The present invention relates to a gas manifold for distributing fuel gas to a plurality of burners in a combustion apparatus that performs stepwise switching of the number of burners to burn the fuel gas among the plurality of burners included in the combustion apparatus.
Hot-water supply systems and heating systems incorporate a combustion apparatus for burning fuel gas. The combustion apparatus includes a plurality of burners that are individually fed with fuel gas through their corresponding nozzles. The combustion apparatus also performs stepwise switching of the number of burners to burn the fuel gas. In accordance with intended thermal power, the apparatus increases or decreases the number of burners to be used for burning the fuel gas.
Each burner is fed with fuel gas through the corresponding nozzle. Thus, stepwise switching of the number of burners to burn the fuel gas involves stepwise switching of the number of nozzles to feed the fuel gas. A multi-burner combustion apparatus includes a gas manifold for distributing fuel gas to each burner, and the manifold has the structure below. The gas manifold has an internal main channel allowing passage of fuel gas fed from outside. The main channel branches into a plurality of distribution channels that are connected to distribution chambers via electromagnetic on-off valves. The nozzles for feeding the burners with fuel gas each receive the fuel gas from one of the distribution chambers.
In the gas manifold with the above structure, when the main channel is fed with fuel gas, the fuel gas flows into the distribution chamber connected to a distribution channel with its electromagnetic on-off valve open. The fuel gas is then fed through the nozzles to the burners. In contrast, the fuel gas does not flow into the distribution chamber connected to a distribution channel with its electromagnetic on-off valve closed. The nozzles that receive fuel gas from the distribution chamber are fed with no fuel gas, and thus the burners are also fed with no fuel gas. In this structure, the number of burners to burn fuel gas may be switched in a stepwise manner by switching the open or closed states of the electromagnetic on-off valves in the switch distribution channels.
The number of burners fed with fuel gas from each distribution chamber is set differently for each distribution chamber. This is because switching the distribution chambers for feeding fuel gas to burners causes switching the number of burners to burn the fuel gas, thus causing the thermal power to be changed to multiple levels. An example with nine burners and three distribution chambers will be described. With each distribution chamber including three burners assigned, the burners for burning fuel gas may be switched between three, six, and nine burners, which are three sets of burners, by changing the number of distribution chambers that feed the fuel gas. However, the nine burners may also be divided into two, three, and four burners. These burner sets may be assigned to the distribution chambers. In this case, the number of burners may be changed to switch between seven thermal power levels depending on the selection of a distribution chamber or the combination of distribution chambers.
With each distribution chamber including a different number of burners assigned in this manner, the flow rate of the fuel gas to be fed to each distribution chamber also depends on the distribution chamber. In the above example, the distribution chamber with four burners is to be fed with fuel gas at a flow rate twice as much as for the distribution chamber with two burners. Thus, techniques for feeding fuel gas at an appropriate flow rate to each distribution chamber have been developed using the electromagnetic on-off valves with different sizes in the distribution channels or installing different-sized orifices in the distribution channels depending on the flow rate of the fuel gas to be fed to each distribution chamber (Patent Literatures 1 and 2).
Patent Literature 1: Japanese Unexamined Patent Application Publication No. 8-086416
Patent Literature 2: Japanese Unexamined Patent Application Publication No. 2019-002594
However, recent combustion apparatuses may perform switching between more sets of burners to regulate the thermal power more precisely. In this case, feeding each distribution chamber with fuel gas at an appropriate flow rate has become more difficult for the reasons described below. More sets of switchable burners mean more distribution chambers included in the gas manifold. The number of burners fed with fuel gas from each distribution chamber is set differently for each distribution chamber as described above. The increasing number of distribution chambers widens the difference in the number of burners between the distribution chamber including the smallest number of burners and the distribution chamber including the largest number of burners, and increases the difference between the flow rates of fuel gas to be fed. A largely increasing flow rate difference may cause difficulty in feeding each distribution chamber with fuel gas at an appropriate flow rate.
In response to the above issue with the known techniques, one or more aspects of the present invention are directed to a gas manifold that allows each distribution chamber to be fed with fuel gas at an appropriate flow rate irrespective of an increase in the number of internal distribution chambers.
A gas manifold according to one aspect of the present invention has the structure below. The gas manifold is installable in a combustion apparatus to distribute fuel gas to a plurality of burners for burning the fuel gas included in the combustion apparatus. The plurality of burners are grouped into a plurality of burner sets. The combustion apparatus performs stepwise switching of the number of burners to burn the fuel gas by causing each of the plurality of burner sets to burn the fuel gas. The gas manifold includes an inlet that receives the fuel gas fed from outside, a main channel that allows passage of the fuel gas flowing in through the inlet, a plurality of distribution chambers, each located for a corresponding burner set of the plurality of burner sets, that receive, from the main channel, the fuel gas to be fed to the plurality of burners in the plurality of burner sets, a plurality of nozzles, each located for a corresponding burner of the plurality of burners, that feed the plurality of burners with the fuel gas flowing into the plurality of distribution chambers, a plurality of distribution channels branching from the main channel and connecting the main channel to the plurality of distribution chambers, a plurality of on-off valves located at the plurality of distribution channels to open or close the plurality of distribution channels (i.e., a plurality of on-off valves each located at a corresponding distribution channel of the plurality of distribution channels to open or close the corresponding distribution channel), and a bypass channel branching from the main channel downstream from the inlet, bypassing a branch of at least one of the plurality of distribution channels from the main channel, and rejoining the main channel.
In the gas manifold according to the aspect, the fuel gas to be fed to the burners flows into the main channel through the inlet, and is distributed to the plurality of distribution chambers through the distribution channels branching from the main channel. The fuel gas is then fed from each distribution chamber to the burners through the nozzles. The main channel has the bypass channel, which branches from the main channel downstream from the inlet, bypasses the branch of at least one distribution channel from the main channel, and rejoins the main channel.
In this aspect, among the distribution channels branching from the main channel, the distribution channel branching from the main channel downstream from the rejoining point of the bypass channel is fed with fuel gas from the bypass channel as well as the main channel. The bypass channel, which bypasses at least one distribution channel, allows stable feeding of fuel gas irrespective of feeding of fuel gas to the bypassed distribution channel. The plurality of distribution chambers are thus fed with fuel gas at appropriate flow rates.
In the gas manifold according to the above aspect, the bypass channel may rejoin the main channel upstream from a branch of a maximum distribution channel from the main channel. The maximum distribution channel is a distribution channel connected to a maximum distribution chamber (the distribution chamber including more burners in the corresponding burner set than the other distribution chambers).
In this aspect, the maximum distribution chamber is fed with fuel gas from the bypass channel as well as the main channel. The maximum distribution chamber is thus fed with the fuel gas at a stable flow rate although the gas manifold includes a larger number of distribution chambers. The fuel gas fed to the distribution channel bypassed by the bypass channel is also less likely to be affected by the feeding state of fuel gas into the maximum distribution chamber, thus allowing fuel gas to be fed at a stable flow rate. The plurality of distribution chambers are thus fed with fuel gas at appropriate flow rates.
In the gas manifold according to the above aspect, the bypass channel may rejoin the main channel upstream from a branch of the maximum distribution channel from the main channel, and downstream from a branch of a minimum distribution channel. The minimum distribution channel is a distribution channel connected to a minimum distribution chamber (the distribution chamber including fewer burners in the corresponding burner set than the other distribution chambers).
In this aspect, the flow rate of fuel gas into the minimum distribution chamber may not be varied depending on the feeding state of fuel gas into the maximum distribution chamber. The minimum distribution chamber is thus also fed with fuel gas at an appropriate flow rate stably.
In the gas manifold according to the above aspect, a branch of the maximum distribution channel from the main channel may be at an outer side (end position) of other branches of the other distribution channels from the main channel. The bypass channel may rejoin the main channel between the branch of the maximum distribution channel from the main channel and a branch of a distribution channel adjacent to the maximum distribution channel from the main channel.
In this aspect, fuel gas flowing in the bypass channel is mainly fed into the maximum distribution chamber, allowing the maximum distribution chamber to be fed with fuel gas at a sufficient flow rate stably.
In the gas manifold according to the above aspect, the main channel, the plurality of distribution chambers, and the inlet receiving fuel gas may be located as described below. A manifold body may include a channel groove, and a plurality of recesses adjacent to the channel groove. A manifold cover may be fitted to the manifold body, with a sealing member located between them, to be placed over the channel groove to define the main channel, and over the plurality of recesses to define the plurality of distribution chambers. The sealing member may be shaped to cover the channel groove on the manifold body and have a first hole and a second hole at different positions along the channel groove. The manifold cover may have, adjacent to the seal member, a bypass groove connecting to the channel groove on the manifold body through the first hole and the second hole in the sealing member to define the bypass channel.
In this aspect, the bypass groove located on the manifold cover and the first hole and the second hole located in the sealing member allow the bypass channel to be defined easily without changing the shape of the manifold body. In addition, the manifold body uses no space for the bypass channel and may thus be designed easily.
In the gas manifold according to the above aspect, the inlet that receives the fuel gas flowing into the main channel may be open from the manifold body to the manifold cover.
In this aspect, after flowing in through the inlet, hitting the manifold cover, and changing direction, the fuel gas flows along the manifold cover and the sealing member. Thus, the fuel gas is reliably guided to the bypass channel, allowing the maximum distribution chamber to be fed with fuel gas at a sufficient flow rate.
The combustion apparatus 10 includes a combustion case 11 that defines a combustion chamber in its inner space, a plurality of burners 12 installed in the combustion case 11, a gas manifold 100 that feeds the burners 12 with fuel gas, a combustion fan 13 that feeds the combustion case 11 with combustion air for burning the fuel gas, a spark plug 14 that lights the burners 12, and a flame rod 15 that detects the flame of the burners 12. The gas manifold 100 is connected to a gas channel 16 that feeds the fuel gas, and the gas channel 16 includes, on its course, a main valve 17 that opens or closes the gas channel 16, and a proportional valve 18 that regulates the flow rate of the fuel gas to be fed to the gas manifold 100 downstream from the main valve 17.
As shown in
The gas manifold 100 includes a plurality of nozzles 101 that feed the burners 12 with fuel gas. Each nozzle 101 is associated with one burner 12 in advance and feeds the burner 12 with the fuel gas. The gas manifold 100 also includes three internal distribution chambers 102a to 102c. The three distribution chambers 102a to 102c correspond to the three burner sets 12a to 12c described above. An electromagnetic on-off valve 19a is installed upstream from the distribution chamber 102a, an electromagnetic on-off valve 19b upstream from the distribution chamber 102b, and an electromagnetic on-off valve 19c upstream from the distribution chamber 102c. The electromagnetic on-off valves 19a to 19c may be open or closed to feed the distribution chambers 102a to 102c individually with the fuel gas. The electromagnetic on-off valves 19a to 19c in the present embodiment correspond to “on-off valves” in the aspects of the present invention.
As described above, each nozzle 101 feeds fuel gas to the specific burner 12 associated with it in advance, and the nozzles 101 that have received fuel gas from the distribution chamber 102a feed the fuel gas to the burners 12 in the burner set 12a. Likewise, the nozzles 101 that have received fuel gas from the distribution chamber 102b feed the fuel gas to the burners 12 in the burner set 12b, and the nozzles 101 that have received fuel gas from the distribution chamber 102c feed the fuel gas to the burners 12 in the burner set 12c. The electromagnetic on-off valves 19a to 19c may be open or closed to cause each of the burner sets 12a to 12c to individually start or stop feeding fuel gas to the burners 12. Each of the burner sets 12a to 12c may thus individually start or end the combustion of the fuel gas by the burners 12.
In the above water heater 1, when a user of the water heater 1 opens the hot-water supply faucet 24 on the hot-water supply channel 22, the heat exchanger 20 is fed with service water through the water supply channel 21. When the flow sensor 23 detects the flow rate of the service water reaching at least a predetermined flow rate, burners 12 start combustion. In accordance with intended thermal power, the degree of opening of the proportional valve 18 is controlled, and the electromagnetic on-off valves 19a to 19c are open or closed. This allows multi-level switching of the number of burners 12 to burn the fuel gas. The hot combustion gas generated in the combustion passes through the heat exchanger 20 above the combustion apparatus 10. During the passage, the hot combustion gas exchanges heat with the service water passing through the heat exchanger 20 to generate hot water, which flows through the hot-water supply channel 22 and out of the hot-water supply faucet 24. The combustion gas with the temperature lowered by the heat exchange is discharged from the water heater 1 through an outlet 2 above the heat exchanger 20.
The burner 12 includes combined metal plates and has two gas inlets 12o (upper gas inlets 12o and lower gas inlets 12o) in its side surface to receive fuel gas. When injected into each gas inlet 12o, fuel gas flows into the burner 12 through the gas inlets 12o together with the surrounding air. The fuel gas and air mix in the burner 12 into mixed gas, and then the mixed gas flows out through a plurality of burner ports 12f formed in the top surface of the burner 12. The mixed gas is ignited with the spark plug 14 (refer to
In correspondence with the two gas inlets 12o (upper and lower gas inlets) in the burner 12 according to the present embodiment, the nozzles 101 in the gas manifold 100 according to the present embodiment are arranged in two lines (or upper and lower lines). A pair of upper and lower nozzles 101 injects fuel gas into the upper and lower gas inlets 12o in the burner 12. As described above, the water heater 1 according to the present embodiment includes the 15 burners 12. Each burner 12 is associated with one pair of upper and lower nozzles 101, and thus the gas manifold 100 includes 30 (=15×2) nozzles 101 in total. As described above, the 15 burners 12 are grouped into the three burner sets 12a to 12c, and thus the 30 nozzles 101 for feeding fuel gas to the burners 12 can be grouped into a nozzle set 101a for feeding fuel gas to the burners 12 in the burner set 12a, a nozzle set 101b for feeding fuel gas to the burners 12 in the burner set 12b, and a nozzle set 101c for feeding fuel gas to the burners 12 in the burner set 12c.
As shown in
As shown in the figure, the manifold body 110 has three recesses 112a to 112c located in line and a channel groove 111 immediately below the recesses 112a to 112c. When the manifold cover 130 is fitted to the manifold body 110 with the sealing member 120 between them, the recess 112a is covered with the manifold cover 130 to define the distribution chamber 102a (refer to
The recess 112a also has, in its lower part (adjacent to the channel groove 111), a valve port 114a for the electromagnetic on-off valve 19a (refer to
In addition, the valve chambers for the electromagnetic on-off valves 19a to 19c each have an opening in the side corresponding to the side wall of the channel groove 111. An opening 113b in
As shown in
In this manner, the channel groove 111 connects to the recess 112a (refer to
As described above with reference to
As described above with reference to
The fuel gas flowing in the main channel 104 is, as indicated by thick dash-dot arrows in
The gas manifold 100 according to the present embodiment thus, as shown in
The bypass channel 106 bypasses the branches of the distribution channel 105a and the distribution channel 105b from the main channel 104. The flow rate of fuel gas flowing in the bypass channel 106 is less likely to be affected by the flow rate of fuel gas fed to the distribution chamber 102a or the distribution chamber 102b. Thus, the distribution chamber 102c (the maximum distribution channel) is fed with fuel gas at a stable flow rate irrespective of the feeding state of fuel gas into the distribution chamber 102a and the distribution chamber 102b.
In the example shown in
Thus, when the manifold cover 130 is fitted to the manifold body 110 with the sealing member 120 between them, the channel groove 111 is covered with the sealing member 120 to define the main channel 104, and a channel is defined between the bypass groove 131 on the manifold cover 130 and the sealing member 120. This channel connects to an upstream area of the main channel 104 through the first hole 121 in the sealing member 120 and to a downstream area of the main channel 104 through the second hole 122, and thus serves as the bypass channel 106. When the main channel 104 is fed with fuel gas through the inlet 103 as described above (refer to
As described above, the gas manifold 100 according to the present embodiment includes the bypass channel 106 defined between the manifold cover 130 and the sealing member 120, allowing the distribution chamber 102c (the maximum distribution chamber) to be fed with fuel gas from the bypass channel 106 as well as the main channel 104. The mechanism described above with reference to
In the present embodiment, the bypass channel 106 defined between the manifold cover 130 and the sealing member 120 eliminates the space in the manifold body 110 to be used for the bypass channel 106. Thus, the manifold body 110 is designed easily.
The gas manifold 100 according to the present embodiment includes the bypass channel 106 between the manifold cover 130 and the sealing member 120. However, the bypass channel 106 may not be defined between the manifold cover 130 and the sealing member 120. For example, as illustrated in
Although the gas manifold 100 according to the present embodiment has been described, the present invention is not limited to the above embodiment, but may be modified variously without departing from the spirit and scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2020-047011 | Mar 2020 | JP | national |