Gas only nozzle

Information

  • Patent Grant
  • 6460326
  • Patent Number
    6,460,326
  • Date Filed
    Wednesday, November 28, 2001
    23 years ago
  • Date Issued
    Tuesday, October 8, 2002
    22 years ago
Abstract
A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozzle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.
Description




BACKGROUND OF THE INVENTION




The invention relates to a fuel nozzle and more particularly to an end cap plate of a “Dual Fuel” nozzle design that has been configured for gas only use and to an adaptation for cooling the same.




Gas turbines for power generation are generally available with fuel nozzles configured for either “Dual Fuel” or “Gas Only”. “Gas Only” refers to operation burning, for example, natural gas and “Dual Fuel” refers to having the capability of operation burning either natural gas or liquid fuel. The dual fuel configuration is generally applied with oil used as a backup fuel, if natural gas is unavailable. The gas only configuration is offered in order to reduce costs as the nozzle parts and all associated equipment required for liquid fuel operation are not supplied. In general, fuel nozzles are designed to have dual fuel capability and the gas only version is a modification to the dual fuel design in which the dual fuel parts, which include the oil, atomizing air and water passages, are removed from the nozzle. The removal of these components exposes a cylindrical, open region along the axial center line of the nozzle to hot combustion gas. An example of a dual fuel nozzle modified to remove the dual (liquid) fuel parts is illustrated in FIG.


1


. This nozzle is disclosed in detail in copending application Ser. No. 09/021,081, filed Feb. 10, 1998, the entire disclosure of which is incorporated herein by this reference.





FIG. 1

is a cross-section through the burner assembly. The burner assembly is divided into four regions by function including an inlet flow conditioner


7


, an air swirler assembly with natural gas fuel injection (referred to as a nozzle assembly)


2


, an annular fuel air mixing passage


3


, and a central diffusion flame natural gas fuel swozzle assembly


13


.




Air enters the burner from a high pressure plenum


5


, which surrounds the entire assembly except the discharge end, which enters the combustor reaction zone


6


. Most of the air for combustion enters the premixer via the inlet flow conditioner (IFC)


7


. The IFC includes an annular flow passage


8


that is bounded by a solid cylindrical inner wall


9


at the inside diameter, a perforated cylindrical outer wall


10


at the outside diameter, and a perforated end cap


11


at the upstream end. In the center of the flow passage


8


is one or more annular turning vanes


12


. Premixer air enters the IFC


7


via the perforations in the end cap


11


and the cylindrical outer wall


10


.




At the center of the burner assembly is a conventional diffusion flame fuel nozzle tip


13


having a slotted gas tip


14


, which receives combustion air from an annular passage


15


and natural gas fuel through gas holes


16


. The body of this fuel nozzle includes a bellows


17


to compensate for differential thermal expansions between this nozzle and the premixer. In the center of this diffusion flame fuel nozzle is a cavity


18


, which, as noted above, receives the liquid fuel assembly to provide dual fuel capability. In the dual fuel configuration, during gas fuel operation, the oil, atomizing air and water passages in this region are purged with cool air to block hot gas from entering the passages when not in use. When the nozzle is configured for gas only operation, cavity


18


must be capped at the distal end of the nozzle to block hot combustion gas from entering the center, open region which may result in mechanical damage due to the high temperature. Since the end cap plate is exposed to hot combustion gas, it must be cooled.




In the past, cooling of the end cap plate used to cover the open region at the nozzle tip in a conversion from a dual fuel to a gas only configuration has been accomplished using the gas fuel as the cooling medium. More specifically, because removal of the dual fuel components eliminates the structure that formed the inner wall of the gas fuel passage, a part of the gas fuel can effuse through tiny holes in the end cap plate (not shown in

FIG. 1

) to cool the same while the bulk of the fuel passes through the normal gas hole injectors


16


which are located between the air swirler vanes. This is a very simplified design for converting from a dual fuel to gas only nozzle. While generally effective, this approach is undesirable in view of the need to maintain low emissions over the gas turbine operating range. Diverting gas fuel for cooling from the desired injection points between the air swirler vanes and injecting that gas at a different location through tiny holes in an end cap plate (not shown in

FIG. 1

) for cooling reduces the premixing of gas fuel and air which is essential for low emissions performance.




Another possible method for cooling the end cap plate is to use the cooling air supplied from the nozzle purge air system. The nozzle purge air system supplies air cooled so that its temperature does not exceed 750° F. As briefly described above with reference to purging the liquid fuel components during gas fuel operation, this air is generally applied to purging the gas fuel passages when not in use to resist the back-flow of hot combustion gas into the gas passages, manifolds and pipings. The limit of not exceeding an air temperature of 750° F. relates to the possible auto-ignition of gas fuel coming into contact with air exceeding that temperature. Since an end cap plate passage adapted to receive purge air for cooling rather than gas fuel would never have gas fuel present, it would be inefficient to use specially cooled air from the nozzle purge system to cool an end cap plate.




BRIEF SUMMARY OF THE INVENTION




The existing fuel nozzle purge system does not have the capacity to supply the additional amount of air required for cooling the gas only nozzle end cap plate, nor would such a use of that specially cooled air be efficient.




It has been determined, however, that compressor discharge air would be an adequate cooling medium. Thus, a diffusion flame nozzle gas tip has been designed to allow for the use of compressor discharge air to cool the end cap plate. The appropriate amount of compressor discharge air is extracted from annular passage


15


into the central region


18


and is emitted through tiny (effusion) holes in the end cap plate to produce the desired cooling.




Thus, the invention is embodied in a method for cooling the end cap plate of a gas only fuel nozzle in which compressor discharge air is supplied as the cooling medium. The method of the invention advantageously replaces the requirement to use either cooling air from the existing nozzle purge system or gas fuel as the cooling medium. In accordance with an embodiment of the invention, this is accomplished by providing a diffusion flame nozzle gas tip that diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to the cavity vacated by removal of the dual fuel components so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap tip.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is an isometric view of a fuel nozzle with the liquid fuel parts removed from the center portion of the nozzle; and





FIG. 2

is a cross-sectional view of a diffusion gas tip for a gas only nozzle that embodies the invention.











DETAILED DESCRIPTION OF THE INVENTION




As described above,

FIG. 1

is an isometric view of a fuel nozzle with the liquid fuel parts removed from the center portion of the nozzle. With the liquid fuel parts of the dual fuel nozzle removed for the gas only configuration, the cavity must be closed at the distal end in order to preclude hot combustion gas from flowing into this region and to direct the gas fuel to and through the gas holes.




With reference to

FIG. 2

, an embodiment of a diffusion gas tip


20


specifically for the gas only nozzle of the invention is shown. End cap plate


22


which closes the cavity formed by removal of the liquid fuel parts must be cooled because its distal surface


24


is exposed to hot combustion gas. To cool the end cap plate, compressor discharge air is diverted from annular channel


26


, which feeds air through the diffusion air swirl vanes, and directed into a cavity


28


defined behind the end cap plate


22


. In the illustrated embodiment, four circular, radial holes


30


transfer the compressor discharge air from annular outer passage


26


to inner cavity


28


. Moreover, in the illustrated embodiment, these four radial cooling air transfer passages


30


are equally spaced circumferentially of the cavity


28


and are preferably equally spaced between the axial gas fuel passages


32


that transfer gas from the center nozzle cavity


34


to the gas injection holes


36


in the air swirl vanes


38


. In the illustrated embodiment, an annular gas plenum


40


receives the gas from gas passages


32


for distribution to gas injection holes


36


. The size of passages


30


and their orientation relative to the longitudinal axis of the nozzle may be varied as deemed necessary or desirable to determine the amount of compressor bleed air diverted toward cavity


28


, it being understood, however, that the primary limiting factor with respect to cooling air flow would be the effusion openings


42


of the end cap plate


22


, which will determine the volume of flow therethrough.




In the central air cavity


28


, air received through passages


30


is directed to flow through small effusion holes


42


in the end cap plate


22


, thereby cooling not only the proximal surface


44


of the end cap plate


22


, but also to enhance the cooling of the entire plate structure. It is to be appreciated that the amount of compressor discharge air diverted for the end cap plate cooling represents only a very small percentage of that passing through the annular passage


26


that feeds the diffusion nozzle air swirl vanes


38


.




In the illustrated embodiment, the nozzle tip is comprised of a tip part


46


and a flow diverter part


48


. The diverter part


48


is secured to the tip part


46


as by brazed joints shown at


50


. The tip part


46


is in turn brazed to the nozzle structure as at


52


. The tip part


46


defines the end cap plate


22


, the diffusion nozzle swirl vanes


38


, an outer peripheral wall


54


of gas plenum


40


, and a receiver


56


for receiving a cavity defining wall


58


of the diverter part


48


. In the illustrated embodiment, the tip part


46


defines a distal portion


60


of the cavity


27


. The flow diverter part


48


defines a remainder of the cavity


28


, compressor bleed air diverting passages


30


for diverting air to cavity


28


for cooling the end cap plate


22


and the axial passages


32


for gas fuel flow from the center nozzle cavity


34


to and through the fuel injection holes


36


.




As will be appreciated, the above described diffusion gas tip allows for the use of compressor discharge air to cool the end cap plate on the distal tip of the gas only fuel nozzle and replaces the use of either gas fuel or cooled air from the existing nozzle air purge system for this function. Also, the invention advantageously requires modification of only the diffusion tip sub-assembly to convert from a dual fuel to a gas only fuel nozzle design. The impact of this modification for the gas only nozzle would not be expected to substantially alter the gas fuel operational characteristics of the nozzle from the gas only mode of the dual fuel configuration.




While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.



Claims
  • 1. A gas only nozzle comprising:an outer peripheral wall; an air flow passage defined within said outer wall and extending at least part circumferentially thereof; a central gas fuel flow passage; and a nozzle tip fixed with respect to said outer peripheral wall at a distal end thereof for substantially blocking said central gas flow passage, said nozzle tip including an end cap plate; said nozzle tip defining at least one cooling air passage ending in multiple holes substantially clustered around the center of said plate for diverting a portion of the air flowing through said air flow passage to cool the nozzle end cap plate thereof and said nozzle tip defining at least one gas fuel passage radially outside of said holes for directing gas fuel flowing through said central gas flow passage to and through gas injection holes defined about a periphery of said nozzle end cap plate.
  • 2. A gas only nozzle as in claim 1, wherein said nozzle tip includes a cavity defining structure disposed adjacent to a proximal surface of said nozzle end cap plate for defining an air cavity adjacent to said nozzle end cap plate, said cavity defining structure defining said at least one cooling air passage and said at least one gas fuel passage.
  • 3. A gas only nozzle as in claim 1, further comprising a wall disposed peripherally of said cavity defining structure and spaced therefrom to define a gas plenum therebetween for receiving and distributing gas fuel flow flowing thereto through said at least one gas fuel passage.
  • 4. A gas only nozzle as in claim 2, wherein said nozzle tip is composed of a tip part and a diverter part, said tip part comprising said end cap plate and said diverter part comprising said cavity defining structure.
  • 5. A gas only nozzle as in claim 4, wherein said tip part and said diverter part are brazed so as to be fixedly secured as an integrated unit.
  • 6. A gas only nozzle as in claim 1, wherein said at least one gas fuel passage extends in a direction generally parallel to a longitudinal axis of said nozzle and wherein said at least one cooling air passage is oriented in a direction generally transverse to a longitudinal axis of said nozzle so as to extend generally radially with respect to said longitudinal axis.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a division of application Ser. No. 09/652,176, filed Aug. 31, 2000, now U.S. Pat. No. 6,363,724, the entire content of which is hereby incorporated by reference in this application.

FEDERAL RESEARCH STATEMENT

This Invention was made with Government support under Contract No. DE-FC21-95MC31176 awarded by the Department of Energy. The Government has certain rights in this invention.

US Referenced Citations (26)
Number Name Date Kind
2801134 Neugebaur Jul 1957 A
3088279 Diedrich May 1963 A
3682390 Cheshire Aug 1972 A
3735930 Mori May 1973 A
4141213 Ross Feb 1979 A
4589260 Krockow May 1986 A
5156002 Mowill Oct 1992 A
5161379 Jones Nov 1992 A
5211004 Black May 1993 A
5235814 Leonard Aug 1993 A
5259184 Borkowicz Nov 1993 A
5274995 Horner Jan 1994 A
5288021 Sood Feb 1994 A
5351477 Joshi Oct 1994 A
5361586 McWhirter Nov 1994 A
5404711 Rajput Apr 1995 A
5450725 Takahara Sep 1995 A
5451160 Becker Sep 1995 A
5481866 Mowill Jan 1996 A
5572862 Mowill Nov 1996 A
5628182 Mowill May 1997 A
5636510 Beer Jun 1997 A
5657632 Foss Aug 1997 A
5794449 Razdan Aug 1998 A
5816049 Joshi Oct 1998 A
5833141 Bechtel Nov 1998 A
Foreign Referenced Citations (4)
Number Date Country
818 072 Oct 1951 DE
1 215 443 Apr 1966 DE
1 444 673 Aug 1976 GB
WO 98 11383 Mar 1998 WO
Non-Patent Literature Citations (178)
Entry
U.S. patent application Ser. No. 09/811,764, Battaglioli et al., filed Mar. 20, 2001.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 1, ““F” Technology—the First Half Million Operating Hours”, H.E. Miller, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 2, “GE Heavy-Duty Gas Turbine Performance Characteristics”, F. J. Brooks, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 3, “9EC 50Hz 170-MW Class Gas Turbine”, A. S. Arrao, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 4, “MWS6001FA—An Advanced-Technology 70-MW Class 50/60 Hz Gas Turbine”, Ramachandran et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 5, “Turbomachinery Technology Advances at Nuovo Pignone”, Benvenuti et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 6, “GE Aeroderivative Gas Turbines—Design and Operating Features”, M.W. Horner, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 7, “Advance Gas Turbine Materials and Coatings”, P.W. Schilke, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 8, “Dry Low NOx Combustion Systems for GE Heavy-Duty Turbines”, L. B. Davis, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 9, “GE Gas Turbine Combustion Flexibility”, M. A. Davi, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 10, “Gas Fuel Clean-Up System Design Considerations for GE Heavy-Duty Gas Turbines”, C. Wilkes, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 11, “Integrated Control Systems for Advanced Combined Cycles”, Chu et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 12, “Power Systems for the 21st Century “H” Gas Turbine Combined Cycles”, Paul et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 13, “Clean Coal and Heavy Oil Technologies for Gas Turbines”, D. M. Todd, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 14, “Gas Turbine Conversions, Modifications and Uprates Technology”, Stuck et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 15, “Performance and Reliability Improvements for Heavy-Duty Gas Turbines, ”J.R. Johnston, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 16, “Gas Turbine Repair Technology”, Crimi et al, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 17, “Heavy Duty Turbine Operating & Maintenance Considerations”, R. F. Hoeft, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 18, “Gas Turbine Performance Monitoring and Testing”, Schmitt et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 19, “Monitoring Service Delivery System and Diagnostics”, Madej et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 20, “Steam Turbines for Large Power Applications”, Reinker et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 21, “Steam Turbines for Ultrasupercritical Power Plants”, Retzlaff et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 22, “Steam Turbine Sustained Efficiency”, P. Schofield, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 23, “Recent Advances in Steam Turbines for Industrial and Cogeneration Applications”, Leger et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 24, “Mechanical Drive Steam Turbines”, D. R. Leger, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 25, “Steam Turbines for STAG™ Combined-Cycle Power Systems”, M. Boss, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 26, “Cogeneration Application Considerations”, Fisk et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 27, “Performance and Economic Considerations of Repowering Steam Power Plants”, Stoll et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 28, “High-Power-Density™ Steam Turbine Design Evolution”, J. H. Moore, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 29, “Advances in Steam Path Technologies”, Cofer, IV, et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 30, “Upgradable Opportunities for Steam Turbines”, D. R. Dreier, Jr., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 31, “Uprate Options for Industrial Turbines”, R. C. Beck, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 32, “Thermal Performance Evaluation and Assessment of Steam Turbine Units”, P. Albert, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 33, “Advances in Welding Repair Technology” J. F. Nolan, Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 34, “Operation and Maintenance Strategies to Enhance Plant Profitability”, MacGillivray et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 35, “Generator Insitu Inspections”, D. Stanton.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 36, “Generator Upgrade and Rewind”, Halpern et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 37, “GE Combined Cycle Product Line and Performance”, Chase, et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 38, “GE Combined Cycle Experience”, Maslak et al., Aug. 1996.
“39th GE Turbine State-of-the-Art Technology Seminar”, Tab 39, “Single-Shaft Combined Cycle Power Generation Systems”, Tomlinson et al., Aug. 1996.
“Advanced Turbine System Program—Conceptual Design and Product Development”, Annual Report, Sep. 1, 1994-Aug. 31, 1995.
“Advanced Turbine Systems (ATS Program) Conceptual Design and Product Development”, Final Technical Progress Report, vol. 2- Industrial Machine, Mar. 31, 1997, Morgantown, WV.
“Advanced Turbine Systems (ATS Program), Conceptual Design and Product Development”, Final Technical Progress Report, Aug. 31, 1996, Morgantown, WV.
“Advanced Turbine Systems (ATS) Program, Phase 2, Conceptual Design and Product Development”, Yearly Technical Progress Report, Reporting Period: Aug. 25, 1993-Aug. 31, 1994.
“Advanced Turbine Systems” Annual Program Review, Preprints, Nov. 2-4, 1998, Washington, D.C. U.S. Department of Energy, Office of Industrial Technologies Federal Energy Technology Center.
“ATS Conference” Oct. 28, 1999, Slide Presentation.
“Baglan Bay Launch Site”, various articles relating to Baglan Energy Park.
“Baglan Energy Park”, Brochure.
“Commercialization”, Del Williamson, Present, Global Sales, May 8, 1998.
“Environmental, Health and Safety Assessment: ATS 7H Program (Phase 3R) Test Activities at the GE Power Systems Gas Turbine Manufacturing Facility, Greenville, SC”, Document #1753, Feb. 1998, Publication Date: Nov. 17, 1998, Report Nos. DE-FC21-95MC31176-11.
“Exhibit panels used at 1995 product introduction at PowerGen Europe”.
“Extensive Testing Program Validates High Efficiency, reliability of GE's Advanced “H” Gas Turbine Technology”, Press Information, Press Release, 96-NR14, Jun. 26, 1996, H Technology Tests/pp. 1-4.
“Extensive Testing Program Validates High Efficieny, Reliability of GE's Advanced “H” Gas Turbine Technology”, GE Introduces Advanced Gas Turbine Technology Platform: First to Reach 60& Combined-Cycle Power Plant Efficiency, Press Information, Press Release, Power-Gen Europe '95, 95-NRR15, Advanced Technology Introduction/pp. 1-6.
“Gas, Steam Turbine Work as Single Unit in GE's Advanced H Technology Combined-Cycle System”, Press Information, Press Release, 95-NR18, May 16, 1995, Advanced Technology Introduction/pp. 1-3.
“GE Breaks 60% Net Efficiency Barrier” paper, 4 pages.
“GE Business Share Technologies and Experts to Develop State-Of-The-Art Products”, Press Information, Press Release 95-NR10, May 16, 1995, GE Technology Transfer/pp. 1-3.
“General Electric ATS Program Technical Review, Phase 2 Activities”, T. Chance et al., pp. 1-4.
“General Electric's DOE/ATS H Gas Turbine Development” Advanced Turbine Systems Annual Review Meeting, Nov. 7-8, 1996, Washington, D.C., Publication Release.
“H Technology Commercialization”, 1998 MarComm Activity Recommendation, Mar., 1998.
“H Technology”, Jon Ebacher, VP, Power Gen Technology, May 8, 1998.
“H Testing Process”, Jon Ebacher, VP, Power Gen Technology, May 8, 1998.
“Heavy-Duty & Aeroderivative Products” Gas Turbines, Brochure, 1998.
“MS7001H/MS9001H Gas Turbine, gepower.com website for PowerGen Europe” Jun. 1-3 going public Jun. 15, (1995).
“New Steam Cooling System is a Key to 60% Effiency For GE “H” Technology Combined-Cycle Systems”, Press Information, Press Release, 95-NRR16, May 16, 1995, H Technology/pp. 1-3.
“Overview of GE's H Gas Turbine Combined Cycle”, Jul. 1, 1995 to Dec. 31, 1997.
“Power Systems for the 21st Century—“H” Gas Turbine Combined Cycles”, Thomas C. Paul et al., Report.
“Power-Gen '96 Europe”, Conference Programme, Budapest, Hungary, Jun. 26-28, 1996.
“Power-Gen International”, 1998 Show Guide, Dec. 9-11, 1998, Orange County Convention Center, Orlando, Florida.
“Press Coverage following 1995 product annoucement”; various newspaper clippings relating to improved generator.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. I, “Industrial Advanced Turbine Systems Program Overview”, D.W. Esbeck, p. 3-13, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. I, “H Gas Turbine Combined Cycle”, J. Corman, p. 14-21, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. I, “Overview of Westinghouse's Advanced Turbine Systems Program”, Bannister et al., p. 22-30, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Program Review Meeting”, vol. I, “Allison Engine ATS Program Technical Review”, D. Mukavetz, p. 31-42, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. I, “Advanced Turbine Systems Program Industrial System Concept Development”, S. Gates, p. 43-63, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. I, “Advanced Turbine System Program Phase 2 Cycle Selection”, Latcovitch, Jr., p. 64-69, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. I, “General Electric ATS Program Technical Review Phase 2 Activities”, Chance et al., p. 70-74, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. I, “Technical Review of Westinghouse's Advanced Turbine Systems Program”, Diakunchak et al., p. 75-86, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. I, “Advanced Combustion Turbines and Cycles: An EPRI Perspective”, Touchton et al., p. 87-88, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. I, “Advanced Turbine Systems Annual Program Review”, William E. Koop, p. 89-92, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. I, “The AGTSR Consortium: An Update”, Fant et al., p. 93-103, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. I, “Overview of Allison/AGTSR Interactions”, Sy A. Ali, p. 103-106, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. I, “Design Factors for Stable Lean Premix Combustion”, Richards et al., p. 107-113, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. I, “Ceramic Stationary as Turbine”, M. van Roode, p. 114-147, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. I, “DOE/Allison Ceramic Vane Effort”, Wenglarz et al., p. 148-151, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. I, “Materials/Manufacturing Element of the Advanced Turbine Systems Program”, Karnitz et al., p. 152-160, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. I, “Land-Based Turbine Casting Initiative”, Mueller et al., p. 161-170, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. I, “Turbine Airfoil Manufacturing Technology”, Kortovich, p. 171-181, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. I, “Pratt & Whitney Thermal Barrier Coatings”, Bornstein et al., p. 182-193, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. I, “Westinhouse Thermal Barrier Coatings”, Goedjen et al., p. 194-199, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. I, “High Performance Steam Development”, Duffy et al., p. 200-220, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. II, “Lean Premixed Combustion Stabilized by Radiation Feedback and heterogeneous Catalysis”, Dibble et al., p. 221-232, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. II, Rayleigh/Raman/LIF Measurements in a Turbulent Lean Premixed Combustor, Nandula et al. p. 233-248, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. II, “Lean Premixed Flames for Low Nox Combustors”, Sojka et al., p. 249-275, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. II, “Functionally Gradient Materials for Thermal Barrier Coatings in Advanced Gas Turbine Systems”, Banovic et al., p. 276-280, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. II, “Advanced Turbine Cooling, Heat Transfer, and Aerodynamic Studies”, Han et al., p. 281-309, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. II, “Life Prediction of Advanced Materials for Gas Turbine Application”, Zamrik et al., p. 310-327, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. II, “Advanced Combustion Technologies for Gas Turbine Power Plants”, Vandsburger et al., p. 328-352, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. II, “Combustion Modeling in Advanced Gas Turbine Systems”, Smoot et al., p. 353-370, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. II, “Heat Transfer in a Two-Pass Internally Ribbed Turbine Blade Coolant Channel with Cylindrical Vortex Generators”, Hibbs et al. p. 371-390, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. II, “Rotational Effects on Turbine Blade Cooling”, Govatzidakia et al., p. 391-392, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. II, “Manifold Methods for Methane Combustion”, Yang et al., p. 393-409, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. II, “Advanced Multistage Turbine Blade Aerodynamics, Performance, Cooling, and Heat Transfer”, Fleeter et al., p. 410-414, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting, vol. II”, The Role of Reactant Unmixedness, Strain Rate, and Length Scale on Premixed Combustor Performance, Samuelsen et al., p. 415-422, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. II, “Experimental and Computational Studies on Film Cooling With Compound Angle Injection”, Goldstein et al., p. 423-451, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. II, “Compatibility of Gas Turbine Materials with Steam Cooling”, Desai et al., p. 452-464, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. II, “Use of a Laser-Induced Fluorescence Thermal Imaging System for Film Cooling Heat Transfer Measurement”, M. K. Chyu, p. 465-473, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. II, Effects of Geometry on Slot-Jet Film Cooling Performance, Hyams et al., p. 474-496 Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. II, “Steam as Turbine Blade Coolant: Experimental Data Generation”, Wilmsen et al., p. 497-505, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. II, “Combustion Chemical Vapor Deposited Coatings for Thermal Barrier Coating Systems”, Hampikian et al., p. 506-515, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. II, “Premixed Burner Experiments: Geometry, Mixing, and Flame Structure Issues”, Gupta et al., p. 516-528, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. II, “Intercooler Flow Path for Gas Turbines: CFD Design and Experiments”, Agrawal et al., p. 529-538, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. II, “Bond Strength and Stress Measurements in Thermal Barrier Coatings”, Gell et al., p. 539-549, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. II, “Active Control of Combustion Instabilities in Low NOx Gas Turbines”, Zinn et al., p. 550-551, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. II, “Combustion Instability Modeling and Analysis”, Santoro et al., p. 552-559, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. II, “Flow and Heat Transfer in Gas Turbine Disk Cavities Subject to Nonuniform External Pressure Field”, Roy et al., p. 560-565, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. II, “Heat Pipe Turbine Vane Cooling”, Langston et al., p. 566-572, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. II, “Improved Modeling Techniques for Turbomachinery Flow Fields”, Lakshminarayana et al., p. 573-581, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, vol. II, “Advanced 3D Inverse Method for Designing Turbomachine Blades”, T. Dang, p. 582, Oct., 1995.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “ATS and the Industries of the Future”, Denise Swink, p. 1, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Gas Turbine Association Agenda”, William H. Day, p. 3-16, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Power Needs in the Chemical Industry”, Keith Davidson, p. 17-26, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Advanced Turbine Systems Program Overview”, David Esbeck, p. 27-34, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Westinghouse's Advanced Turbine Systems Program”, Gerard McQuiggan, p. 35-48, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Overview of GE's H Gas Turbine Combined Cycle”, Cook et al., p. 49-72, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Allison Advanced Simple Cycle Gas Turbine System”, William D. Weisbrod, p. 73-94, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “The AGTSR Industry-University Consortium”, Lawrence P. Golan, p. 95-110, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “NOx and CO Emissions Models for the Gas-Fired Lean-Premixed Combustion Turbines”, A. Mellor, p. 111-122, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Methodologies for Active Mixing and Combustion Control”, Uri Vandsburger, p. 123-156, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Combustion Modeling in Advanced Gas Turbine Systems”, Paul O. Hedman, p. 157-180, Nov., 19967.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Manifold Methods for Methane Combustion”, Stephen B. Pope, p. 181-188, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Review Meeting”, “The Role of Reactant Unmixedness, Strain Rate, and Length Scale on Premixed Combustor Performance”, Scott Samuelsen, p. 189-210, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Effect of Swirl and Momentum Distribution on Temperature Distribution in Premixed Flames”, Ashwani K. Gupta, p. 211-232, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Combustion Instability Studies Application to Land-Based Gas Turbine Combustors”, Robert J. Santoro, p. 233-252.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, Active Control of Combustion Instabilities in Low NOx Turbines, Ben T. Zinn, p. 253-264, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Life Prediction of Advanced Materials for Gas Turbine Application,” Sam Y. Zamrik, p. 265-274, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Combustion Chemical Vapor Deposited Coatings for Thermal Barrier Coating Systems”, W. Brent Carter, p. 275-290, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Compatibility of Gas Turbine Materials with Steam Cooling”, Vimal Desai, p. 291-314, Nov., 1996.
“Proceedings of the Advanced Turbine Annual Program Review Meeting”, “Bond Strength and Stress Measurements in Thermal Barrier Coatings”, Maurice Gell, p. 315-334, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Advanced Multistage Turbine Blade Aerodynamics, Performance, Cooling and Heat Transfer”, Sanford Fleeter, p. 335-356, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Flow Characteristics of an Intercooler System for Power Generating Gas Turbines”, Ajay K. Agrawal, p. 357-370, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Improved Modeling Techniques for Turbomachinery Flow Fields”, B. Lakshiminarayana, p. 371-392, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Development of an Advanced 3d & Viscous Aerodynamics Design Method for Turbomachine Components in Utility and Industrial Gas Turbine Applications”, Thong Q. Dang, p. 393-406, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Advanced Turbine Cooling, Heat Transfer, and Aerodynamic Studies”, Je-Chin Han, p. 407-426, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Heat Transfer in a Two-Pass Internally Ribbed Turbine Blade Coolant Channel with Vortex Generators”, S. Acharya, p. 427-446.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Experimental and Computational Studies of Film Cooling with Compound Angle Injection”, R. Goldstein, p. 447-460, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Study of Endwall Film Cooling with a Gap Leakage Using a Thermographic Phosphor Fluorescence Imaging System”, Mingking K. Chyu, p. 461-470, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Steam as a Turbine Blade Coolant: External Side Heat Transfer”, Abraham Engeda, p. 471-482, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Flow and Heat Transfer in Gas Turbine Disk Cavities Subject to Nonuniform External Pressure Field”, Ramendra Roy, p. 483-498, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Closed-Loop Mist/Steam Cooling for Advanced Turbine Systems”, Ting Wang, p. 499-512, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Heat Pipe Turbine Vane Cooling”, Langston et al., p. 513-534, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “EPRI's Combustion Turbine Program: Status and Future Directions”, Arthur Cohn, p. 535,-552 Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “ATS Materials Support”, Michael Karnitz, p. 553-576, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Land Based Turbine Casting Initiative”, Boyd A. Mueller, p. 577-592, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Turbine Airfoil Manufacturing Technology”, Charles S. Kortovich, p. 593-622, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Hot Corrosion Testing of TBS's”, Norman Bornstein, p. 623-631, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Ceramic Stationary Gas Turbine”, Mark van Roode, p. 633-658, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Western European Status of Ceramics for Gas Turbines”, Tibor Bornemisza, p. 659-670, Nov., 1996.
“Proceedings of the Advanced Turbine Systems Annual Program Review Meeting”, “Status of Ceramic Gas Turbines in Russia”, Mark van Roode, p. 671, Nov., 1996.
“Status Report: The U.S. Department of Energy's Advanced Turbine systems Program”, facsimile dated Nov. 7, 1996.
“Testing Program Results Validate GE's H Gas Turbine—High Efficiency, Low Cost of Electricity and Low Emissions”, Roger Schonewald and Patrick Marolda, (no date available).
“Testing Program Results Validate GE's H Gas Turbine—High Efficiency, Low Cost of Electricity and Low Emissions”, Slide Presentation—working draft, (no date available).
“The Next Step In H . . . For Low Cost Per kW-Hour Power Generation”, LP-1 PGE '98.
“Utility Advanced Turbine System (ATS) Technology Readiness Testing and Pre-Commercialization Demonstration”, Document #486040, Oct. 1-Dec. 31, 1996, Publication Date, Jun. 1, 1997, Report Nos.: DOE/MC/31176-5628.
“Utility Advanced Turbine System (ATS) Technology Readiness Testing—Phase 3”, Document #666274, Oct. 1, 1996-Sep. 30, 1997, Publication Date, Dec. 31, 1997, Report Nos.: DOE/MC/31176-10.
“Utility Advanced Turbine Systems (ATS) Technology Readiness Testing and Pre-Commercial Demonstration, Phase 3”, Document #486029, Oct. 1-Dec. 31, 1995, Publication Date, May 1, 1997, Report Nos.: DOE/MC/31176-5340.
“Utility Advanced Turbine System (ATS) Technology Readiness Testing and Pre-Commercial Demonstration—Phase 3”, Document #486132, Apr. 1-Jun. 30, 1976, Publication Date, Dec. 31, 1996, Report Nos.: DOE/MC/31176-5660.
“Utility Advanced Turbine System (ATS) Technology Readiness Testing and Pre-Commercial Demonstration—Phase 3”, Document #587906, Jul. 1-Sep. 30, 1995, Publication Date, Dec. 31, 1995, Report Nos.: DOE/MC/31176-5339.
“Utility Advanced Turbine Systems (ATS) Technology Readiness Testing and Pre-Commercial Demonstration” Document #666277, Apr. 1-Jun. 30, 1997, Publication Date, Dec. 31, 1997, Report Nos.: DOE/MC/31176-8.
“Utility Advanced Turbine System (ATS) Technology Readiness Testing and Pre-Commercialization Demonstration” Jan. 1-Mar. 31, 1996, DOE/MC/31176-5338.
“Utility Advanced Turbine (ATS) Technology Readiness Testing: Phase 3R”, Document #756552, Apr. 1-Jun. 30, 1999, Publication Date, Sep. 1, 1999, Report Nos.: DE-FC21-95MC31176-23.
“Utility Advanced Turbine System (ATS) Technology Readiness Testing.”, Document #656823, Jan. 1-Mar. 31, 1998, Publication Date, Aug. 1, 1998, Report Nos.: DOE/MC/31176-17.
“Utility Advanced Turbine Systems (ATS) Technology Readiness Testing and Pre-Commercial Demonstration”, Annual Technical Progress Report, Reporting Period: Jul. 1, 1995-Sep. 30, 1996.
“Utility Advanced Turbine Systems (ATS) Technology Readiness Testing”, Phase 3R, Annual Technical Progress Report, Reporting Period: Oct. 1, 1997-Sep. 30, 1998.
“Utility Advanced Turbine Systems (ATS) Technology Readiness Testing”, Document #750405, Oct. 1-Dec. 30, 1998, Publication Date: May, 1, 1999, Report Nos.: DE-FC21-95MC31176-20.
“Utility Advanced Turbine Systems (ATS) Technology Readiness Testing”, Document #1348, Apr. 1-Jun. 29, 1998, Publication Date Oct. 29, 1998, Report Nos.: DE-FC21-95MC31176-18.
“Utility Advanced Turbine Systems (ATS) Technology Readiness Testing—Phase 3”, Annual Technical Progress Report, Reporting Period: Oct. 1, 1996-Sep. 30, 1997.
“Utility Advanced Turbine Systems (ATS) Technology Readiness Testing and Pre-Commercial Demonstration”, Quarterly Report, Jan. 1-Mar. 31, 1997, Document #666275, Report Nos.: DOE/MC/31176-07.
“Proceedings of the 1997 Advanced Turbine Systems”, Annual Program Review Meeting, Oct. 28-29, 1997.