Embodiments of the present invention relate to devices and methods for producing a gas, such as smoke or vapor, for inhalation by a user.
Users often utilize a pipe as a device for inhaling the gas, such as smoke or vapor, produced by a combustible material when that material is lit and/or heated. Exemplary combustible materials include tobacco and cannabis, which has been increasingly accepted for adult consumption for medicinal and recreational purposes. These pipes are made from a wide variety of materials.
One embodiment of a pipe for inhalation of gas produced by a combustible material according to the present disclosure comprises a pipe body, the pipe body itself including a technology housing, a mouthpiece portion, and a smoking portion between the technology housing and mouthpiece portion. The technology housing includes a cavity therein, which can be utilized to hold the combustible material. The smoking portion defines a passageway for transporting gas from the technology housing to the mouthpiece portion. First and second electrodes are included within the cavity of the technology housing and/or within the smoking portion, and electronic circuitry is housed within the pipe body. The electronic circuitry is configured to provide electricity to the electrodes such that an electric arc is formed between the first and second electrodes.
One embodiment of a method according to the present disclosure of producing a pipe for inhalation of gas produced by combustible material comprises forming a technology housing with a cavity and an end aperture, a smoking portion defining a passageway, and a mouthpiece portion having an end aperture. The method further includes placing the smoking portion through the technology housing end aperture and attaching the smoking portion to the technology housing, and placing the mouthpiece portion over the smoking portion such that the smoking portion is through the mouthpiece portion end aperture. The technology housing is then attached to the mouthpiece portion such that the technology housing and mouthpiece portion are around the smoking portion.
One embodiment of a method according to the present disclosure for inhaling gas includes placing a combustible material in a cavity of a pipe's technology housing. The method further includes triggering an electrical arc between two electrodes within the cavity, the electrical arc causing combustion of the combustible material so as to form a gas. That gas is then inhaled through a mouthpiece portion of the pipe, the mouthpiece portion being operably connected to the technology housing by a smoking portion. The electrical arc that is triggered is triggered by a user pressing a button or by a user inhaling from the mouthpiece portion.
This has outlined, rather broadly, the features and technical advantages of the present disclosure in order that the detailed description that follows may be better understood. Additional features and advantages of the disclosure will be described below. It should be appreciated by those skilled in the art that this disclosure may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the teachings of the disclosure as set forth in the appended claims. The novel features, which are believed to be characteristic of the disclosure, both as to its organization and method of operation, together with further features and advantages, will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present disclosure.
The foregoing and other objects, features, and advantages of the invention will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
The present disclosure relates to devices for the inhalation of gases, such as smoke or vapor, produced from a combustible material such as tobacco or cannabis; as well to methods for producing these devices and methods for inhalation of such gases. Devices according to the present disclosure utilize one or more electrical arcs for the combustion of the desired combustible material as opposed to prior art methods that utilize, e.g., fire. The electrical arc or arcs produced by devices according to the present disclosure cause an electrical field that ionizes the incoming gas, which is typically ambient air, producing positive and negative ions. The succeeding apparatus then operates to cause a larger percentage of healthier, lighter, negatively ionized particles (as opposed to less healthy, heavier, positively ionized particles) to be carried through to be ingested by the user in the inhaled smoke. Methods for forming such devices, including methods for assembly that allow for access to electronic circuitry for forming the electrical arcs for, e.g., recharging purposes, are also described, as are methods for inhalation of the gas produced by the combustible material. The device allows the electronics that provide the arcing to be held in the device in a separated compartment that is sealed away from the smoking assembly, except that the wires, that is electrodes, that will produce the arc will pass from the separated compartment into the operational part of the device in a position above the combustible material, in which the passage is constructed to prevent any violation of the safe condition of the compartment as well as to bring the electrode into use to produce arcing.
Devices according to the present disclosure can in some embodiments be glass pipes combined with computer technology for smoking a combustible material such as tobacco or cannabis. In certain embodiments, the device includes a body comprised primarily of glass. In a particular design, the body/hull is crafted in the shape of a diamond, with a dripping tail of ectoplasm. The devices can be fumeless, futuristic, windproof, and self-igniting of the combustible material. The devices in one embodiment serve as a combination of a glass smoking device (e.g., pipe), and an ignition source (e.g., lighter) in an integrated structure. The devices can be portable and self-sufficient, and reduce exposure to unnecessary chemicals and combustible materials that are typically given off by lighters, torches, and wicks.
In a typical method of using a device according to the present disclosure, a device cavity or bowl is loaded with a combustible material of choice. The device employs ambient air mixing with smoke for inhalation. The user places the device's barrel or mouthpiece portion to his or her lips, then presses an ignition button or otherwise activates the device. This causes current to travel through electronic circuitry including, for example, low current wiring, to a battery, then to a protoboard where the current is converted into a coil. A corona or arc discharge is then released through high current wires or electrodes, often with a low current to high current arc of electricity through plasma in the air. As the combustible material of choice is heated by the electricity, gas such as smoke or vapor is released, and the subject inhales from the mouthpiece portion. The user can then deactivate the device such as by releasing the ignition button, stopping the arc or corona discharge. In some embodiments a carburetor is available, which is initially blocked for the inhalation. The user can then release the carburetor, allowing air to flow into the passageway for the inhalation. The user can then inhale the gas remaining in the device, clearing the device of that gas and replacing that gas with air. The device can include a plug or covering of the compartment that contains the electronics, that can be removed to replace and/or recharge a battery therein. One embodiment of a device according to the present disclosure is a glass smoking device that utilizes electrical corona or arc discharge to burn and/or ignite combustible material independently, without the use of external heat-producing implements. Devices according to the present disclosure can specifically be used for the purpose of consuming tobacco or cannabis. In particular embodiments, the arc is maintained during inhalation so as to ionize the ambient air that is pulled into the device during an inhalation, thereby producing positive and negative ions.
Throughout this description, the preferred embodiment and examples illustrated should be considered as exemplars, rather than as limitations on the present disclosure. As used herein, the term “disclosure,” “method,” “present disclosure,” “present solution,” “or present method,” refers to any one of the embodiments of the disclosure described herein, any equivalents, and any additional embodiments that would be apparent to one of ordinary skill in the art. Furthermore, reference to various feature(s) of the “disclosure,” “method,” “present disclosure,” “present solution,” or “present method” throughout this document does not mean that all claimed embodiments or methods must include the referenced feature(s).
Although the terms first, second, etc. may be used herein to describe various elements or components, these elements or components should not be limited by these terms. These terms are only used to distinguish one element or component from another element or component. Thus, a first element or component discussed below could be termed a second element or component without departing from the teachings of the present disclosure. When comparing two elements, a first element that is “upstream” of a second element is before the second element in the intended flow path as it would be understood by one of skill in the art, while a first element that is “downstream” of a second element is after the second element in the intended flow path.
The term “inhalation” or “inhale” as used in this description refers to the act of putting suction on the device to cause flow through the device. That suction is typically from the mouth of the user intended to cause the flow to enter as ambient air at the top of the pipe bowl (e.g., the cavity 104a discussed below) through the device while mixing with gas from a combustible material, to eventually pass into the user's mouth. It does not necessarily mean that the flow is inhaled into the user's lungs, although that would be regarded as a common way to use the device and method. A single inhalation could be, in common terminology, a puff, a drag or a toke.
The terminology used herein is for describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Now referring to
The electrodes 120a are positioned in to the cavity 104a of the smoking portion 104 through the wall 104b. The electronic circuitry 130 is operably linked to the electrodes 120a, to provide electricity to the electrodes 120a to the point where an electrical arc A is formed between complementary (paired) electrodes. For example, in the specific embodiment shown, four electrodes 121a,121b,121c,121d are included. A first electrical arc can be formed between the electrodes 121a,121b, and a second electrical arc can be formed between the electrodes 121c,121d, the two electrical arcs forming an X pattern. The arc between each pair is independently generated by the electronic circuit so that in effect there are two independently operating arcs, but which can operate together and simultaneously. Other embodiments are possible, such as embodiments including only two electrodes, embodiments including four electrodes that are connected by substantially parallel electrical arcs, and embodiments including six or more electrodes and/or three or more electric arcs.
Electrical arcs between electrodes can be caused by various different mechanisms. For instance, in one embodiment the electronic circuitry 130 can be activated by a user pressing an ignition button 134. In another embodiment, the electronic circuitry 130 can include a breath switch that activates upon a user inhaling from the mouthpiece portion 106 with a sufficient force, that force activating the electronic circuitry 130 to cause electrical arcs to be formed between the electrodes 120, and thus causing the combustion of combustible material within the cavity 102a and/or the cavity 104a.
The use of electrical arcs to cause combustion of the combustible material 105 has distinct advantages over prior art methods. As shown in
Inhalation of negatively ionized gas has been shown to be healthier than inhalation of neutral or positively ionized gas, and can aid in the reduction of free radicals within the body that would otherwise be detrimental to one's health. Positively ionized particles are typically heavier than negatively ionized particles, for instance, due to protons being over 1000 times heavier than electrons. The healthier negatively ionized gas particles, being lighter than the positively ionized gas particles, will travel along the flow path 160 and through the passageway 104b of the smoking portion 104 faster than the positively ionized gas particles when a user inhales from the mouthpiece portion 106 as described above, resulting in a user inhaling a larger percentage of negatively ionized gas particles than in prior art devices. Positively ionized gas particles, on the other hand, will tend to stick to the surfaces of the device 100 as opposed to passing through it, and/or will stick to solid particulates such as ash formed from the remnants of the combustible material 105, those particulates in large measure remaining in the pathway of flow of the gas. These solid particulates themselves in some measure will stick to the surfaces of the device 100, and/or be caught by a screen that can be included along the desired flow path so as to prevent inhalation thereof. Such a screen can be included, for example, in the smoking portion 104, such as along the passageway 104d or in the mouthpiece portion 106. Many different embodiments and placements are possible.
Additionally, in advance of the inhalation, such as a few seconds, a user can activate the electronic circuitry 130 so as to form electrical arcs between the electrodes 120a, and thus to ionize the gas formed by the combustible material 105. This results in producing ionization to a greater extent and in a greater volume than is available when the arc activation and inhalation are simultaneous.
While the specific embodiment of the pipe 100 includes electrodes 120a that arc, it is understood that other embodiments are possible. For instance, certain embodiments of the present disclosure may not arc between electrodes but could instead initiate corona discharge at each electrode, that discharge causing an electric field that ionizes the air and/or gas nearby as previously described. It is understood that by definition a corona is comprised of ionized gas.
The mouthpiece portion 106 can include an end aperture 206, with the end aperture 206 formed in an attachment end 226 of the mouthpiece portion 106. The attachment end 226 and end aperture 206 can be placed over the smoking portion 104 such that the attachment end 226 abuts an attachment end 222 of the technology housing portion 102, and the attachment ends 222,226 can then be attached to one another, such as by welding. In this manner, a completed passageway for gas, such as smoke or vapor from a combustible material, is formed from the smoking portion cavity 104a, through the passageway 104d, into the mouthpiece portion 106, and finally through the inhalation aperture 140, as described above. Thus, upon gas being produced from the combustible material 105 within the cavity 104a a user can draw that gas through the inhalation aperture 140 as an inhalation.
As previously discussed, electronic circuitry 130 can be housed within a compartment in the device 100, such as the compartment 102c within the technology housing 102.
The technology housing portion 102, smoking portion 104, and mouthpiece portion 106 can be made of various materials. In one embodiment, they are each made of glass such as borosilicate glass, which is well-suited for the device 100 due to its resistance to heat. Glass components can be formed via blowing, molding, or other methods as known in the art. Materials other than glass, such as polymers, composite materials, acrylic materials, polycarbonate materials, and other glass substitutes as known in the art are possible.
Many variations of the device 100 are possible. For instance, some embodiments are designed to even further reduce the amount of positively ionized particles and/or solid particulates to be inhaled by a user via use of a pinch mechanism within the pathway of the gas produced by the combustible material. For instance, a pinch mechanism can be included in the smoking portion 104, such as in the passageway 104b from
As previously discussed, positively ionized particles are typically heavier than their healthier negatively ionized counterparts. In a passageway such as the passageway 510, when a user is inhaling, the center of the passageway 510 typically includes the airflow having the fastest velocity, while portions of the passageway near its inner perimeter have slower velocities. As such, the pressure in the passageway 510 near its center is lower than the pressure near its perimeter. The lighter negatively ionized particles 570 will tend to be drawn to the center of the passageway 510, while the heavier positively ionized particles 580 and/or other solid particulates will tend to remain near the perimeter of the passageway 510 and/or attach to the perimeter wall. As such and as shown in
Many different shapes and sizes of pinch mechanisms are possible. For instance, pinch mechanisms can block 5% or more, 10% or more, 20% or more, 25% or more, 30% or more, 40% or more, 50% or more, less than 50%, 40% or less, 30% or less, 25% or less, 20% or less, or 10% or less of a passageway's total area. Other shapes are also possible. For instance,
Although the present disclosure has been described in detail with reference to certain preferred configurations thereof, other versions are possible. Embodiments of the present disclosure can comprise any combination of compatible features, and these embodiments should not be limited to those expressly illustrated and discussed. Therefore, the spirit and scope of the disclosure should not be limited to the versions described above. The foregoing is intended to cover all modifications and alternative constructions falling within the spirit and scope of the disclosure, wherein no portion of the disclosure is intended, expressly or implicitly, to be dedicated to the public domain if not set forth in any claims.
This application is a continuation of U.S. application Ser. No. 15/981,842, filed on May 16, 2018, which in turn claims the priority benefit of U.S. Provisional Patent Application No. 62/507,235 filed on May 17, 2017. The prior applications are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
62507235 | May 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15981842 | May 2018 | US |
Child | 17967706 | US |