Not Applicable
Not Applicable
Not Applicable
Neon lights and other ionized gas lighting systems have been used for years. Most commercial neon lights are either on or off. A small number of them are blinking signs. There has been a desire to have neon signs that have a write effect. The write effect means that the sign would light up at one end of the gas tube and the portion of the gas tube that was lit would progressively increase over a controlled time period as if someone were drawing out the sign. It would also be useful if neon signs could have a reverse write effect. There have been attempts to incorporate a write effect into neon signs. For instance, one proposed solution used a single cathode gas tube and a natural ground. Unfortunately, the write effect or handwriting effect produced was erratic.
Thus there exists a need for a gas light system that has the ability to blink and the ability to produce a consistent write effect.
A writing gas light system that overcomes these and other problems includes a gas tube having a first end and a second end. A first cathode is attached to a first end of the gas tube and a second cathode is attached to a second end of the gas tube. An isolated conductor runs along a length of the gas tube and is electrically attached to the second cathode. A light ballast is coupled to the first cathode and to the isolated conductor. In one embodiment, the system has a digitally controlled ballast. The gas discharge ballast has an output applied to the gas tube whose energy can be adjusted. In one embodiment, the energy is adjusted by changing the duty cycle of a 20 KHz pulse width modulated signal. In another embodiment, the energy of the signal is adjusted by changing the amplitude or the input signal. In yet another embodiment, the energy of the input signal is adjusted using a combination of the duty cycle and the input voltage. In one embodiment, the system has a balanced center tap transformer. The secondary of the transformer is tied to ground through a ground fault detection circuit.
The isolated conductor provides a more consistent impedance for the gas tube and as a result the write effect can be more accurately controlled. The digital control of the duty cycle of the pulse width modulated signal provides a more accurate input energy than analog systems. The ability to adjust the amplitude provides a flexible approach to increasing and decreasing the energy of the input signal. The system also has the ability to blink a neon or other ionized gas light system as well as produce a consistent write and un-write function.
The invention is directed to a writing gas light system that has a gas tube with a first end and a second end. A first cathode is attached to a first end of the gas tube and a second cathode is attached to a second end of the gas tube. An isolated conductor runs along a length of the gas tube and is electrically attached to the second cathode. A light ballast is coupled to the first cathode and to the isolated conductor. In one embodiment, the system has a digitally controlled ballast. The gas discharge ballast has an output applied to the gas tube whose energy can be adjusted. In one embodiment, the energy is adjusted by changing the duty cycle of a 20 KHz pulse width modulated signal. In another embodiment, the energy of the signal is adjusted by changing the amplitude or the input signal. In yet another embodiment, the energy of the input signal is adjusted using a combination of the duty cycle and the input voltage. In one embodiment, the system has a balanced center tap transformer. The secondary of the transformer is tied to ground through a ground fault detection circuit.
The isolated conductor provides a more consistent impedance for the gas tube and as a result the write effect can be more accurately controlled. The digital control of the duty cycle of the pulse width modulated signal provides a more accurate input energy than analog systems. The ability to adjust the amplitude provides a flexible approach to increasing and decreasing the energy of the input signal. The system also has the ability to blink a neon or other ionized gas light system as well as produce a consistent write and un-write function.
The ballast controller 18 is the intelligence that determines if the gas tube blinks or writes forward from the first cathode to the second cathode or un-writes back to the first cathode and at what speed this happens. All of these features are called lighting effects. The ballast controller 18 determines the output of the DC voltage supply, which determines the amplitude of the drive signals 24, 26.
The ballast controller 18 also controls the duty cycle of the drive signals 24, 26 through the pulse width modulated high voltage supply 22. The high voltage supply 22 also steps up the voltage. In one embodiment, the DC voltage supply 16 has an output voltage from zero volts to two hundred volts. The high voltage supply 22 steps this up to between zero and ten thousand volts. The ballast controller 18 also varies the duty cycle of the pulse width modulated signals 24, 26. In one embodiment, the pulse width modulated signals have a frequency of twenty kilohertz. The ballast controller 18 determines the input energy to the gas discharge tube 14 by varying either amplitude of the drive signals 24, 26 or their duty cycle or both. The isolated conductor 32 provides a capacitive return path along the gas tube 14. This capacitive return path allows the gas tube to light only a portion of its length. By varying the input energy the length of the gas tube is selective lit up. The isolated conductor allows this to be accomplished in a consistent manner to produce the desired lighting effects. If a blinking light is desired sufficient energy is applied to light the whole gas tube in an on off pattern.
In one embodiment, a computer and appropriate software are used to configure the ballast controller. In operation, the computer is used to vary the duty cycle and the drive voltage over time until the operator achieves the desired light effect. Once the desired lighting effect is achieved the control signal is stored in the ballast controller.
In a one embodiment of the invention, the ballast controller 18 is a microprocessor based controller such as Microchip PIC18F4431 microcontroller having these features:
Thus there has been described a gas light system that provides a consistent reliable write effect as well as other lighting effects. In addition, the system provides for ground fault detection.
While the invention has been described in conjunction with specific embodiments thereof, it is evident that many alterations, modifications, and variations will be apparent to those skilled in the art in light of the foregoing description. Accordingly, it is intended to embrace all such alterations, modifications, and variations in the appended claims.
The present invention claims priority on provisional patent application Ser. No. 61/516,189, filed on Mar. 31, 2011, entitled “Gas Discharge Light Ballast with Improved Write Affect” and is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61516189 | Mar 2011 | US |