Hydrocarbons that are in a gaseous state at atmospheric pressure and room temperature (e.g. 20° C.), are often transported as cold hydrocarbons, as by ship in liquid form such as LNG (liquified natural gas), at atmospheric pressure and −160° C. Another form of cold gaseous hydrocarbons that are ship-transported are hydrates (gas entrapped in ice). At the ship's destination, the LNG (or other gas) may be heated and flowed to an onshore distribution facility. Proposed prior art offloading stations have included a fixed platform extending up from the sea floor to a height above the sea surface and with a regas unit on the platform for heating the LNG. Because of fire dangers in dealing with LNG, rigid platforms, which minimize flexing joints, have previously been proposed for offloading LNG from a tanker and heating it to gassify it.
The cost of a fixed platform is high even at moderate depths, and at increasing depths (e.g. over 50 meters) the costs of fixed platforms increase dramatically. In addition, if the platform lies in an open sea it is difficult to moor a tanker to the platform because the tanker shifts position and heading with changing winds, waves and currents. An offshore LNG offloading and regas station which avoided the use of fixed platforms, and which provided the high reliability demanded in LNG offloading, heating and storage, would lower the cost of such stations and allow them to be used in situations where they previously were uneconomical.
In accordance with one embodiment of the present invention, a relatively low-cost system is provided for offloading cold hydrocarbons, and especially LNG (liquified natural gas), and transporting the gas to an onshore gas distribution station. The system includes a floating structure such as a barge at the sea surface that is moored so it weathervanes. A tanker carrying LNG attaches itself to the floating structure so they weathervane together. A regas unit which heats the LNG, usually by transferring heat from sea water, transforms the LNG into gas that can be more easily passed through moderate cost hoses or pipes and eventually to the onshore distribution station.
A new tanker arrives at the floating structure perhaps every week, and efforts are made to offload the tanker as fast as possible, perhaps in one day. To provide a steady flow of gas to the onshore distribution station, much of the rapidly-offloaded and regased LNG is stored in an underground (and usually undersea) cavern. The gas is slowly flowed from the cavern along a seafloor pipeline to the onshore distribution station, to provide a steady gas supply without requiring a large gas storage facility at the onshore station.
The regas unit and pumps for pressurizing gas, are preferably electrically energized for safety and convenience. Electric power on the order of 60 megawatts may be required. Such electrical energy can be obtained from a power generator apparatus on the floating structure that uses gas from the tanker for fuel. The regas unit may require electric power only part of the time, such as one day per week when LNG is being offloaded and regassed. The rest of the time (e.g. several days per week) electric power from the power generator apparatus is passed through a seafloor electric power line to an onshore electric distribution facility. The generation of electric power at the floating structure is economical because the gas fuel is already available and because a large amount of expensive land is not required to isolate the power generation apparatus from onshore homes and businesses for safety.
Electric power instead can be obtained from an onshore electric power distribution facility. In that case, an electric power line extends from the onshore facility and along the sea floor and up to the floating structure.
The novel features of the invention are set forth with particularity in the appended claims. The invention will be best understood from the following description when read in conjunction with the accompanying drawings.
The flexible riser 32 and connections 50, 52 at its opposite ends, can be made highly reliable. In addition, reliable shutoff valves are present at 54 on the platform and on the barge. During the past forty years or so, large numbers of flexible risers have been designed, constructed and used in offshore installations to produce hydrocarbons (usually including gas and liquid) from undersea reservoirs. Experience gained from such use has resulted in high reliability. By using such reliable flexible risers and shutoff valves in the present floating offloading and injection station, applicant is able to achieve the same high standards of reliability previously achieved with fixed platforms, but at far lower cost.
During regasification of LNG on a vessel and offloading of gas from the vessel, some of the offloaded gas is injected via riser 72 into the cavern 30 while other gas is transferred through riser 74 to the shore station. When no LNG is being offloaded, gas is removed from the cavern via the riser 72, its pressure is boosted by pressure boosting unit 84, and sent to the shore station via riser 74. Thus, riser 72 is used bi-directionally.
In
In
The particular floating structure 154 of
Energy is required to power the propulsion and ballast systems, as well as the regas systems. The regas system will use pumped seawater, as to warm an intermediate liquid that warms LNG or even to directly warm the LNG to produce hydrocarbons in a gaseous state. The hydrocarbons are pumped into a cavern 191 (
It is also possible to provide a small power plant, indicated at 200 in
In environments that are subject to occasional harsh weather conditions such as a heavy storm or hurricane, the riser can be constructed to be disconnected from the floating structure, and laid down on the sea floor or floated in a submerged position. The floating structure can be disconnected from the riser and from its mooring system, and can be towed away, to be later reinstalled.
Thus, the invention provides a gas offloading and transfer system for transferring gas from a tanker (wherein the gas is stored in a liquid-like state such as LNG) to an undersea or underground cavern and/or to the shore. The system can be constructed at moderate cost even when it must lie in a sea of considerable depth. The system includes a floating structure such as a barge, which is moored, as by catenary chains, to the seafloor. In most cases the floating structure is moored so it weathervanes, to change direction so as to always face the sea in the direction of least resistance. A tanker that brings the gas to the barge is moored to weathervane with the floating structure, so the tanker and floating structure can remain attached to one another during offloading in the open sea. A weathervaning tanker could not be easily moored to a fixed platform in an open sea. In one system, the floating structure is a weathervaning barge. In another system, the floating structure is a direct attachment floating structure that, by itself, may not have a bow end that turns to always faces upwind, but which attaches to a tanker that is moored and thereby weathervanes with the tanker. An electric current-carrying power cable can extend between the floating structure and a shore-based electric power structure, to deliver electric power to the floating structure to energize pumps and other equipment, or to carry electricity from a power plant on the floating structure to shore when not used at the floating structure.
Applicant claims priority from U.S. Provisional application Ser. No. 60/504,449 filed 19 Sep. 2003 and Ser. No. 60/515,767 filed 30 Oct. 2003.
Number | Name | Date | Kind |
---|---|---|---|
4270611 | Arnaudeau et al. | Jun 1981 | A |
4299260 | Jansen | Nov 1981 | A |
4301840 | Jansen | Nov 1981 | A |
5129759 | Bishop | Jul 1992 | A |
6298671 | Kennelley et al. | Oct 2001 | B1 |
20020134455 | Emblem et al. | Sep 2002 | A1 |
20030051875 | Wilson | Mar 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20050061395 A1 | Mar 2005 | US |
Number | Date | Country | |
---|---|---|---|
60515767 | Oct 2003 | US | |
60504449 | Sep 2003 | US |