigation systems) for infusing irrigation water or other liquids with gas bubbles (e.g., atmospheric air) that persist in liquid for substantially longer periods than provided by previous systems. Additionally, the present invention provides irrigation systems that include such cavitating systems and that are capable of delivering irrigation water or solution long distances (e.g., in a range up to 1000 yards) through conduit, while still delivering sufficient oxygen and/or other nourishing gases. The present invention also provides improved methods of gas delivery to root systems of plants utilizing a cavitating apparatus as described herein.
In some embodiments, and without limitation, the present invention relates to a cavitating apparatus, including a liquid delivery conduit for receiving liquid; a gas-liquid mixing chamber connected to a distal end of the liquid delivery conduit, wherein the gas-liquid mixing chamber includes a gas injection port; a gas delivery system connected to the gas injection port; a liquid exit conduit for collecting a liquid-gas mixture from a distal end of the gas-liquid mixing chamber; and an inline cavitating turbine in the liquid-gas mixture. The cavitating turbine may be operable to generate microbubbles having a diameter in a range of about 80 nm to about 10 μm. The cavitating turbine may be free-spinning, such that the pressure of the liquid-gas mixture drives the rotation of the cavitating turbine.
In another embodiment, and without limitation, the present invention relates to an irrigation system, including a main water delivery conduit for supplying water to an irrigation plot; a cavitating system including a siphoning conduit for drawing a portion of the water from the main water delivery conduit, a gas-liquid mixing chamber connected to a distal end of the siphoning conduit, wherein the gas-liquid mixing chamber includes a gas injection port, a gas delivery system connected to the gas injection port, a cavitated water delivery conduit for collecting a water-gas mixture from a distal end of the gas-liquid mixing chamber and delivering cavitated water back to the main water delivery conduit, and an inline cavitating turbine in the cavitated water delivery conduit for cavitating the water-gas mixture; and a plurality of irrigation lines for receiving water from the main water delivery conduit downstream from the cavitated water delivery conduit. The cavitating turbine may be operable to generate microbubbles having a diameter in a range of about 80 nm to about 10 μm. The cavitating turbine may be free-spinning, such that the pressure of the water-gas mixture drives the rotation of the cavitating turbine.
In another embodiment, and without limitation, the present invention relates to a method of creating a cavitated liquid comprising, including drawing a liquid from a liquid source into a proximal conduit; passing the liquid through a gas-liquid mixing chamber to generate a liquid-gas mixture, wherein the gas-liquid mixing chamber includes a gas injection port connected to a gas delivery system; collecting the liquid-gas mixture in a distal conduit; and passing the liquid-mixture through a cavitating turbine located within the lumen of the distal conduit. The cavitating turbine may be operable to generate microbubbles having a diameter in a range of about 80 nm to about 10 μm. The cavitating turbine may be free-spinning, such that the pressure of the gas-liquid mixture drives the rotation of the cavitating turbine.
In some embodiments, and without limitation, the present invention relates to a cavitating apparatus, including a liquid delivery conduit for receiving liquid; a Venturi tube connected to a distal end of the liquid delivery conduit, wherein the Venturi tube includes a gas injection port; an air delivery system connected to the gas injection port; a liquid exit conduit for collecting a liquid-gas mixture from a distal end of the Venturi tube; and an inline cavitating turbine in the liquid-gas mixture. The cavitating turbine may be operable to generate microbubbles having a diameter in a range of about 80 nm to about 10 μm. The cavitating turbine may be free-spinning, such that the pressure of the liquid-gas mixture drives the rotation of the cavitating turbine.
In another embodiment, and without limitation, the present invention relates to an irrigation system, including a main water delivery conduit for supplying water to an irrigation plot; a cavitating system including a siphoning conduit for drawing a portion of the water from the main water delivery conduit, a Venturi tube connected to a distal end of the siphoning conduit, wherein the Venturi tube includes a gas injection port, an air delivery system connected to the gas injection port, a cavitated water delivery conduit for collecting a water-air mixture from a distal end of the Venturi tube and delivering cavitated water back to the main water delivery conduit, and an inline cavitating turbine in the cavitated water delivery conduit for cavitating the water-air mixture; and a plurality of irrigation lines for receiving water from the main water delivery conduit downstream from the cavitated water delivery conduit. The cavitating turbine may be operable to generate microbubbles having a diameter in a range of about 80 nm to about 10 μm. The cavitating turbine may be free-spinning, such that the pressure of the water-air mixture drives the rotation of the cavitating turbine.
In another embodiment, and without limitation, the present invention relates to a method of creating a cavitated liquid comprising, including drawing a liquid from a liquid source into a proximal conduit; passing the liquid through a Venturi tube to generate a liquid-gas mixture, wherein the Venturi tube includes a gas injection port connected to a gas delivery system; collecting the liquid-gas mixture in a distal conduit; and passing the liquid-mixture through a cavitating turbine located within the lumen of the distal conduit. The cavitating turbine may be operable to generate microbubbles having a diameter in a range of about 80 nm to about 10 μm. The cavitating turbine may be free-spinning, such that the pressure of the water-air mixture drives the rotation of the cavitating turbine.
It is an object of the present invention to provide a system operable to consistent generate gas microbubbles in a liquid having a diameter in a range of about 80 nm to about 10 μm.
It is a further object of the present invention to provide a cavitating system for use in irrigation that is operable to infuse an irrigation liquid with oxygen and/or other gases that stay in solution for significantly longer than achieved by conventional systems.
It is an object of this invention to improve irrigation systems by providing uniform delivery of oxygen and/or other gases over the entire length of the irrigation conduit.
It is an object of the present invention to provide systems capable of producing significant increases in crop yield and quality, and accelerating the development of crops.
Additional aspects and objects of the invention will be apparent from the detailed descriptions and the claims herein.
Reference will now be made in detail to certain embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in reference to these embodiments, it will be understood that they are not intended to limit the invention. To the contrary, the invention is intended to cover alternatives, modifications, and equivalents that are included within the spirit and scope of the invention as defined by the claims. In the following disclosure, specific details are given to provide a thorough understanding of the invention. However, it will be apparent to one skilled in the art that the present invention may be practiced without these specific details.
Referring to the drawings wherein like reference characters designate like or corresponding parts throughout the several views, and referring particularly to
Without limiting the invention,
The delivery conduit 101 may be constructed of pipe of various diameters and materials, which may be determined by the particular application of the system. For example, applications requiring a greater volume of water (e.g., large irrigation fields) the delivery conduit may have a larger diameter. The delivery conduit may include a pressure gauge to allow the user to monitor the pressure of the liquid passing into the fluid-gas mixing chamber 103. The cavitating apparatus 100 may include a valve between the delivery conduit 101 and the fluid-gas mixing chamber 103 that allows the user to control the liquid supply through the cavitating apparatus 100.
Water is supplied to the delivery conduit 101 by a main supply pipe, which may deliver liquid to multiple irrigation systems and multiple cavitating apparatuses. The flow and pressure of liquid from the main supply pipe to the delivery pipe may be controlled, in part, by a main valve positioned between the main supply pipe and the delivery conduit 101. The main valve may be a manually operated valve, having a manual valve actuator located above ground so that it may be accessed by the operator of the cavitating apparatus. In other implementations, and without limitation, the main valve may be remotely operable, e.g., it may be an electrically actuated valve under the control of analog electrical switches or a remote processor.
Once liquid passes from the main supply pipe into the cavitating apparatus 100 through the delivery conduit 101, it may pass into the gas-liquid mixing chamber 103. The gas-liquid mixing chamber 103 provides the point at which the gas from the gas delivery system 104 is drawn into the liquid flowing through the cavitating apparatus 100. The gas-liquid mixing chamber 103 may be in fluid connection with a gas delivery conduit 104b, which delivers gas supplied from a gas source by a device 104a (which may be a pump or other delivery device). The gas source may be atmospheric air, or other gases (e.g., CO2, N2, etc.) provided from source, such as a pressurized tank, etc. The gas-liquid mixing chamber 103 may have internal features for creating turbulence to aid in mixing the gas and the liquid combined in the gas-liquid mixing chamber 103, such as protrusions from the interior walls of the mixing chamber 103 (e.g., protrusions in a spiral pattern within the chamber, wedges or plates that have surfaces that are oblique or orthogonal to the direction of liquid flow in the mixing chamber, etc.), a perforated funnel or tube structure that protrudes from the gas delivery conduit 104a into the interior of the mixing chamber, which allows the gas to pass through the funnel or tube and provides a partial obstruction to create turbulence in the flowing liquid, a Venturi tube, or other physical structures within the mixing chamber that partially obstruct and/or redirect liquid flow in the mixing chamber to increase turbulence therein. The liquid that flows out of the gas-liquid mixing chamber 103 and into the exit conduit 106 contains significant volumes of air in bubbles of varying sizes, most of which are too large to be stable and retained in the liquid.
The gas-liquid mixture flowing from the gas-liquid mixing chamber 103 feeds into the exit conduit 106, in which an inline cavitating turbine 107 is positioned and through which the liquid-gas mixture flows.
After passing through the exit conduit 106 and the cavitating turbine therein, the liquid containing the microbubbles may feed the liquid-gas mixture into a conduit system (e.g., a subterranean irrigation system) to which the cavitating apparatus 100 is connected to provide the liquid-microbubble mixture for the desired application.
The major difference between cavitating apparatuses 100 and 100a is the present of a second cavitating turbine in the cavitating apparatus 100a. Rather than a single freely rotating turbine, the cavitating apparatus 100a includes a first cavitating turbine 107′ and a second cavitating turbine 107″. The blades of the first and second cavitating turbines may be configured such that the first and second cavitating turbines rotate in opposite directions as the liquid flows past (e.g., the first cavitating turbine spins clockwise, and the second cavitating turbine spins counterclockwise). However, it is to be understood that in some embodiments, the blades may rotate in the same rotational direction. The additional cavitating turbine causes further breakup of existing gas bubbles by shearing forces and/or an additional drop in the static pressure of the liquid passing through the conduit thereby more thoroughly breaking down the larger gas bubbles in the liquid column into microbubbles in the liquid and improving the dissolution of the gas in the liquid.
It is to be understood that the cavitating apparatus may include further cavitating turbines downstream (e.g., the cavitating system may include 3, 4, or more cavitating turbines), which aid in maintaining the gas dissolved and suspended in solution by repeatedly breaking down any gas bubbles in solution and counteracting any coalescence that may occur. Additionally, the fluid delivery system into which the gas-liquid mixture feeds (e.g., a subterranean irrigation system) may also include cavitating turbines placed at intervals therein.
The cavitating apparatus 200 shown in
In the exemplary cavitating apparatus 200 and in other related embodiments, and without limitation, the air filter 204a may be positioned above ground, such that atmospheric air may be drawn through it into the cavitating apparatus. In other embodiments, the gas delivery system may include a filter in other arrangements, such as between the gas delivery conduit and a pressurized tank or pump intake line. The air filter 204a may be serve to prevent particulate material and debris (e.g., dust, pollen, leaves, etc.) from being drawn into the cavitating apparatus, such that the risk and incidence of clogging in the cavitating apparatus and/or the conduit system to which the cavitating apparatus is connected is reduced.
The gas delivery system 204 may also include a gas delivery valve 204c for controlling the flow of gas through the gas delivery system 204. The valve 204c may be a ball valve. Other fluid valves may be alternatively used, such as a gate valve, a globe valve, a knife valve, and other appropriate fluid valves. The gas delivery valve may be used to cut off the supply of gas to the cavitating apparatus and, in some implementations, to adjust the rate of gas flow into gas-liquid mixing chamber 103 for modulating gas delivery to a conduit system to which the cavitating apparatus is connected.
Without limiting the invention,
The delivery conduit 301 may be constructed of pipe of various diameters and materials, which may be determined by the particular application of the system. For example, applications requiring a greater volume of water (e.g., large irrigation fields) the delivery conduit may have a larger diameter. The delivery conduit may include a pressure gauge to allow the user to monitor the pressure of the liquid passing into the Venturi tube 303. Also, the first valve 302 between the delivery conduit 301 and the Venturi tube 303 allows the user to cutoff the liquid supply through the cavitating apparatus.
Water is supplied to the delivery conduit 301 by a main supply pipe 310, which may deliver liquid to multiple irrigation systems and multiple cavitating apparatuses. The flow and pressure of liquid from the main supply pipe 310 to the delivery pipe may be controlled, in part, by a hydraulic valve 311. Hydraulic valve 311 controls the volume and pressure of liquid flowing from the main supply pipe through the main branching conduit 312 into a submain conduit 313. Thus, the pressure of the liquid delivered into the cavitating apparatus is controlled in the first instance by the hydraulic valve 311. The hydraulic valve 311 may be a manually operated valve, having a manual valve actuator located above ground so that it may be accessed by the operator of the cavitating apparatus. In other implementations, and without limitation, the hydraulic valve 313 may be remotely operable, e.g., it may be an electrically actuated valve under the control of analog electrical switches or a remote processor.
The submain conduit 313 receives delivers liquids from the main supply pipe 310 through the main branching conduit 312 and the cavitating apparatus 300. The cavitated liquid from the cavitating apparatus is mixed with the liquid directly from the main supply pipe 310 in the submain conduit, and it is then supplied into the individual delivery conduits (e.g., irrigation lines).
Once liquid passes from the main supply pipe 310 into the cavitating apparatus 304 through the delivery conduit 301, it may pass into the Venturi tube 303 (assuming valve 302 is open). The Venturi tube 303 provides the point at which the air from the air delivery system 304 is drawn into the liquid flowing through the cavitating apparatus 300. The Venturi tube 303 has a narrowing diameter that chokes the liquid flow and creates a lower dynamic pressure of the liquid at the choke point. The air delivery system 304 connects to the Venturi tube 303 at the choke point through an air injection port, thereby allowing the lowered dynamic pressure of the liquid to draw the air into the liquid from the air delivery system 304. The liquid that flows beyond the choke point include significant volumes of air in bubbles of varying sizes, most of which are too large to be stable and retained in the liquid.
The air delivery system 304 may include several components, including an air filter 104a through which atmospheric air may be drawn into the air delivery conduit 304b. The air may be drawn through the air filter 304a by differential pressure between air in the conduit 304b and the atmospheric pressure. The pressure differential may develop as air in the conduit 304a is drawn into the liquid passing through the Venturi tube 303, creating a partial vacuum in the conduit 304b. It is to be understood that in other embodiments of the invention, air or other gases may be supplied from other sources into the cavitating apparatus, such as pressurized tanks, pumps, etc. In still other embodiments, and without limitation, a pump may be installed in the air delivery system to draw air through the air filter 304a at adjustable speeds to allow the user to designate various amounts of air to be infused into the liquid flowing through the cavitating apparatus.
In the exemplary cavitating apparatus 300 and in other related embodiments, and without limitation, the air filter 304a may be positioned above ground, such that atmospheric air may be drawn through it into the cavitating apparatus. In other embodiments, the gas delivery system may include a filter in other arrangements, such as between the gas delivery conduit and a pressurized tank or pump intake line. The air filter 304a may be serve to prevent particulate material and debris (e.g., dust, pollen, leaves, etc.) from being drawn into the cavitating apparatus, such that the risk and incidence of clogging in the cavitating apparatus and/or the conduit system to which the cavitating apparatus is connected is reduced.
The gas delivery system 304 may also include a gas delivery valve 304c for controlling the flow of gas through the gas delivery system 304. The valve may be a ball valve 104c, as shown in
The Venturi tube 303 feeds the liquid-gas mixture into an exit conduit 306, which feeds the liquid-gas mixture into the conduit system (e.g., a subterranean irrigation system) to which the cavitating apparatus 300 is connected. The exit conduit 306 has an inline cavitating turbine 307 therein through which the liquid-gas mixture flows.
The exit conduit 306 may also include a second valve 305 that may be used to controlling the flow of the liquid-gas mixture through the exit conduit. The valve 305 may be a ball valve. Other fluid valves may be alternatively used, such as a gate valve, a globe valve, a knife valve, and other appropriate fluid valves. The exit conduit valve may be used to cut off the supply of the liquid-gas mixture through the exit conduit and, in some implementations, to adjust the flow rate of the liquid-gas mixture into a conduit system (e.g., a subterranean irrigation system) to which the exit conduit is connected.
The major difference between cavitating apparatuses 300 and 300a is the present of a second cavitating turbine in the cavitating apparatus 300a. Rather than a single freely rotating turbine, the cavitating apparatus 300a includes a first cavitating turbine 307′ and a second cavitating turbine 307″. The blades of the first and second cavitating turbines may be configured such that the first and second cavitating turbines rotate in opposite directions as the liquid flows past (e.g., the first cavitating turbine spins clockwise, and the second cavitating turbine spins counterclockwise). However, it is to be understood that in some embodiments, the blades may rotate in the same rotational direction. The additional cavitating turbine causes further breakup of existing gas bubbles by shearing forces and/or an additional drop in the static pressure of the liquid passing through the conduit thereby more thoroughly breaking down the larger gas bubbles in the liquid column into microbubbles in the liquid and improving the dissolution of the gas in the liquid.
It is to be understood that the cavitating apparatus may include further cavitating turbines downstream (e.g., the cavitating system may include 3, 4, or more cavitating turbines), which aid in maintaining the gas dissolved and suspended in solution by repeatedly breaking down any gas bubbles in solution and counteracting any coalescence that may occur. Additionally, the fluid delivery system into which the gas-liquid mixture feeds (e.g., a subterranean irrigation system) may also include cavitating turbines placed at intervals therein.
The cavitating apparatus 410 may be connected to the main branch conduit 402 at its proximal end and the submain conduit 404 at its distal end. The cavitating apparatus 410 may branch off vertically such that it breaches the surface of the soil. The air delivery system 411 of the cavitating apparatus is positioned above ground allowing it to draw air through a filter into the cavitating apparatus. The air is mixed with the water siphoned from the flow of irrigation water from the main water delivery line 401 into the main branching conduit 402. The water-air mixture is then passed through an inline cavitating turbine positioned within the cavitating apparatus to generate air microbubbles, as described above. It is to be understood that the cavitating apparatus 410 may include a plurality of cavitating turbines therein (e.g., the cavitating system may include 3, 4, or more cavitating turbines). The plurality of cavitating turbines may be configured such that at least one spins in a clockwise direction and at least one of the plurality of cavitating turbine spins in the opposite direction, as discussed herein. It is to be further understood that the subterranean irrigation system 400 into which the gas-liquid mixture feeds may also include cavitating turbines placed at intervals therein.
The water-air mixture may then flow into the submain conduit 404 downstream of the cavitating apparatus 410 and then flow into a manifold 420 of subterranean irrigation conduits over which crop rows are positioned (e.g., bell peppers, strawberries, etc.). The gas-infused irrigation water is discharged along the length of the irrigation conduits 430 through perforations or gaps in the conduit. The size of the microbubbles generated by the cavitating apparatus are sufficiently small to allow the microbubbles to persist in the irrigation water to the end of the irrigation conduits so that plant roots located at the end of the irrigation conduits receive adequate oxygen and/or other gases, which may be several tens to hundreds of yards in length (e.g., up to about 500 yards in length).
The cavitating apparatus 510 may be connected to the main branch conduit 502 at its proximal end and the submain conduit 504 at its distal end. The cavitating apparatus 510 may branch off vertically such that it breaches the surface of the soil. The cavitating apparatus includes two air infusion lines 510a and 510b (it is to be understood that the scope of the invention includes cavitating apparatuses that have more than one or two air infusion lines, e.g., 3, 4, etc.). Each air infusion line 510a and 510b draws water from the main branch conduit 502 through a vertical delivery pipe (obscured by the cavitating apparatus 510 in
The water-air mixture generated by the cavitating system 510 may flow into the submain conduit 504 downstream of the cavitating apparatus 510 and then flow into a manifold 520 of subterranean irrigation conduits over which crop rows are positioned (e.g., bell peppers, strawberries, etc.). The gas-infused irrigation water is discharged along the length of the irrigation conduits 530 through perforations or gaps in the conduit. The size of the microbubbles generated by the cavitating apparatus are sufficiently small to allow the microbubbles to persist in the irrigation water to the end of the irrigation conduits so that plant roots located at the end of the irrigation conduits receive adequate oxygen and/or other gases, which may be several tens to hundreds of yards in length (e.g., up to about 500 yards in length).
The present invention provides a cavitating apparatus for use in various liquid delivery systems (including irrigation systems) that includes an inline cavitating turbine for generating fine microbubbles, as well as systems and methods that utilize such cavitating apparatuses. It should also be understood that the foregoing descriptions of specific embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.
Number | Date | Country | |
---|---|---|---|
62302381 | Mar 2016 | US |